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Abstract
This paper describes a new camera calibration method
based on ellipses properties. We demonstrate that the
calibration is possible using one view of two concentric
circles of known radii. Based on the estimation of the
projected circle centers and on the ellipses properties as
the perspective projection of circles, our algorithm
estimates both the focal length and the pose and
orientation of the camera.
We validate the performances of our algorithm using both
synthetic and real images. The use of circles greatly
simplifies the calibration problem. A noise analysis is also
made to compare the accuracy of the results with another
well-known calibration method.
This calibration method is also well-suited to the 3D-
reconstruction problem from an image sequence of an
object placed on a turn-table.

Keywords : Camera Calibration, Ellipse properties,
Projective Geometry, 3D Reconstruction, Virtual Reality. 

1. Introduction

Considerable efforts have been made to recover
photorealistic models of real objects. The most important
stage of the modeling is the calibration stage. Camera
calibration is to estimate the intrinsic and extrinsic
parameters of the camera. By intrinsic, we mean internal
parameters of the camera : focal length and principal point,
assuming zero skew, unit aspect ratio, no distortions and

square pixels, which are good assumptions for modern
cameras. By extrinsic parameters, we mean the pose and
orientation of the camera in an absolute frame.
Calibration methods are divided into two categories :
calibration using calibration pattern [2] [6] (a 3D object of
known geometry with a known position in space), and
self-calibration methods [8] (absolute quadric estimation
over a sequence of images). When using a calibration
pattern, the precision of the parameter estimation is related
to the accuracy of the image measurements of the
calibration pattern, and the algorithm needs a large set of
image points to converge using a non-linear optimization
[1].
In our method, we propose to calibrate the camera using
only one image of two concentric circles of known radii.
We first characterize the perspective projection of a circle,
which is an ellipse in a classic configuration (non
degenerated conic). The ellipses are detected automatically
using the Hough transform based algorithm [9]. The
coefficients of the conic (eg. the ellipse) are estimated
using standard conic fitting algorithm [3] [7]. Looking at
the coefficients of the ellipse, they are function of intrinsic
and extrinsic parameters as well as the projected circle
center [4] (which is different from the ellipse center). To
estimate the projected circle center we use projective
geometry tool like the cross-ratio [5]. Then from the N
image points of the estimated ellipse, its six coefficients
(coming from the conic equation) and the projected circle
center, this leads to an over-determined system for which
the solution gives the focal length, the position of the
camera and the normal to the surface supporting the 3D
circle. 
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Our method using both synthetic and real images, and a
noise analysis gives comparable performance compare to
other camera calibration method using a complex
calibration pattern.
This paper is organized as follows : in section 2, we
present the pinhole camera model which is derived from
projective geometry. In section 3, we derive the equation
of the perspective projection of a circle and how to
estimate the projected circle center. In section 4, we
present the core of our calibration method based on ellipse
equations and properties. In section 5, we show the results
of the calibration algorithm on synthetic and real images,
and a noise analysis. Finally, we conclude this paper in
section 6.

2. Camera Model

As it is known in the 3D vision community, the most
commonly used model to represent a vision sensor,
namely a camera, is the pinhole model (see Figure 1) :
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Figure 1 : Pinhole Camera Model and Circle Calibration Pattern.

Let the origin of the world frame be located at the center
of the 3D concentric circles. The Yw-Axis is orthogonal to
the 3D circle plane. The coordinates of a circle point is
expressed as the vector :

[ ] T
ww ZX 10=M (1)

The corresponding image point is :

[ ] Tvu 1=m (2)

The transformation between the image points and the
world points is the well-known perspective projection
relation :

MPm .. =λ (3)

Where 

[ ]TRAP .= (4)

P is projection operator, λ  is a scale factor due to
homogeneous coordinate system. The matrix A depends
only on the intrinsic parameters of the camera :
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We assume that the sensor is perfect : zero skew, unit
aspect ratio, no distortions and square pixels.

 R and T are respectively the rotation matrix and the
translation matrix (the extrinsic parameters) of the sensor
regarding to the world reference frame.
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3. Ellipses as Circles Perspective Projection

The calibration pattern we are using is composed with
only two concentric circles with known radii. The big
circle has radius R1 (which we will call the principal
circle) and the small circle has radius R2.

3.1. Circle Perspective Projection

Using the projection operator P , the image points are
given by :
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The principal circle is in the plane Yw=0. The locus of
image points describing the circle is defined by :
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By extracting wX  and wZ , we have :
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Where A1, B1, C1, D1, E1 and F1 depend on the intrinsic
and extrinsic camera parameters. In the world reference
frame, the principal circle, centered at the origin, has the
following equation :

( ) 01, 222 =−+= RZXZXC wwww
(11)

Therefore by using (1) in (2) we obtain the principal
ellipse, 

0),(' 22 =+++++= FEvDuCvBuvAuvuC (12)

This is the equation of a conic. An ellipse is obtained with
the constraint 042 <− ACB . In practice, this constraint
is usually satisfied if data are not all situated in a flat
section and the conic is not degenerated. The coefficients
of the conic are estimated using an ellipse fitting algorithm
[3].

3.2. Estimation of the Projected Circle Center

As stated in [4], [5], the projected circle center is different
from the ellipses centers. The method to determine the
projected circle center is inspired by [5]. 
[5] define a new projective invariant for the projection of
concentric circles : “the center of projected concentric
circles always lies on a line defined by the ellipses centers
under any projective transformations” (see Figure 2).
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Figure 2 : Projected circle center is on a line defines by the centers of the
two ellipses.

The only projective invariant is the cross-ratio of four
aligned points. In our case, we can define the following
cross-ratio (see Figure 2) :
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Where
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We have also
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Since the cross-ratio is invariant, we can set :

DCrDCr 32 = (16)

Therefore it is possible to extract the image coordinates
Xc  and Yc  of the projected circle center Pc .

4. Camera Calibration

Since the coefficients of the principal ellipse have been
estimated, we can define it with its matrix form as defined
by [4] :
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As  expressed in [4], the unit normal to the circle plane is
computed as follows :
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Where [ ]⋅N  designates normalization to a unit vector and
Xc  , Yc  are the image coordinates of the projected circle

center. Therefore we can extract each component of the
unit normal :
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Where :
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We can also express the following relations of the
translation vector :

f
TzYcTy ⋅

=                
f

TzXcTx ⋅
= (22)

Using (19), (20), (21), (22) in (12), we obtain the new
coefficients for the principal ellipse :
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Therefore we have :

0),(' 22 =+++++= cccccc FvEuDvCuvBuAvuC (24)

For the N points of the ellipse, this equation can be used to
form the following over-determined system :

BWX = (25)

Where
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The solution of this system is obtained as the least square
pseudo-inverse technique :

( ) BWWWX TT 1−
= (27)

From X , we obtain the focal length f  and  Tz . Using
(19), (20), (21), and (22), we can calculate the extrinsic
parameters.

It is important to remark that we only obtain the second
column of the rotation matrix, which is the unit normal to
the circle supporting plane. If we want to obtain the two
other columns, we can use two circles situated on two
orthogonal planes (see Figure3) and using the algorithm in
[4], this leads to the whole rotation matrix.

Figure 3 : Final calibration pattern to obtain the entire rotation matrix.

5. Camera Calibration Experimental Results

Experiments with synthetic images and real images have
been carried out. Ellipses are fitted by a direct least square
method of Fitzgibbon [3].

5.1. Synthetic Images

For synthetic images, we used the following simulation
parameters :

f 3000 pixels

12R -0.07

22R 0.93

32R 0.34

Tx -4.3 mm
Ty 41 mm
Tz 750 mm
R1 50 mm
R2 28 mm



To find out the noise robustness of our calibration
algorithm, we added noise in pixels to the ellipse data.
The results of the experiment are given in the following
figures :

Figure 4 : Relative error (in %) on the focal length.

Figure 5 : Relative error (in %) on the unit normal.

Figure 6 : Relative error (in %) on the translation vector.

5.2. Real Images

The calibration pattern used is shown in Figure 7. The
images were taken by a digital camera Fujifilm FinePix
2600 Zoom. The images have a resolution of 1280x960.
The ellipses were detected using [9].

Figure 7 : Calibration Pattern.

For performance comparison, the system was also
calibrated with the well-known calibration algorithm from
Tsai[2].

Tsai[2] Proposed
f 2043.2 2131.8

12R 0.0009 0.001

22R 0.83 0.82

32R 0.55 0.564

Tx -2.16 -2.11
Ty 35.3 35.6
Tz 393.2 400.7

Using the calibration parameters obtained with our
algorithm, it is possible to re-drawn the projection of the
principal circle (see Figure8) :

Figure 8 : Re-projected principal circle (in white) and the normal (in
white).



6. Conclusion

In this paper, we have presented a new camera calibration
method based on the ellipses properties. Using only a
single view of two concentric circles, an estimation of the
projected circle center and an ellipse fitting algorithm, we
shown that it is possible to obtain the focal length, the pose
and the orientation of the camera.
With synthetic and real images, our algorithm shows
comparable performances with the existing calibration
algorithm, but with only one image and two concentric
circles.
This calibration method is also well-suited to the 3D-
reconstruction problem from an image sequence of an
object placed on a turn-table, using that one as the
calibration pattern.
An extension of our algorithm, will be to integrate an
estimation of the principal point, the skew and the
distortions of the sensor. 
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