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Abstract 
This paper discusses an extrusion technique to quickly 
and robustly tackle the four-dimensional problem of 
spacio-temporal intersection detection for rigid bodies 
with arbitrary motion. We combine the GJK algorithm 
with Brent’s method to determine non-collision or time-
of-impact (TOI) for an object pair over a complete time 
interval. Experimental results show this method capable 
of supporting accurate rigid body simulation of large 
scale and highly dynamic environments at interactive 
frame rates on a common PC. 
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1. Introduction 
It is common knowledge that solid objects do not 
interpenetrate in reality. The representation of this basic 
principle is paramount to the feasibility of a model of the 
physical world. Further, the non-penetrability constraint 
is quite intuitive, so it can appeal to our spatial cognition 
processes to improve our sense of presence in virtual 
reality applications, as well. Enforcing this constraint 
requires the identification of when and where objects 
begin to interpenetrate, and in the setting of physical 
simulation, this is known as the problem of collision 
detection. 

Collision detection research has advanced significantly 
in recent years, motivated primarily by the interest in 
physically based modeling of virtual environments. It’s 
an intricate endeavor, because collisions are 
discontinuous events, and special care must be taken to 
find them when modeling an otherwise continuous 
world. We can calculate these events analytically for 
relatively simple environments such as a racing track or 
a billiards table, but these methods are traditionally 
confined to highly constrained applications such as 
video games, and an analytical solution is intractable for 
the general case. A more robust physical simulation will 
typically detect collisions numerically through the 
evaluation of pair-wise intersection tests over time. 
Cameron [1] classifies these intersection tests into three 
distinct categories: static, sweeping, and extrusion. 

Static intersection tests check for intersection at specific 

instances in time. These tests are relatively simple and 
fast, and never report false alarms.  However, they often 
miss collisions, especially for small or flat objects† , 
because although an object pair might not intersect at 
two separate times, they may have actually passed 
straight through each other (Fig 1 center). These misses 
are blatant errors that lead to infeasible simulation 
behavior. When objects are interdependent, the problem 
worsens as these errors accumulate – the simulation 
becomes increasingly unrealistic, commonly resulting in 
eventual breakdown due to unrecoverable failures.  

Sweeping intersection tests detect the intersection 
between the sweeping volumes of objects over time, or 
an approximation thereof. Although these tests never 
miss, they also conservatively report false alarms that 
never actually occur, because they do not account for the 
displacement of objects as they move (Fig. 1 right). This 
overshooting can be resolved by recomputing the 
sweeping volumes for intermediate time steps to verify 
whether there was an actual collision, but the 
computation required to do so may be prohibitive. 
Consider a stack of blocks in freefall – even over 
miniscule time intervals their swept volumes intersect, 
although the blocks themselves never come into contact. 

Extrusion intersection tests take a four-dimensional 

                                                           
† For brevity, “object” refers to a geometric primitive such as a box, 
sphere, triangle, convex polyhedra, etc. 
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approach to detect spacio-temporal intersection directly, 
without misses or false alarms. The mathematical basis 
of extrusion is straightforward, consisting of distributive 
set operations on points in space-time, but the actual 
boundaries of these 4-D sets can be quite complex, 
especially when objects rotate. Fortunately, the 
intersection of two object extrusions can be detected 
without ever constructing their boundaries explicitly, as 
we will discuss below in section 3. 

A fourth consideration consists of detecting intersection 
in configuration space[2], but this generally concerns 
the much harder problem of collision avoidance, and 
will not be addressed further in this paper. 

2. Overview of the GJK Algorithm 
We begin with an overview of the GJK algorithm, which 
is a classic method to find the closest distance between 
two convex polyhedra. This is a very brief sketch, and 
the reader is referred to [3, 4, 5, 6] for a more in-depth 
discussion, and several techniques to optimize its 
performance. We introduce how GJK can be used for the 
spacio-temporal case in the next section. 

2.1 Supporting Vertex 
For a convex polyhedron X and a vector 3ℜ∈s

r
, assume 

there exists a routine SX( s
r

) that returns the supporting 
vertex of X in the direction s

r
, defined as: 

SX( s
r

)∈vert(X) where s
r

·SX( s
r

)=max{ s
r

·x: x∈vert(X)} 

Typically, this vertex is unique, but not necessarily. It 
can be found efficiently with a technique called hill 
climbing, which uses adjacency information of each 
vertex to search for a local (and also global) maximum 
[5]. Further improvements such as using hash tables to 
achieve nearly constant search time are explained in [6]. 

2.2 Calculating closest distance 
Begin GJK with two convex polyhedra P and Q, an 
arbitrary nonzero vector 0s

r
, and two vertex sets VP and 

VQ, initially empty. At each iteration i, append the 
vertices SP( is

r
) and SQ( is

r
− ) to VP and VQ, respectively. 

Then calculate the feature of the Minkowski sum VZ=VQ-
VP (note the minus sign) which is closest to the origin. 
Refine VZ to contain only this feature, and since it must 
be either a vertex, edge, or triangle (in 3D), VP and VQ 
will always contain three vertices or less. The length of 
the vector z from the origin to the closest point shall be 
referred to as the Minkowski distance (MD), and GJK 
reiterates with 1+is

r  set to z until this distance no longer 
decreases. If P and Q are disjoint, convex analysis 
proves that the Minkowski distance will converge 
monotonically to the global closest distance, and the 
closest features can be interpreted directly from the final 
sets VP and VQ. Figure 2 illustrates an example execution 
of GJK, with sets VP and VQ on the left, and the 
corresponding Minkowski sum VQ-VP on the right. 

Empirically, GJK completes within a constant number of 
iterations (generally less than eight), nearly independent 
of the geometrical complexity of P and Q. Further, if the 
states of P and Q do not change much between queries, 
the work from the previous query (e.g. VP and VQ), can 
be used to reinitialize the current query in order to 
exploit temporal coherence. This enhanced version of 
GJK executes extremely quickly, typically completing 
within one or two iterations on the average, and ranks 
among the most competitive closest feature algorithms 
reported to date. GJK is especially attractive for its 
simplicity, since it only requires simplex object data, 
which is very scalable and easy to build. [7] 

2.3 Supporting distance and static intersection 
GJK also serves as an efficient static intersection test 
when it calculates the supporting distance between P 
and Q in the direction is

r  at each iteration (see fig. 3). 
This is conceptually different from the Minkowski 
distance mentioned above, and is defined as: 

SD(P, Q, s
r

) = s
r ·SQ(- s

r ) – s
r ·SP( s

r ) 

which is the signed distance between the supporting 
planes of P and Q in opposing directions of s

r . Unlike 
the Minkowski distance, the supporting distance 
sporadically increases and decreases at each iteration of 
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GJK. If this distance is positive, then is
r  is called a 

separating vector because it defines a plane in space that 
separates P and Q. In the example above, 1s

r through 4s
r  

are all separating vectors. A boolean query can stop once 
it finds the first such vector, because it proves P and Q 
are disjoint. If the GJK algorithm finds a local minimum 
for the Minkowski distance and halts before a separating 
vector can be found, then such a vector provably doesn’t 
exist, and P and Q therefore must either intersect, or be 
so close together that round-off error dominates the 
computation. GJK is numerically sensitive for this 
reason, but the inherent problems can be alleviated in 
most cases by enforcing separation between objects by a 
nonzero collision tolerance based on floating point 
precision. 

3. Separating Hyperspace Test 
Consider the space defined by all separating vectors 
between P(t0) and Q(t0). Geometrically speaking, if P 
and Q intersect at t0, this space is null, otherwise it is an 
open pyramid extending away from the origin. The 
spacio-temporal method we introduce here is an 
extrusion test over the time interval t0 to t1, but instead of 
calculating the extrusions of P(t) and Q(t), we analyze 
the extrusion of their separating space over time, 
referred to here as their separating hyperspace. To 
detect intersection over t0 and t1, we determine whether 
the separating space ever vanishes in the interim by 
testing whether the spaces at t0 and t1

 are disjoint.  

This is based on the fact that in the case of linear motion, 
i.e. no rotation or acceleration, P and Q never intersect if 
and only if the their separating hyperspace is a convex 
set. In the case of nonlinear motion it is only semi-
convex, and if P and Q intersect, the separating space at 

t0 may vanish undetected, and a subset of which could 
reappear at t1.  However, these errors are the result of 

second order motion, which is practically negligible for 
sufficiently small time steps, such as for animations of 
objects that do not rotate or accelerate too quickly. 

With this in mind, our proposed method is the following. 
Assuming by induction that P(t0) and Q(t0) do not 
intersect, we execute the GJK algorithm at t0. At each 
iteration, we compute SD(P(t0), Q(t0), is

r
). If this 

distance is positive, is
r

 is a separating vector at t0, so we 
compute SD(P(t1), Q(t1), is

r
). If this distance is also 

positive, then is
r

 is a separating vector for both t0 and t1 
and their separating spaces intersect, so the test returns 
non-collision for the entire time interval. 

This extrusion test fails if the GJK algorithm halts before 
it finds a separating vector for both t0 and t1, but that 
does not necessarily imply collision for two reasons: 
GJK might not have encountered such a vector in the 
relatively few iterations before halting, and the 
separating space for P and Q may have evolved over 
time without ever vanishing. So, like the sweeping test, 
we must further investigate with intermediate time 
intervals, as described in section 5. However, this 
extrusion test combines the complementary merits of 
both static and sweeping tests, and performs better for a 
broad scope of rigid body motion (Fig. 4). 

4. Maximum Supporting Distance and TOI 

Consider the maximum SD(P, Q, s
r ) at a particular 

instant in time for all vectors s
r  on the unit sphere. A 

positive value is equivalent to the closest distance when 
P and Q are disjoint, and a negative value is the 
penetration distance when they intersect (Fig 3). If we 
represent the maximum supporting distance between P(t) 
and Q(t) as a continuous scalar function of time, we can 
identify collisions by checking whether or not this 
function drops below zero, and then determine their 

exact TOI with a root solver. 

Unfortunately, this is a difficult task in practice. 
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 This function’s behavior is fairly complex in general, 
especially because its first derivative is discontinuous for 
objects such as polyhedra, whose closest features change 
instantaneously. In addition, although a closest feature 
algorithm such as GJK finds the maximum supporting 
distance efficiently if P(t) and Q(t) are disjoint, global 
optimization based on convex analysis breaks down if 
P(t) and Q(t) intersect, and an exhaustive search may be 
required to compute its exact value. 

One popular way to avoid these issues combines a 
closest distance algorithm with an analytical TOI 
estimator, which calculates the earliest possible time of 
impact for object pairs, based on their current closest 
distance and general equations of motion [8]. Objects are 
advanced forward at time steps that guarantee non-
intersection, until the closest distance between an object 
pair falls below the collision tolerance. This ensures 
accurate collision detection, and works well for simple 
environments, but there are three major drawbacks. 

First, these equations are complicated and must consider 
a multitude of variables, such as linear and angular 
velocity, acceleration, and object dimensions. Overly 
conservative predictions will converge poorly, and a 
robust implementation has a steep learning curve that 
could confound all but the most diligent developer. 

Second, tracking the closest distance between two 
objects is a wasteful procedure if we only care about if 
and when they collide. As described earlier, a boolean 
intersection test may execute several times faster than a 
complete closest distance query, and with less overhead. 
Finding the closest distance for nonconvex objects is 
even more difficult, and quickly degrades performance. 

Third, when we consider more than two objects whose 
collisions are interdependent, this one-sided approach 
requires a “TOI heap,” which maintains  the earliest time 
in which object pairs might collide. For environments 
consisting of hundreds of objects, this could result in a 
very large number of pairs, even after they are pruned by 
bounding volumes. Heap operations aren’t free, and the 
effort required to update the heap could create a 
computational bottleneck. 

5. GJK Extrusion Test with Brent’s Method 
The method proposed here takes a two-sided approach to 
compute the TOI retroactively, by approximating the 
(negative) penetration distance at t1 as the maximum 
value of SD(P(t1), Q(t1), is

r
) among those we calculated 

before the GJK query halted. Since we only calculate 
SD(P(t1), Q(t1), is

r
) when is

r
 is a separating vector at t0, 

this heuristic effectively estimates the time that the 
subset of separating vectors found at t0 will vanish. 

Our implementation uses Brent’s method, which is a root 
solver that cleverly combines bisection, the secant 
method, and inverse quadratic interpolation to guarantee 

superlinear convergence [9]. If the initial extrusion test 
at t0 and t1 fails, we use the closest distance at t0 and the 
approximate maximum supporting distance at t1 to 
calculate an intermediate time tx using Brent’s method. 
We then repeat the extrusion test for the interval t0 to tx, 
but since the work for executing GJK at t0 is identical, 
we can speed up this intermediate query by storing all 
the separating vectors is

r
 we found at t0, and use this set 

(a constant number, generally less than seven) to 
recalculate SD(P(tx), Q(tx), is

r
) and obtain a new 

approximate maximum supporting distance at tx. If this 
distance is negative, we continue normally with further 
iterations of Brent’s method. However, if this distance is 
positive, we assume P and Q are disjoint from t0 to tx, so 
we recompute a complete GJK extrusion test for tx and t1 
in order to determine the exact closest distance at tx 
before we proceed. 

The solver returns either the TOI tx if its maximum 
supporting distance is positive and smaller than the 
collision tolerance, or noncollision if it finds a "photo 
finish", in which the extrusion test fails for the complete 
time interval t0 to t1 but succeeds when performed on the 
sequence of intervals t0 to tx1, tx1 to tx2, ... txn, to t1.  As 
mentioned in section 3, this could happen fairly often for 
two reasons: a separating vector for both t0 and t1 may 
exist but the GJK algorithm halted prematurely before 
finding it, or the separating space for P(t0) and Q(t0) 
evolved over time without ever vanishing. 

The ability to determine non-collision or time of impact 
for a complete time interval is most convenient when we 
are considering multiple objects whose collisions are 
interdependent, because we can apply this extrusion 
intersection solver to all object pairs with a single pass, 
and then use Mirtich’s very clever Timewarp algorithm 
[10] to efficiently resolve collisions in the proper order. 

6. Experimental Results 
This algorithm has been implemented and initial 
experiments have been conducted on a 500 MHz 
Pentium III with an NVIDIA TNT to analyze its 
effectiveness for large-scale rigid body dynamics 
simulation on a common PC. The static environment 
consisted of an aquatic plant fixed in space with 8640 
triangles, and the dynamic environment consisted of a 
skeletal model of a human torso separated into its 
individual bones and vertebrae, with 80 nonconvex rigid 
bodies and 24,790 triangles in total. 

We used the techniques in [11, 12] to decompose each 
nonconvex surface into convex polyhedra and generate a 
hierarchical representation of bounding volumes known 
as k-dops[13], with k = 14. Bounding volume tree 
queries used k-dop extrusion intersection tests to prune 
primitive pairs, and generalized frontal tracking [14] to 
exploit temporal coherence. We used Mirtich’s approach 
[8] with RK5-4-7FM, a fifth order accurate Runge-Kutta 
method with adaptive step-size control, to numerically 
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integrate an impulsive collision response, with dynamic 
friction coefficient µd = 0.4 and collision restitution 
coefficient e = 0.7. Static contact was modeled through 
microcollisions, and a more robust  hybrid 
implementation remains as future work. 

The simulation began by dropping the torso from a 
random position. The collection of bones fell freely with 
constant acceleration until it shattered onto the plant. 
(Fig. 5) The simulation completed once all of the bones 
had fallen through the plant or settled to a steady state. 

The simulation advanced 1/24 seconds at each frame, 
and the actual execution time for each step is presented 
in figure 6, including the time for Euler integration, 
bounding volume computation, collision detection at the 
polygonal level with the GJK extrusion test, impulse 
integration, collision ordering with Timewarp, and 
image display with OpenGL. The peak at t ≈ 2 sec 
indicates the point when the number of interdependent 
collisions within the skeletal model was maximized due 
to the crash. The bones then scattered, and eventually 
settled into steady contact with the plant with an 
increasing number of microcollisions, indicated by the 
steady rise in execution time until the simulation’s 
completion. The ratio of execution time to simulation 
time ranged between 1.0 and 7.9 for the entire 
simulation. For a collision tolerance of ε1/2 ≈ 0.0003, 
where ε is the 4-byte floating point epsilon, we found the 
TOI solver completed in 2.2 iterations on the average, 
with a worst case of 43 iterations, and an average 
“photo-finish” false alarm rate of 70%. 

Admittedly, this omnibus benchmark is not a very useful 
measure of collision detection efficiency. Regardless, 
from this preliminary investigation on a middle-grade 
PC by today’s standards, we are optimistic that the 
method proposed here is an improvement over current 
methods of its kind by a significant margin, and a more 
rigorous comparative study is very near future work.  

7. Conclusion 
The physical feasibility of rigid body dynamics depends 
on accurate collision detection, which is challenging to 
compute in the precious milliseconds between 
successive animation frames if we are using physically 
based modeling to improve the sense of presence in 
virtual reality applications. However, after 
experimentation with the GJK extrusion method 
proposed here, our observation is that the prospects of 
accurate collision detection in real-time for large scale 
virtual environments are very good, and we eagerly 
encourage others to help continue the progress in this 
exciting field of research.  
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Fig. 5 Skeletal torso in freefall crashing into aquatic plant 
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Fig. 6 Running Time for Torso-Plant Simulation 
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