

A Real-time 3D Virtual Sculpting Tool Based on
Modified Marching Cubes

Kuo-Luen Perng, Wei-Teh Wang, Mary Flanagan*, Ming Ouhyoung

Communication and Multimedia Laboratory

Dept. of Computer Science and Information Engineering, National Taiwan University
*University of Oregon

e-mail: {perng, bearw, ming}@cmlab.csie.ntu.edu.tw , mary@maryflanagan.com
http://www.cmlab.csie.ntu.edu.tw/~perng/sculpture

Abstract
We present a real-time interactive modeling system for
users to create sculpture in a virtual world. This system
uses voxels as the smallest editable unit, and uses a 3D
tracker system to simulate virtual sculpting tools. A
modified Marching Cubes is proposed for cutting edge
anti-aliasing, and we apply octree and boundary division
to accelerate the system and reduce the memory usage
up to 20 times. Users can create virtual sculpture art
pieces or 3D prototyping models easily through the
intuitive user interface and immersing display device
such as a HMD or a Vision Station. This system can run
on a PC (PIII-500) supplied with any texture and
lighting accelerated 3D graphics card in real-time. Fig.1
shows some of the models made by our system.

Key words: Modified Marching Cubes, Anti-aliasing,
Fast Prototyping, Volume Rendering

1. Introduction
Although 3D modeling software has made much
progress over the years, it has mainly emphasized
precise modeling for CAD and 3D animations. Using
those CAD programs to model a 3D object is a
professional skill, and it requires such a long training
time that some users find it difficult to use. We propose
a modeling system that is highly intuitive. By using the
system, an artist can carve an art piece with the 3D user
interface, and a novice user can quickly and fluidly
create objects.

The central contributions of this paper are:

 We use well-designed data structures and apply
space partition techniques to reduce the memory

usage and speed up the system. It requires 632MB of
memory to record 80x80x80 marching cubes raw
data. By using our optimization method, the memory
usage requirement is under 32 MB.

 This system uses 3D tracker as input device,
which works like the extension of users’ hands. It is
the most organic way to do sculpting. We also uses
HMD and Vision Station as display devices, from
which users may experience stereo and immersing
environment.

 A modified Marching Cubes algorithm is
proposed that can provide cutting edge anti-aliasing,
and is partly based on the “Feature Sensitive Surface
Extraction”[17] approach. The key point is that the
surface normal at the cutting edge between the cutting
tool and the object to be cut is calculated and
recorded for later anti-aliasing use. Edge flipping
techniques [17] are used to reduce the aliasing effect.

We will start with a brief overview of related work in the
following section.

2. Related Works
2.1 Traditional Modeling Method

There are numerous famous 3D software packages such
as 3D Studio Max, Maya, Lightwave, etc. They all
include numerous powerful features to model 3D
objects. Users have to learn and memorize significant
function keys and parameters first, and try to combine
those functions to make their desired results.

Those professional software packages have some
drawbacks. (1) They are complicated and necessitate a
long training time to master. (2) They all use the mouse

Fig. 1 Some of the results made by our system.

as the input device. The mouse, however, is a 2D device,
but users have utilize it to edit an object in 3D space, and
have to switch windows (view ports) to see different
sides of the object. Our system tries to make the editing
more organic, so we choose a 3D tracker as our input
device.

Other modeling tools include digitizers and 3D scanners.
These tools are required to convert a model made by a
modeler with clay or other materials into digital data.
However, digitizers need to sample numerous points
sequentially by hand and that is time consuming; 3D
scanners are not suitable to scan an object that is too
reflective. In addition, if there is an obstruction between
the object and the camera, a 3D scanner will generate
data with unrecoverable gaps.

2.2 Previous Works

The basic concept of our system is to organize and edit a
large amount of voxels in 3D space with memory
efficiency, and tried to present those volumetric data in
real-time.

Volume rendering has been researched for decades.
Levoy et. al. proposed [2] and [3] when they tried to
display the scanned data of Michelangelo’s statues.
However, their method needed preprocessing and could
not dynamically add or remove voxels.

3D textures are another way for volume rendering [4].
But only high-end graphics workstations support this
function. Memory requirements by 3D textures are
incredible; for example, a 256x256x256 3D texture
requires 192MB.

Our system is basically an extension from [1], which
uses Marching Cubes algorithm [7] to present the
volumetric data. We combine this algorithm with various
techniques, such as the octree algorithm to accelerate the
system, the edge flipping techniques [17] to reduce the
edge aliasing, and boundary division to reduce the
amount of memory usage.

Fig.2 Setup of Virtual Sculpting system.

3. System Overview
Fig.2 is the setup of our system. Two receivers are used.

One represents workspace and the other represent the
virtual tool. Receivers will send its positions and
orientations to our program for further calculations.
Fig.3 is a screenshot from our system.

The workspace is filled with voxels, the basic editable
unit in our system. Each voxel has two states, either
“Stuffed” or “Cleared”. Users can use different kinds of
sculpting tools to modify the states. Only those
“Stuffed” voxels that are also at the outmost surface of
the object will be rendered by the modified Marching
Cubes algorithm.

Fig.3 Screen shot from carving a vast.

3.1 Hardware Requirement

 3D Tracker: The most intuitive way to do
sculpture is doing it in 3D space, so we chose 3D
tracker as our user interface. This system requires two
receivers: the user can hold a receiver in one hand,
which controls the movement and the orientation of the
virtual object that will be carved, like a wooden block.
That means the object has 6 DOF and the user can
transform it to see all its faces with only one input
device. The user can hold the other pen-like sensor in
the other hand, which simulates traditional carving
tools. By using these two simple sensors, users can
start to do the modeling without any further training.

 RAM: Our system typically requires about 32MB
of RAM. It will take 632MB to record the raw data of a
16x16x16(cm3) workspace with the accuracy at 0.2
cm. We will use various techniques to reduce the
memory usage under 32MB.

 CPU & GPU: Our program works well at a PIII
500 PC with a Geforce2 MX video card. The
bottleneck is not on the CPU but rather on the GPU.
Therefore, with a better video card, we can expand the
workspace and make the voxels denser, which will
create better, more precise results.

3.2 System Feature

Our system provides four main features: (1) Carving (2)
Stuffing (3) Pottery Making (4) Painting. The user has

five virtual tools to choose from: (1) Sphere (2) Cube (3)
Plane (4) Cylinder (5) Cone.

3.2.1 Carving

The user may initialize the workspace as a solid cube,
wherein all voxel states are “Stuffed”-- except the
outmost ones; we need them to be “Cleared”. The reason
will be explained later. The user may use virtual
sculpting tools to carve this cube. Those voxels which
collide with the virtual tools will be labeled as
“Cleared”, and the rendering list will be updated. In the
carving mode, the user carves and sculpts as freely as
would be done in real space, except for the force
feedback.

3.2.2 Stuffing

The user may choose to start with an empty workspace
with all the voxels in the “Cleared” state. In the
“Stuffing” mode, voxels which collide with the virtual
sculpting tools will be relabeled as “Stuffed”, and the
rendering list will be updated. This mode works like
adding clay onto an object, and it can run cooperatively
with the carving mode. If the user makes a mistake in the
carving, he may use this mode to repair the object and
carve again.

3.2.3 Pottery Making

We can turn our block as though it were on a virtual
spinning table; this will drive the workspace to spin
around an axis. It is like making pottery and it is easy to
“throw” a pot of “clay” as it spins.

3.2.4 Painting

After the model has been made, the user can paint it. The
painting will assign color to each vertex of the triangle
list and the color will be interpolated and blended with
the texture.

4. Sculpting and Display Pipeline

Fig.4 Flaw chart of sculpting pipeline

4.1 Workspace Configuration

First, the user has to set up the size of the workspace (the

space containing editable voxels) and the density. These
two parameters will define how many voxels will be
used. The more voxels, the better the rendering result.
We use the default values in the following discussion.
Each axis is divided equally into 16 segments (totally
4096 blocks) and each block contains 5x5x5 Marching
Cubes (totally 512000 Marching Cubes). Therefore there
will be up to 81x81x81 voxels displayed with an
accuracy of 0.2cm. Each voxel has two states, either
“Stuffed” or “Cleared”. We restrict the outmost voxels
to a “Cleared” state, or the outmost marching cubes will
not show any triangles (when all voxels of a marching
cube are “Stuffed”, we consider it inside the object and
will not show any triangles.) Therefore the editable
voxels will be 79x79x79.

4.2 Read Tracker

We continuously retrieve the tracker’ s positions and
orientations. One receiver controls the workspace and
the other controls the virtual tool. We convert the
coordinate of the tool into the coordinate of the
workspace and do all the calculations in that coordinate.
This simplifies the further calculation.

4.3 Blocks Intersection With Graver

Afterwards, we need to find out whether the tools have
collisions with the blocks, and only those influenced
blocks need updating. This step will take O (n) to check
all the blocks by using brute force and will be reduced to
O (log (n)) by using the octree traversal.

To calculate the collision detection in real time, the
virtual sculpting tools provided are constructed of basic
geometries that can be represented in simple
mathematics.

If the virtual sculpting tool is considerably large, it may
influence many blocks and the octree traversal will stop
at a non-leaf node and retrieve the information of those
blocks affected. Each block has a counter which records
how many voxels are “Stuffed” within this block. We
can skip the marching cubes test if a block has all its
voxels “Cleared” in the carving mode, as well as all
when it has all of its voxels “Stuffed” in the stuffing
mode.

4.4 Modify Voxels’ States

We now restrict our actions at certain blocks selected
from the previous step. We would like to discuss this in
the carving mode; the stuffing mode is using the similar
concept and will be skipped. To carve the block means
to change the voxel’s state from “ Stuffed” to
“Cleared”, and we will change only those voxels within
the boundaries of the sculpting tool. As mentioned
earlier, we do not record the voxels’ coordinates in order
to optimize memory use. We use the bounding box
information of the block and the density parameter to

calculate the voxel position in real time. The pseudcode
of these actions are as follows:

for (i = 0 ; i < max_voxels ; i ++)

{

if(Filled(i))

{

v = GetPositionOfVoxel(i);

if (InsideGraver(v))

{

CutVoxel(i);

}

}

}

4.4 IntersectionTest With Modified Marching Cubes

A marching cube is composed of eight neighboring
voxels. We sequentially check whether the marching
cubes of a block intersect the tools. If so, we will check
which edge of the marching cube intersects the tool
chosen and then calculate that intersection point.
Furthermore, the surface normal of the intersection point
is calculated based on the contact surface between the
cutting tool and the object to be cut.

 Those marching cubes with their entire corner voxels
“Stuffed” (within the object) or “Cleared” (outside the
object) will not be checked. We only check those with
part of their corner voxels “Stuffed” (at the surface of
the object). We will calculate those edge-tool
intersection points under two conditions: (1) The
intersection point hasn’t been calculated on that edge.
(2) The edge already has an intersection point, but it is
within the tool itself. We will update the triangle list
afterwards.

The marching cubes are tightly connected. Neighboring
marching cubes share some edges with each other. If we
process each marching cube independently, calculating
the intersection of the shared edge would be redundant.
The result of the shared edge could be calculated only
once if we don’t process each marching cube
independently. In order to save the redundant CPU time,
we categorize marching cubes into eight different types
according to their position.

Assuming there are M*M*M marching cubes in each
block, we use a 3D vector, (n,n,n) for 0<=n<M, to
represent the position of each marching cube in each
block. The eight different types are:

1.Inside: when (n,n,n), 0<=n<M-1

2.In Top Face: when (n,M-1,n), 0<=n<M-1

3.In Front Face: when (n, n, M-1), 0<=n<M-1

4.In Right Face: when (M-1, n, n), 0<=n<M-1

5.In Top Front Edge: when (n, M-1, M-1), 0<=n<M-1

6.In Top Right Edge: when (M-1, M-1, n), 0<=n<M-1

7.In Front Right Edge: when (M-1, n, M-1), 0<=n<M-1

8.Corner: when (M-1, M-1, M-1)

Please refer to Fig.5 for the following rules.

For all the marching cubes labeled as “Inside”, we only
have to calculate edges 0, 3, 8. These “Inside” marching
cubes share the intersection test results of edges 0, 3, 8
to the neighboring marching cubes which share the same
edges.

For all the marching cubes labeled as “In Top Face”, we
only have to calculate edges 0, 3, 4, 7, 8 and apply this
information to the neighboring marching cubes. Other
faces are processed similarly.

There would be only one marching cube labeled as
“Corner”, and we have to calculate all the edges of that
particular cube. Because it is located in corner, no edge
could be shared with others.

Assuming Cube A,1,2 and 3 are all “inside”, we only
have to process edge 0, 3, 8 of each marching cube.

The result of edge 4 on Cube A comes from edge 0 on
Cube 1. The result of edge 5 on Cube A comes from
edge 3 on Cube 2.

The result of edge 9 on Cube A comes from edge 8 on
Cube 3.

The result of edge 1 on Cube A comes from edge 3 on
Cube 3.

To simplify it, sharing edges could be done only when
marching cubes are within the same block. Of course we
can share edges of the neighboring marching cubes
between different blocks. The only thing we have to do
is to position marching cubes in global, but not local
space. Instead of positioning each marching cube in its
block, we could position each marching cube in the
whole workspace and use the same definition above. But
in order to simplify the system, we implement our
program to share marching cubes only within the same
block.

Fig.5 Blocks sharing edges.

4.5 Building Anit-aliased Triangle Array

After all the intersection points have been calculated, the

triangle array is generated by the proposed modified
Marching Cubes algorithm. Our system records not only
corners’ filling states but also the intersection points and
associated surface normals on each edge. The surface
normal at the intersection point between the cutting tool
and the object to be cut is exactly calculated and
recorded for later anti-aliasing use. Therefore the
rendering result is better than the original Marching
Cubes algorithm. Fig.6 and 7 shows the difference. Note
that the “distance field” representation used by Kolbelt
et al [17] aims to find the surface normals at the
intersection point. However, in our virtual sculpting tool,
the surface normals can be calculated directly, and so
distance field representation is not necessary for us.
However, the feature sensitive sampling and edge
flipping techniques proposed by Kobelt et al [17] is very
useful and is used in our system accordingly. Anti-
aliasing is therefore done in this modified approach.

Fig.6 The top one is original Marching Cubes algorithm
which only record corners’ filling states. The bottom one
is our method. We record intersection points and make
triangles from these points, which will have better result.

Fig.7 shows the edge flipping techniques (following
Kobelt[17]) being used for anti-aliasing in intersection
edge.

5 Rendering
5.1 Building Vertex array on VRAM

We have experimented with many methods to accelerate

the rendering process. Our system uses OpenGL and will
focus on this approach.

1. Put all vertices in an array

We found that giving the OpenGL API an array of
vertex can render three times faster than immediate
mode. The vertex information stored in the main
memory needs to be downloaded to the VRAM of a
T&L graphics card to be able to render them. Each API
call will be followed by a download operation, which
will become a burden if it runs too many times. The
fewer the API calls, the better the performance.

2. Put vertex array on the VRAM

When rendering a lot of triangles, the bottleneck is not
the computing power of the GPU but the memory
transfer bandwidth. The GPU has to download the
information of vertices from system memory. To render
a scene containing 300,000 triangles at 30 fps with
sufficient information about each, including vertex
coordinates, normal, color and texture coordinates, the
bandwidth needed to transfer such information is
377MB/sec. It takes a long time to download and at the
mean time, the GPU will idle and waste its computing
power. Therefore a graphics card which claims to render
10 Million/sec can only render 2 Million/sec when all
the information is stored on the main memory.

Our system stores the triangle information directly on
the VRAM and will almost double the rendering speed.

5.2 Texture

We can apply different texture maps to the model, so
that users may feel as though they are carving a range of
materials such as a wooden block or marble.

We use Decal method to calculate the texture
coordinates. We only take x and y value (normalized)
from the vertex’s coordinates as the texture coordinates.

Assume (xmax, ymax, zmax) are max coordinates of
workspace. (xmin, ymin, zmin) are min coordinates of
workspace.

Width = xmax – xmin;

Height = ymax – ymin;

Tx = (x-xmin)/width;

Ty = (y-ymin)/width;

This method could be performed automatically by GPU
with proper configuration. So there is no need to record
the texture coordinates and the system thus saves
memory.

5.3 Coloring

The painting methods use a similar pipeline as does
carving, which traverse the octree to find the block that
is about to be affected.

At first, check all the edge points of the marching cubes
in the affected block to see whether these points are
lying in the tool. If so, change the color of the points to
the selected color. Afterwards we will update the
triangle list with the new color.

6 Memory Management
First, we will show the memory usage of the raw data,
and then we will discuss how to use memory efficiently
with the data structure we propose and some dynamical
allocation techniques.

6.1 Raw Data Storage

Let’s take a look at the raw data storage requirement in
our system.

BlockManager: two 3D vectors for the boundary box.

Block: two 3D vectors for the boundary box.

Marching Cube: two vectors for the boundary box, states
of 8 voxels and intersection points of 12 edges.

We assume there are BxBxB Blocks in BlockManager
and MxMxM marching cubes in each block.

We need information of position, normal, and color for
each vertex on each edge.

MarchingCubes = B*B*B*M*M*M.

Vertices = MarchingCubes * 12 (edges).

Bytes_Per_Vertex = (3+3+3)*(3*4) = 108.

Bytes = Vertices * Bytes_Per_Vertex.

Take our default configuration as an example, B=16,
M=5. We need 632MB RAM to store all the required
information, not even including the bounding box of
each marching cube and the state of each voxel.

Programs always run slower when they use more
memory because of the cache miss. In addition, most
consumer PCs don’t have more than 128MB of memory.

6.2 System Memory Management

To save the memory usage, we use some mechanisms to
reduce the memory requirement to 32MB-64MB.

1. Only BlockManager and block have to remember
their bounding boxes. The bounding boxes for
marching cubes are always calculated in run time.

2. Positions of each voxel are calculated in run time.

3. Only allocate memory for marching cubes in each
block when necessary. If a block is fully “Stuffed” or
all “Cleared”, the system doesn’t have to do anything
about marching cubes inside the block. So there is no
reason for us to allocate memory for those marching
cubes.

4. Only allocate memory for the edges of the marching
cube when it has intersections with the virtual
sculpting tools, and release the memory when the
intersection no longer exists.

Using this mechanism, a marching cube doesn’t always
require memory for each edge. A block doesn’t always
require memory for each marching cube

In the typical case, it is impossible for each marching
cube to have 12 intersections all of its edges. It is also
almost impossible that every block has to allocate
memory for their marching cubes. In our observation,
this system seldom uses more than 50MB of memory.

6.3 Video Memory Management

If we could put our display vertex information in the
video memory, the FPS could be doubled compared with
putting them in the system memory. More FPS means
you can work with a higher resolution within our
system. Currently, every display card has more than 32
MB memory. But the memory must be reserved for the
Frame buffer, Zbuffer and textures. We can use no more
than 20MB of the memory. When each block has to
rebuild its triangle array, the most efficient way to this is
to build it in the video memory. But this is not practical
because we have to allocate more memory for the blocks
when they have more triangles and have to release
memory when they don’t have any triangles. This could
cause memory fragments. So we cannot allow each
block to allocate video memory on its own. A brute-
force algorithm is used to allocate one very large array in
video memory, and equally divide the array for each
block. But it only works if you have a lot of video
memory. For the reasons above, our system builds the
triangle array in system memory. The array will be
copied to video memory after it’s constructed.

This is the way in which we use video memory:

1. Allocate some video memory when initialized.

2. Rebuild triangle array of each block in system
memory when necessary.

3. Calculate memory requirement for display for all
blocks.

4. Reallocate video memory if necessary.

5. Copy triangle array from the smallest modified block
index to video memory.

6. Go back to step 2.

Copying the triangle array from the smallest modified
block index means that, for example, if a user modified
the marching cube in the 20th block in BlockManager,
the system doesn’t have to update the video memory
which stores the triangle array of 1-19 blocks.

7 Display Devices
Normal CRT and LCD monitor lacks perspective. Users
cannot get depth information from those display devices.
Therefore it is hard to create the model very accurately.
Two kinds of 3D display device are adapted to our
system; they are HMD and Vision Station. By using
HMD, users may have stereo view and can carve the
model more accurately. The Vision Station is new a 3D
display device. Users are actually surrounded by a dorm
like screen and may experience immersing environment
(Fig.8).

Fig.8 Our system runs on a Vision Station.

8 Import and Export
Our system supports importing and exporting models.

8.1 Import

We can import models made by other CAD software and
edit them in our system. Most of the 3D files contain the
model’s triangle information; thus we have to convert
those triangles into voxels and marching cube
information. The process of importing is as follows:

1. Import the model as triangles and put it into the
working space. Each voxel has 6 outgoing rays along
+x, -x, +y, -y, +z, and -z. We will check the triangle
first hit by the ray. If the triangle is facing outward,
then this voxel is considered inside the model
(“Stuffed”), and vise versa.

2. Calculate the intersection points between the
triangles and the edges of the marching cube to
construct the rendering list.

We apply spatial divisions to the imported triangles.
Marching cubes of each block would only check with
spatially related triangles with their own blocks, which
will speed up the process.

8.2 Export

Exporting is much simpler. We already have all of the
triangle information of the model. Therefore we just
need to write the data out in certain 3D file formats.

9 Results and Gallery
A few samples using our system are given below as
results.

Fig.9 A cube with two holes being cut where the new
proposed modified Marching Cubes approach is applied.
Note that aliasing at the hole boundary is greatly
reduced..

Fig.10: Hagihara Tadanori created this “An apple
pierced by an arrow” in less than 15 minutes. He used
both stuffing mode and carving mode.

Fig.11 This “Gnarled Tree” was created by visiting
professor Mary Flanagan in less then 10 minutes. She
mostly used stuffing mode with a sphere graver to create
this.

10 Conclusions
A real-time virtual sculpturing tool is developed and a
modified marching cubes algorithm is proposed.
Traditional marching cubes algorithm has the problem of
aliased edges, and so precision is always a problem. Our
system records not only corners’ filling states but also
the intersection points and associated surface normals on
each edge. The surface normal at the intersection point
between the cutting tool and the object to be cut is
exactly calculated and recorded for later anti-aliasing
use. The edge flipping techniques proposed by Kobelt et
al [17] is also implemented and aliasing at the
intersection edge is greatly reduced.

In short, our design makes it possible to run this system
on a PC with a texture and lighting accelerated graphic
card. The system makes it possible to create a digitized
sculpture intuitively and can be used as a fast
prototyping tool. Besides, initial users note that the
system provides artists with a brainstorming
environment that can stimulate their imagination.

References
1. Galyean ,T. , Hughe ,J. “Sculpting: An Interactive
Volumetric Modeling Techniques” . Proceedings of
SIGGRAPH’91, 1991, pp267-274.

2. Levoy, M. and Whitted, T. “The Use of Points as a
Display Primitive”. Technical Report TR 85-022,
University of North Carolina at Chapel Hill, 1985.

3. Rusinkiewicz, S. and Levoy, M. “Qsplat: A
Multiresolution Point Rendering System for Large
Meshes”. SIGGRAPH 2000, pp. 343-352Westermann,
R., Ertl, T. “Efficiently Using Graphics Hardware In
Volume Rendering Applications”. SIGGRAPH 1998,

pp. 169-177.

4. Cabral, B., Cam, N., and Foran, J. “Accerlerating
Volume Reconstruction with 3D Texture Hardware”.
ACM Symposium on Volume Visualization ’94, pp. 91-
98.

5. Danskin, J. and Hanrahan P. “Fast Algorithms for
Volume Ray Tracing.”. ACM Workshop on Volume
Visualization ’92, pp. 91-98.

6. Lacroute, P., and Levoy, M. “Fast Volume
Rendering Using a Shear-Warp Factorization of the
Viewing Transformation”. Proceedings of
SIGGRAPH ’94, 1994, pp.451-458.

7. Lorensen, W. and Cline, H. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm”.
SIGGRAPH 1987, pp. 163-169.

8. Pfister, H., Zwicker, M., van Baar, J. and Gross, M.
“Surfels: Surface Elements as Rendering Primitives”.
SIGGRAPH 2000, pp. 335-342.

9. Nvidia OpenGL Extension Specs
http://www.nvidia.com/ March 2, 2001.

10. Eric A. Bier. “Snap-Dragging in Three
Dimensions”. In 1990 Symposium on Interactive 3D
Graphics, SIGGRAPH, 1990, pp. 131--138.

11. Barillot, C., Gibaud, B., Scarabin, J., and Coatrieux,
J. “3D Reconstruction of Cerebral Blood Vessels”. IEEE
Computer Graphics and Applications 5,12 (December
1985), pp. 13-19.

12. R. Lewis and C.H. Sequin, "Generation of Three-
Dimensional Building Models from Two-Dimensional
Architectural plans," Computer-Aided Design, vol 30,
no 10, 1998, pp 765-779.

13. Pei-Wen Liu, Lih-Shyang Chen, Su-Chou Chen,
Jong-Ping Chen, Fang-Yi Lin, and Shy-Shang
Hwang,”Distributed Computing: New Power for
Scientific Visualization.” IEEE Computer Graphics and
Applications, Vol. 16, No. 3, May 1996, pp.42-51.

14. Cline, H. E., Dumoulin, , C. L., Lorensen, W. E.,
Hart, H. R., and Ludke, S. “3D Reconstruction of the
Brain from Magnetic Resonance Images.” Magnetic
Resonance Imaging (1987).

15. Janis Wong, Rynson Lau, and Lizhuang Ma,
"Virtual 3D Hand Sculpturing with a Parameter Hand
Surface," Computer Graphics International, IEEE
Computer Society Press, June 1998, pp. 178-186.

16. Alan Watt “3D Computer Graphics Third Edition”
ADDISON-WESLEY 2000.

17. Kobbelt, L.P. Botsch, M. Schwanecke, U. Seidel, H-

P. ”Feature Sensitive Surface Extraction fromVolume
Data”. Proceedings of SIGGRAPH 2001, pp. 57-66.

