1cAT '97 Wi

Imposing Geometric Constraints on Virtual
Objects within an Immersive Modeler

Norikazu Hiraki, Kiyoshi Kiyokawa, Haruo Takemura
and Naokazu Yokoya

Graduate School of Information Science,
Nara Institute of Science and Technology (NAIST)
8916-5 Takayama, Ikoma, Nara, 630-01, Japan
{norika-h, kiyosi-k, takemura, yokoya}@is.aist-nara.ac.jp

Abstract

This paper describes an intuitive and efficient way to
design not only 3-D shapes but also their geometric
constraints within an immersive modeler. The fun-
damental concept of the proposed method is based
on our immersive modeler VLEGO II, which allows
multiple users to create 3-D virtual objects only
by assembling simple 3-D geometric shapes (shape
primitives) like with real toy blocks. In our system,
geometric constraints are presented as primitives
(constraining primitives) like normal shape primi-
tives, and the geometric constraints are imposed on
virtual objects simply by assembling shape and con-
straining primitives. The system also provides flexi-
ble two-handed interaction to support intuitive and
efficient manipulations.

Key words: virtual reality, immersive modeler, ge-
ometric constraints, two-handed interaction, manip-
ulation aid.

1 Introduction

Most real objects have geometric constraints on their
movable range in relation to other adjoining objects.
For example, a revolving door turns round its pillar,
a drawer moves along its cabinet. Therefore, it is
desirable for a modeling tool to have the ability to
design not only the shape of 3-D objects, but also
their geometric constraints. To support this ability
with high level flexibility, a few systems employ spe-
cial script languages in which a designer describes
geometric constraints[l, 2]. These systems enable
a designer to specify variable 3-D objects includ-
ing geometric constraints, interaction and anima-
tion. However, a designer must learn the languages
to describe geometric constraints of all 3-D objects,
and those scripts cannot be modified interactively.
Therefore, these systems don’t provide an intuitive
interface and require training time to use.

On the other hand, to provide an intuitive and
efficient way of designing 3-D objects, virtual reality
technology has attracted many researchers. Design-
ing 3-D objects within a virtual environment rather
than with 2-D projection has a number of advan-
tages. Real-time head-tracked stereoscopic view im-

proves the understanding of shape and spatial rela-
tionships. Spatial direct manipulation improves the
accessibility to 3-D objects in a quick and intuitive
way. For the last decade, a number of immersive
modelers have been developed(3, 4, 5, 6]. However,
most of them are only able to construct the shape
of virtual objects, not to describe their behavior or
geometric constraints.

We have developed a new method for imposing
geometric constraints on virtual objects within an
immersive modeler. This method provides a number
of geometric constraints as visible primitives. Each
constraining primitive has its shape, which visually
represents its attribute, like other virtual objects.
Hence, the attributes of geometric constraints are
comprehensible. Moreover, it is easy and efficient to
impose geometric constraints on virtual objects, be-
cause a user has only to combine constraining prim-
itives with normal virtual objects using simple two-
handed spatial manipulations. Our system has the
following two characteristics:

1) The system has the ability of designing both
3-D objects and its geometric constraints,

2) The system provides flexible two-handed ma-
nipulation.

Owing to these characteristics, a user is able to
design both 3-D objects and their geometric con-
straints in an intuitive and efficient manner.

This paper is organized as follows. First, previous
related works for 3-D graphics with constraints are
briefly reviewed. Next, the advantages of immersive
modeling is described, and VLEGO 1II is also sum-
marized. Then, our approach for imposing geometric
constraints on virtual objects within an immersive
environment is described. Finally, the implementa-
tion of our developing system is explained.

2 Related Works

A number of systems support designing both 3-D
shapes and their behaviors. For example, TBAGI1]
is a paradigm and toolkit for rapid prototyping of
interactive, animated 3D graphics. TBAG is based
on two broadly applied design principles: graph-

- 178 -

ical abstract data types and explicit functions of
time. Since TBAG is provided as C++ libraries, a
user is able to describe variable 3-D objects includ-
ing interaction, animation and constraints in C++.
Oblig-3D[2] is a high-level, fast-turnaround system
for building 3D animations. Oblig-3D consists of
an interpreted language that embedded into a 3D
animation library. These systems provide a large
number of functions and procedures in special lan-
guages for description of a variety of properties of
3-D objects. Hence, a skilled programmer is able to
describe 3-D objects with considerably complex ge-
ometric constraints and animation. However, users
must describe all of properties and shapes of 3-D
objects in a special language, and these description
cannot be modified interactively. Therefore, these
systems don’t provide intuitive interfaces and require
training time to use.

A large number of conventional computer aided
design (CAD) tools which use 2-D input and output
devices support both 3-D shapes and constraints.
However, 2-D input/output devices don’t provide in-
tuitive perception and operations of 3-D objects.

On the other hand, as an intuitive and efficient
way for designing 3-D objects, immersive model-
ing has attracted much attention because of its ad-
vantages explained in the next section. For the
last decade, a number of immersive modeling sys-
tems have been developed; for example, VLEGO
[4], the Conceptual Design Space (CDS) [5], and the
Chapel Hill Immersive Modeling Program (CHIMP)
[6]. However, most of these systems support only
constructing 3-D shapes, not imposing geometric
constraints on the 3-D shapes.

2.1 Immersive Modeling

Immersive modeling is a technique to design 3-D
objects in an immersive virtual environment, while
traditional CAD tools use 2-D input and output de-
vices. Immersive modeling has two key advantages
over traditional CAD tools: the stereoscopic view of
a virtual world with a head-tracking facility and the
spatial direct manipulations of 3-D virtual objects.
Both of them help to avoid ambiguous perception
and complicated 2-D operations.

The stereoscopic view of a virtual world is gen-
erally provided by a HMD (Head Mounted Display)
or a pair of liquid crystal shuttered glasses. The
stereoscopic view helps users to understand shapes
of 3-D objects and spatial relationships among the
objects in a virtual world. Moreover, real-time head-
tracking facility with a 3-D tracker provides motion
parallax, which makes it easier to perceive 3-D ob-
jects.

Spatial direct manipulation is usually imple-
mented by 6DOF (3-D position and orientation) in-
put devices (3-D mice, gloves with a 3-D tracker,
etc.) held in hands. Since a user is able to interact
directly with 3-D objects in a virtual world based on

Figure 1: VLEGO II workspace.

proprioception, spatial direct manipulation provides
the user with intuitive and quick means to access the
3-D objects.

In addition to the advantages above, a user can
easily confirm the results of modification of the 3-
D objects, because immersive modeling enables the
user to design 3-D objects entirely within a virtual
world. However, manipulation in an immersive en-
vironment tends to be awkward and fatiguing owing
to lack of force-feedback, computational delay and
so on. This disadvantage should be eliminated and
certain software based manipulation aid is service-

able.

2.2 VLEGO II

We have been developing an immersive modeler
VLEGO 1I, a shared virtual environment for col-
laborative two-handed 3-D modeling (Figure 1).
VLEGO Il is implemented on one or two SGI graph-
ics workstation(s). The virtual workspace is dis-
played stereoscopically to a user through a HMD
with a head-tracking facility. A user holds a pair of
3-D input devices in his or her hands. Each device
has a 6DOF magnetic tracker 3SPACE (Polhemus)
and four feather touch switches on it. These devices
are used to manipulate virtual objects via two 3-D
cursors. In VLEGO 11, all operations on 3-D objects
are performed by using the 3-D cursors.

In VLEGO II, all virtual objects consist of one or
more simple 3-D geometric shapes (spheres, boxes,
cones, cylinders, etc.) called shape primitives. Prim-
itives are stored in a primitive box in advance and
they are generated unlimitedly from the box simply
by picking the primitives in the box. Since a user
can construct 3-D objects simply by assembling the
primitives like real toy blocks, he or she need not
learn complex operations.

VLEGO II has the following three characteristics:

(1) A number of flexible two-handed manipula-
tions such as assembly, decomposition, coloring

-179 -

1-D Translation

2-D Translation

1-D Rotation

2-D Rotation

Figure 2: Constraining primitives.

and scaling objects.

(2) Discrete constraints, which restrict the posi-
tion and orientation of 3-D objects discretely
to make it easy to arrange.

(3) Collision avoidance, which detects collisions
among 3-D objects and adjusts their locations.

VLEGO II offers natural and quick ways for mul-
tiple users to create 3-D virtual objects coopera-
tively in a shared virtual workspace. Our new sys-
tem fundamentally employs the designing concept of
VLEGO II.

3 Constraining Primitives

A variety of types of constraints can be considered
for constructing 3-D objects. For example, geomet-
ric constraints, time constraints, kinetic constraints,
etc. In this paper, we focus on geometric constraints,
which most real objects have.

In our developing system, geometric constraints
are represented as primitives (constraining primi-
tives) like normal shape primitives. Each constrain-
ing primitive has its own 3-D shape, which visually
represents its attributes, e.g., the constraint type,
the principal axes, etc. Therefore, a user is able to
easily understand the behavior of the constraints.

We have begun with simple translation and ro-
tation constraints. Currently, the system has the
following four types of constraining primitives illus-
trated in Figure 2.

¢ 1-D translation: This primitive has two gray
pyramids and a red line. The red line represents
an axis. An object constrained by this primitive
can move parallel to the axis.

e 2-D translation: This primitive has a gray

MediaMask

Picking—

)
]
)
1
)
1
1
1
1

Assembling—i @it

Figure 3: Hardware components.

plate and two red lines. These lines define a plane
which constrained object can be translated par-
allel to.

¢ 1-D rotation: This primitive has a gray cylin-
der and a red line. The red line represents an
axis, and an object constrained by this primitive
rotates around the axis.

e 2-D rotation: This primitive has a gray sphere
and two red lines. The longer and shorter lines
correspond to axes of an azimuth and an eleva-
tion respectively. An object constrained by this
primitive rotates at the center of the sphere.

Users can make all constraining primitives invisible,
since shapes of these primitives are originally noth-
ing to do with the intended design.

The constraining primitives can be treated like
shape primitives in terms of 3-D manipulation. Im-
posing geometric constraints on virtual objects is
accomplished by simply assembling shape and con-
straining primitives. Therefore, a user need not learn
complex manipulations. Furthermore, since a user
works entirely within the virtual world, the result of
modified attributes of geometric constraints and im-
posed geometric constraints on 3-D objects can be
confirmed in real time.

4 Implementation

This section describes the implementation of the sys-
tem that is based on the concept presented in the
previous section. In the following, hardware compo-
nents, typical manipulations and a number of exam-
ples constructed in the system are explained.

4.1 Hardware

Figure 3 illustrates the hardware components of the
system. The system is implemented on a graph-

- 180 -

ics workstation Indigo2 Maximum Impact (SGI).
A user is able to view a virtual world stereoscopi-
cally through a HMD MediaMask (Olympus) with a
real-time head-tracking facility using a 3-D tracker
3SPACE Fastrak II (Polhemus). A pair of hand-held
6DOF input devices using 3-D trackers allows a user
to manipulate two 3-D cursors to operate 3-D ob-
jects, and each of the devices has two feather touch
switches. Onme switch is used to pick 3-D objects,
and the other is mainly used to assemble 3-D ob-
jects. We will refer to the former as picking button,
and the latter as assembling button.

4.2 Basic Manipulations

We now describe typical manipulations to interact
with 3-D objects using two 3-D cursors in the sys-
tem. As described earlier, the system is fundamen-
tally based on VLEGO II, so the manipulations in
the system are similar to those manipulations in
VLEGO II.

e Selection: When a tip of a 3-D cursor is po-
sitioned in a primitive, it is selected. To make
the selection clear, the stabbed primitive is high-
lighted and a bounding box of the object appears.

¢ Picking: When an object is selected and the
picking button is pushed, the object is picked and
held. While holding the object, a user is able to
translate and rotate it freely. The picked object
is released by releasing the picking button.

The system supports natural two-handed manip-
ulations. For example,

e Scaling: When an object is picked by two 3-
D cursors at the same time, the object can be
scaled.

To help a user to arrange 3-D objects, the sys-
tem employs discrete placement constraints. Ma-
nipulating virtual objects tends to be awkward be-
cause of lack of force-feedback, computational de-
lay, restricted spatial resolution of input/output de-
vices. So, in order to make the interface feasible
without bulky force-feedback devices, the system im-
poses simple and comprehensible constraints on 3-D
objects’ movement if no other constraints are im-
posed. In the system, 3-D objects can be located at
discrete positions at intervals of icm, and its orien-
tation is restricted at every 90 degrees.

4.3 Design Process

The process for constructing constrained 3-D ob-
Jects in the system is generally as follows.

1. Pick up proper primitives from a primitive box.
2. Assemble these primitives into desirable 3-D
parts.

3. Impose geometric constraints on each part.
The following describes each of these steps.
4.3.1 Picking Up Primitives

Figure 4: A primitive box.

Assemble

Figure 5: One-handed Assembling.

In the system, each 3-D object consists of one or
more primitives. Several kinds of primitives includ-
ing both shape primitives and constraining primi-
tives are contained in a primitive box floating in the
virtual workspace (Figure 4). These primitives are
generated unlimitedly by simply picking the primi-
tives in the box. Additionally, when a picked 3-D
object is released in the primitive box, the object is
registered. Once a 3-D object is registered, the reg-
istered object can be copied unlimitedly just as the
primitives registered in advance.

4.3.2 Assembling 3-D Shapes

In the system, two types of manipulations for as-
sembling 3-D objects are implemented. One is a one-
handed manipulation, and the other is a cooperative
two-handed manipulation.

Figure 5 illustrates the one-handed assembling
manipulation. First, select a 3-D object (we will
call this object the source object for explanation),
and push the assembling button. After these ac-
tions, a line appears from the tip of 3-D cursor to
the center of the source object. Next, drag the 3-D
cursor into a desirable 3-D object (we will call this
object the target object), and release the assembling
button. Then, the source object is sticked onto the
target object, and the line disappears.

81 -

Assemble

Figure 6: Two-handed Assembling.

The other assembling manipulation is illustrated
in Figure 6. This manipulation causes the same
result as the one-handed assembling manipulation.
First, select or pick the source object and the target
object with each hand. Next, click the assembling
button on the input device which selects (picks) the
source object. Then, the source object is sticked
onto the target object.

As a result of these assembling manipulations, the
source object and the target object are grouped.

4.3.3 Imposing Geometric Constraints

To impose geometric constraints on 3-D objects,
a user has only to assemble a constraining primi-
tive and a 3-D object using the same assembling
manipulation explained above. In the assembling
manipulation, when the target object is a constrain-
ing primitive, the source object is constrained by the
target object according to the attributes of the con-
straining primitive. Therefore, a user need not learn
special manipulations for imposing geometric con-
strains, and he or she is able to impose geometric
constraints on 3-D object easily.

Figure 7 shows an example of imposing geometric
constraints. This example illustrates a construction
of a revolving door that consists of two shape prim-
itives (a door and a wall) and a 1-D rotation con-
straining primitive. First, when the door is sticked
onto the constraining primitive (Figure 7-a), the
door is constrained by the constraining primitive.
That is, the door turns around the axis represented
by the constraining primitive (Figure 7-b). When
the constraining primitive is sticked onto the wall
(Figure 7-c), the constraining primitive and the wall
are grouped and move together (Figure 7-d). As
a result of these two actions, the wall substantially
constrains the door through the constraining primi-

Shape Primitives

ki
1-D Rotation
Constraining Primitive

\.
()

\.

Figure 7: An example of imposing geometric
constraints.

tive (Figure 7-e).

4.4 Examples

A number of examples constructed in the system are
presented below.

e Cabinet: Figure 8 illustrates a cabinet, which
consists of a number of boards and a 1-D trans-
lation constraining primitive. Each drawer is con-
strained its movement by the constraining prim-
itive.

¢ ConeTree: Figure 9 shows a simple ConeTree
that is a method of 3-D visualization of hierarchi-
cal structure [7]. This object is composed of two
1-D rotation constraining primitives, two cones
and twelve spheres. Our system is also useful for
rapid prototyping of 3-D user interface compo-
nents.

e Puppets: The example shown in Figure 10 con-
tains two puppets. Each puppet consists of fif-
teen spheres and fourteen 2-D rotation constrain-

-182 -

ing primitives, which are imposed on each joint.
In this example, the constraining primitives are
invisible.

5 Conclusions and Future Works

In this paper, we have presented a simple and ef-
ficient way to impose geometric constraints on vir-
tual objects within an immersive modeler. In our
immersive modeling system, geometric constraints
are presented as constraining primitives which have
shapes representing their attributes. The geometric
constraints are imposed on virtual objects by simply
assembling shape primitives and constraining prim-
itives. This approach makes it intuitive and easy to
impose geometric constraints on virtual objects. As
a result, a user can easily design both 3-D shapes
and their geometric constraints within the virtual
workspace.

Future works include the following two themes.
First, propagation of constraints and dissolution of
inconsistency should be investigated. Propagation of
constraints allows a user to create more complicated
3-D objects, but may raise the inconsistency between
the constraints. As a matter of course, this inconsis-
tency must be detected and eliminated. Second, we
should consider other types of constraints; e.g., time
constraints that help to construct a dynamic virtual
world including animations, kinetic constraints like
a spring model, etc.

References

[1] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi:
“TBAG: A High Level Framework for Interactive,
Animated 3D Graphics Applications,” Proc. ACM
SIGGRAPH’94, pp.421-434, 1994.

[2] M. A. Najork and M. H. Brown: “Oblig-3D: A
High-Level, Fast-Turnaround 3D Animation Sys-
tem,” IEEE Transactions on Visualization and
Computer Graphics, Vol.1, No.2, pp.175-193, 1995.

[3] J. Butterworth, A. Davidson, S. Hench and T. M.
Olano: “3DM: A Three Dimensional Modeler Using
a Head-Mounted Display,” Proc. of ACM Simpo. on
Interactive 3D Graphics, pp.135-139, 1992.

[4] K. Kiyokawa, T. Haruo, Y. Katayama, H. Iwasa and
N. Yokoya.: “VLEGO: A Simple Two-Handed Mod-
eling Environment Based on Toy Blocks,” Proc. of
ACM Simpo. on Virtual Reality Software and Tech-
nology (VRST’96), pp.27-34, 1996.

[5] D. A. Bowman and L. F. Hodges: “User Interface
Constraints for Immersive Virtual Environment Ap-
plications,” Graphics, Visualization and Usability
Center Technical Report, GIT-GVU-95-26, 1995.

[6] M. R. Mine: “Working in a Virtual World: Interac-
tion Techniques Used in the Chapel Hill Immersive
Modeling Program,” UNC Chapel Hill Computer
Science Technical Report, TR96-029, 1996.

[7] G. G. Robertson, J. D. Mackinlay, and S. K. Card:

“ConeTree: Animated 3D Visualizations of Hierar-
chical Information,” Proc. of SIGCHI’91: the Con-

- 183 -

ference on Human Factors in Computing Systems,
pp.189-194, 1991.

Figure 8: A cabinet.

Figure 9: A ConeTree.

Figure 10: Puppets.

