1caT '97 N4

An Adaptive Event Passing Model
for Shared Virtual Environment

ChanYong PARK, JeongDan CHOI, JinSung CHOI, ChanSoo LEE, DongHyun KIM

VR Lab., Human Computer Interface Department,
Systems Engineering Research Institute
1 Ueun-dong Yusong-gu, Taejun, Korea, 305-333
e-mail: {cypark, jdchoi, jinl025, chanse, dhkim}@seri.re.kr

Abstract

The goal of this research is the development of a shared
virtual environment (SVE) and a reduction of network
traffic. To do this, We develop an authoring tool for
shared virtual environment, a SVE player(Client) and a
SVE server. The user can build the SVE with the SVE
authoring tool build and participate in the SVE with SVE
the player. When many players participate in the SVE, to
reduce network traffic, we propose a event filtering
function and event filtering threshold. The event
occurred in the SVE player is applied to event filtering
function.

Key words: Virtual Reality, Shared virtual environment,
Multi-participant virtual environment, Event Filtering
Function

1. Introduction

There are many virtual reality(VR) applications, but
most of them have been developed to supply only a
single user on a stand-alone system. With increasing
availability of the Internet, many people are interested in
distributed virtual reality system. The way of information
representation change to the like of real world in 3D
virtual space. If there is any way to get the goods
regardless of his own position and time, a user is willing
to choose the means. The Virtual Reality Modeling
Language (VRML) [1][2] is the answer for this desire.
Though the VRML is not perfect to cover every requests,
it enables a user to describe and build 3D space on the
Internet[3]. The representation of 3D space is very
attractive in marketing and advertizing since this
representation method is very intuitive and similiar to
real world. Therefore they need a means to construct the
3D virtual space. Currently available methods are the
graphic library and the commercial authoring tools.

With the increasing performance of modern PCs, the
acceptance and distribution of 3D applications has
become more common. The best known and probably
most spectacular development in this area is that of the
shared virtual environment(SVE)[4][5][6]. A Many
people participated in the same SVE with own avatar.
The user controls the avatar and the movement of avatar
sends to other clients. If many people(avatars) are
participated in the SVE, a network traffic increases
rapidly. In this paper, we propose event filtering function
and filtering threshold for decrease network traffic. The

filtering threshold is changed dynamically by network
speed. This means that we adapt filtering threshold to
network speed.

This paper consists of five chapters. The second chapter
discusses the related works. The third chapter discusses
the overall structure of this system and suggests event
weight function. The forth chapter discusses performance
results and last chapter gives results and future works.

2. Related Works

In the DVE, all clients on network access the complex
scene database representing the shared virtual world,
since the clients will be updating the data, then the
principal role of the database is to maintain a consistent
copy of the data. Changes at the client side need to be
propagated to the database, and used to update the scene
in the database in a consistent manner. Those of higher
image quality often lack smoothness of animation or
sometimes can not even be animated.

The methodologies for time critical rendering in the
DVE can be classified as follows:

+ culling of the database
+ occlusion filtering of outgoing data stream

The first step is making the scene hierarchically on an
object or image space by a potentially visible set, and the
second step is culling all sub parts of hierarchy culling
the parent on the fly. The object space algorithms for
hierarchical structuring uses bounding volume, bounding
box [7], and deformed affine matrix [8], and slabs [9].
The second step is culling. It includes view frustum
culling and occlusion culling. View frustum culling
removes only parts out of view frustum. But the
occlusion culling removes the occluded parts by objects,
additionally. Image space algorithms for visibility culling
have been presented in hierarchical Occlusion Maps
[10]. Recently, Zhang has presented hierarchical
occlusion maps on complex models with high depth
complexity. The culling algorithm uses an object space
bounding volume hierarchy and a hierarchy of image
space occlusion maps. Compared with methods above,
this algorithm is found to be generally applicable to all
models and obtains significant speed ups for interactive
walkthroughs on conservative graphics system. Greene
[11] has proposed a hierarchical Z-buffer algorithm

-173-

combining spatial and temporal coherence. It uses two
data structures: an octree for object space and a Z-
pyramid for image space. And in 1996, Greene has
presented a hierarchical tiling algorithm using coverage
masks. It uses an image hierarchy named a “coverage
pyramid” for visibility operations. Traversing polygons
from front to back order, it can process densely occluded
scenes efficiently and is well suited to anti-alising by
oversampling and filtering.

Object space algorithms for occulsion culling in general
polygonal models have been presented in linear Critical
Surfaces and Shadow Frusta. These algorithms
dynamically compute a subset of the objects as occluders
and user them to cull away portions of the model. In
particular, Coorg [12] computes an arrangement
correspondig to a linearized portion of an aspect graph
and track the viewpoint within it to check for occlusion.
Hudson [13] uses shadow frusta and fast interference
tests for occlusion culling. Moreover, most of the work
done on static visibility does not easily extend to
dynamic environments. Sudarsky [14] has adjusted the
structure with dynamic objects and output sensitive
visibility algorithm which minimizes the time required to
update the hierarchical data structure for a dynamic
objects and minimize the number of dynamic objects for
which the structure has to be updated.

The second method includes the filtering[15]and space
subdivision. For further reduction of data, useless
information can be filtered out of the update stream. One
filtering technique is to calculate the distance that a user
could “see”. An object beyond that distance need not
send its status to that user’s avatar. The technique bears
some relation to what in computer graphics research is
known as level-of-detail, in which the number of
polygons representing an object varies with the viewer’s
position. One filtering technique of this kind is based on
distance, if the ratio of an object’s size to its distance
from the user is less than some predetermined threshold
value, then its actions are not currently relevant to the
user. Another technique is occlusion filtering. It is built
on the fact that people ordinarily cannot see or clearly
hear through solid objects (Wall, etc.). Some other
objects may be obscured by fixed features in the
environment (building, wall, etc.), or by the presence of
certain environmental effects (fog, clouds, etc.) in the
modeling software. Therefore, the update messages for
occluded object would not be sent to the user.

Another form of relevance filtering uses spatial
subdivision. The virtual world can be divided into zones
and zone-to-zone visibility can be preprocessed. If the
server computer analysis the boundary of the cells or
regions, it will not send any updated messages for
objects contained entirely in one region to another
region’s user. The filtering is to lessen the amount of
data flowing through a distributed VE.

3. Shared Virtual Environment System

This chapter describes our experiment system[16], client
-server network model and suggests adaptive event

passing model.

3.1 The SVE authoring tool and the SVE player

This chapter describes the entire structure of our
experiments system. The system consists of three parts.
One is the SVE authoring tool and another is the SVE
player and the other is SVE server.

The SVE authoring tool constructs 3D virtual
environment supporting multi-participant. The Fig.1
shows the construction process of the SVE. The process
of the SVE construction has three steps; First, making
SVE template, second, arrange virtual objects and third,
registering the SVE to the SVE server. The SVE
template is basic structure of shared virtual environment.
The SVE authoring tool imports virtual objects(VOs)
which are made by 3D modeler and represent real object.
The user who build the SVE is able to rotate, translate
and scale VOs and is able to change properties - material
and texture. The SVE authoring tool builds the SVE with
the SVE template and VOs. Finally, the SVE is stored
and registered in the SVE server. The SVE is linked to
web page.

The Fig.2 shows the structure of Web server, the SVE
server and the SVE player. The user connects web server
with web browser and the SVE server with the SVE
player respectively. The SVE player connects the SVE
server with TCP/IP.

3.2 Network model
The SVE System developed in this paper is based on
distributed client-server architecture. The

synchronization in the SVE means avatar
synchronization in the multi-player virtual environment.
In this chapter, we discuss only the synchronization of
avatar's movement (Fig.3). When avatar moves in the
SVE, the SVE player sends avatar's position and rotation
information to the SVE server. We define avatar's
position and rotation information as a event. All event
generated from an avatar does not always send to SVE
server. The event is filtered by a event weight function.
The event weight function describes next chapter
precisely. The SVE server multicasts the event to the
client that participates in the SVE.

A client which send event to SVE server receives own
event. The client calculates a network speed(NS)
between the client and the SVE server. The network
speed is use for adaptive event filtering.

3.3 Event Weight function

This paper proposes adaptive event passing model which
is caused avatar’s movement in the shared virtual
environment. If all event of avatar’s movement is
transferred to server, the shared virtual environment
could maintain the consistency of many avatars, but
network traffic may increase, therefore the number of
client decrease in the same shared virtual environment.
In this system, we suggests event weight function which
filters avatar’s event. The event weight function sums up

-174-

five parameters. These parameter values are calculated
from previous event, which is transferred to server to
current event. The maximum value of parameters is 1.0
and minimum value is 0. The parameters are

Time: avatar’s stillness time
* Movement : avatar’s move length
+ Rotation : avatar’s rotation
* Density: density of avatars
+ Awareness: Awareness -to other avatars

The Time parameter is how long time to avatar is still.
It’s proportion to avatar’s stillness time. The more avatar
stills, the more time parameter increases. We define
difference of time as AT.

The network speed is critical parameters. But the clients
that are connected in the shared virtual environment has
different network speed. If parameters of event weight
function sets with slowest network speed between client
and server, the overall system speed may be slow down.
Therefore we uses network speed to Time parameter for
adaptive event filtering function.

AT = TCurrentTime — TPreviousEventTime)]

The Time parameter calculates like this,

100 (AT = NS)

Time = £ (AT < NS) 2)
NS

The Movement parameter is sum up distance of avatar’s
movement. This is proportion to avatar’s distance, that is
the more avatar moves, the more movement parameter
increase. We define sum up movement of avatar as A
M. The Movement parameter calculates like this,

100 (AM =5m)
Movement = égM— (AM < 5m) (3)

The Rotation parameter is value of avatar’s rotation. It’s
proportion to rotation value. The more avatar rotates, the
more the rotation parameter increases. We define
difference of avatar’s rotation as A R. The rotation
parameter calculates like this.

T

100 (AR2 E)
Rotation = ")]
AR™6 AR< %)

The Density parameter is density of avatars. If avatar’s
event occurs in the high density area, The Density
parameter increase. The Density parameter calculates

avatars which include square (Sm* 5Sm)
#avatars which participated in virtual environment

)

The Awareness parameter is whether avatar is included
by other avatars. In this system, a floor is the x-z plane in
the virtual environment and we calculate only 2D-view
frustum.

density =

view frustum which include the avatar

Awareness = - — — -
#avatars which participated in virtual environment

(6)

The event weight function composed of sum of five
parameters with coefficient.

Eventw. = a1*Time + o2*Movement +
o3*Rotation +od*density + aS* Awareness (7)

The coefficients are,

a, =0.3
a, =0.2
a; =0.1
a, =0.1
as; =0.3

(al+o2+a3+0d+o5+06 = 1.0)

The maximum number of Event,,,,, is 1.0 and minimum
number of Event,,, is 0. If Event,,,, is larger than some
threshold, Avatar’event send to SVE server through
network.

The Threshold is determined by network speed. In the
experiment, we determine the meaning of threshold.

4. Results and Performance
4.1 Results

We developed our system on the PC platform. In PC
environment, the 3D graphic performance is lack of
providing the real time process for avatar's movement
and so on. Therefore, our PC system equipped with 3D
graphic accelerator. We adopt Open InventorTM[17] as
3D graphics library.

Using the SVE authoring tool, we implement virtual
shop on the Internet. Before the SVE authoring, we have
modeled the SVE template of shop and many virtual
objects. After authoring the shop, we upload this shop in
the SVE server and links web page. To enter the SVE
(virtual shop), user opens the web page with a web
browser and selects virtual shop. After the SVE player
launches, the user can participate in the SVE. As the
result of implementation, we show a screen shots. Fig.4
is the SVE with multi-players.

4.2 Performance experiments

We experiments event weight function based on many
different environment.

-175-

First, We experiments relationship between the number
of event and the threshold of event weight function. The
purpose of this experiment determines the optimal event
weight function threshold in the very fast network
environment. The system environment is that

+ The number of avatar : 3
* The size of virtual environment : 10 m * 16 m

* The time of experiments: 1 min (Total number o
f events: about 2000)

+ The Configuration of Network: directly connected.
+ The Network speed : <10ms (very fast)
* Threshold value: 0.0

The result is Table 1. In this experiments, we knows that
critical threshold value is about 0.35 since, event weight
function increase rapidly. This means that the 0.35 is
optimal filtering threshold. If threshold of event weight
function is 0.35, 1028 event are filtered in the event
filter.

Second, We experiment adaptive threshold of event
weight function based on the network traffic. The system
environment is that

* The number of avatar: 3

+ The size of virtual environment: 10 m * 16 m

+ The time of experiments: 1 min (Total number o
f events: about 1500)

+ Threshold value: 0.0

The result is Table 2. The network speed is about 0.5 ~
Isec. In the experiments, we knows that optimal event
filtering threshold is 0.3. If threshold of event weight
function is 0.3, 1013 event are filtered.

5. Conclusion

We develops the SVE authoring tool, the SVE
player(Client) and the SVE server. For participating
many clients, we propose the event filtering function.
The network speed between the SVE player and the SVE
server is the part of Time parameter in event filtering
function. In the experiments, event filtering threshold is
determined.

We plane to design more sophisticated event weight
function. Currently, we ignore avatar’s motion such as
walking, sit down. We will include avatar’s motion in the
event weight function. We are going to experiments
more different situation, too.

References
[1] http://www.vrml.com/

[2] Wolfgang Broll, David England. 1995, Bringing
Worlds Together: Adding Multi-user support to
VRML, Symposium on VRML, 1995

[3] J. Hartman, J. Wernecke: The VRML 2.0 Handb
ook, Building Moving Worlds on the web, Addis

on Wesley, 1996

[4] Shaw, C., Green, M., Liang, J., and Sun, Y. De
coupled Simulation in Virtual Reality with The
MR Toolkit. In ACM Transaction of Information

Systems, Vol, 11, No.3, (July 1993), pp. 287-31
7

[51 Wolfgang Broll, Tanja Koop, VRML: Today and
Tomorrow., Computers & Graphics, Vol. 20, N
0. 3. 1996

[6] Carlsson, C. and Hagsand, O. 1993. "DIVE - A
platform for multi user virtual environments," C
omputer and Graphics. Vol. 17, No. 6, pp. 663-
339

[7] J. H. Clark, “Hierarchical Geometric Models for
Visible Surface Algorithm,” Communication of A
CM, 19(10), pp. 547-554, Oct. 1976.

[8] S.M. Rubin and T. Whitted, “A Three Dimensio
nal Representation for Fast Rendering of Comple
x Scenes,” Computer Graphics(Proc. of ACM SI
GGRAPH ’80), pp. 110-116, 1980.

[9] T.L. Kay and J.T. Kajiya, “Ray Tracing Comple
x Scenes,” Computer Graphics(Proc. of ACM SI
GGRAPH’86), pp. 269-278, 1986.

[10] H. Zhang and D. Manocha, “Visibility Culling
using Hierarchical Occlusion Maps”, SIGGRAPH’
97, pp. 77-88, 1997.

[11] N. Greene, M. Kass, and G. Miller, “Hierarchic
al Z-Buffer Visibility,” Computer Graphics (Proc.
of ACM SIGGRAPH ’93), pp. 231-238, 1993.

[12] S. Coorg and S. Teller, “ Real-Time Occlusion
culling for Modes with Large Occluders”, ACM
Symposium on Interactive 3D Graphics, 1997.

[13] T. Hudson, D. Manocha, “Accelerated Occlusio
n Culling using Shadow Frusta”, ACM Symposiu
m on Computational Geometry, 1997.

[14] O. Sudarsky and C. Gotsman, “Output-Sensitive
Visibility Algorithms for Dynamic Scenes with
Applications to Virtual Reality”, EUROGRAPHIC
§°96, pp. 249 — 258, 1996.

[15] B. Roehle, “Channeling the data flood”, ", IEE
E Spectrum, pp.32-38, 1997.

[16] Chanyong Park, 1997, A Development of Auth
oring tool for shared virtual environemnt, Procee
dings of the Thirteenth Symposium on Human Int
erface, 1997, pp419-422.

[17] J. Wernecke: The Inventor Mentor, Addison We
sley, 1994

-176-

3D Studio 3D Studio
File File

i I

Template SVE Resource
Maker

1

SVE Virtual
Template Objects

~ Sz

Avatar

A

SVE Shared Virtual
authoring | Environment(SVE)

tool M
SVE ?:”e Fig. 4 The SVE player connected to the SVE server
Pos“n\%/ \\7 Resg\'ISEtef Table 1. The event weight function in fast network
‘ Web Serv er SVE Sery eJ Value of Evept Weight F | The number of event
unction
0~ 0.1 93
Fig.1 The SVE Authoring Tool 01~ 02 434
02 ~ 03 671
Web server SVE Server 03 ~ 04 464
SVE 04 ~ 0.5 133
= 0.5 ~ 0.6 90
 wo
[HTPD] 06 -~ 07 63
@ @ @ 0.7 ~ 0.8 33
SVE SVE SVE 08 ~ 09 6
Web Browser Player Player | *°*| Player 09 ~ 1.0 8
Launch ! 2 n
SVE Pilayer

Fig.2 The SVE and the SVE player

SVE server
SVE player Piayer 1's A‘Z'?g.f’s' ;;/Sent
1 Event Filter Table 2. The event weight function in slow network
Select
Dy participants Value of Event Weight F | The number of event
Avata:zr'esr evsent unction
P 0 - 0.1 270
SVE %Jlayer AF:?ayr'e; ;\l/sent 0.1 ~ 0.2 442
Vi
Pl 02 ~ 03 422
SVE player Player 1's 03 ~ 04 148
5 Zwm/ 0.4 ~ 0.5 112
o . 0.5 ~ 0.6 60
VE gaver ; 0.6 ~ 0.7 28
Player 1's 07 ~ 0.8 13
; y/ 0.8 ~ 0.9 4
SVE player 09 ~ 10 1
n

Fig.3 Synchronization of avatar position

-177-

