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Abstract

A novel algorithm for fractal image generation applied
to the dynamics of petri net is presented. It trans-
lates the evolution of Petri net into graphic output
via marking reachability. The idea is derived from the
concept of fractal iteration principles in the escape-
time algorithm and chaos game. The approach uses
a Petri net as a powerful abstract modeling tool for
the generation of self-similar fractal images via its du-
ality, deadlocks, inhibitor arcs, firing sequence, and
marking reachability. Generating fractal images via
the dynamics of a petri nets allows an easy and direct
proof for the similarity and correspondence between
the dynamics of complex quadratic fractals via a re-
cursive procedure and the state of a petri nets via a
reachability problem. Reachability problem will be
adopted in terms of dynamics of the fractal in order
to generate images via two proposed methods. Valida-
tion of our approach is given in terms of experimental
results. An investigation of the relationships between
the generated images and their corresponding petri
nets is also discussed.

Keywords: fractals, chaos game, escape-time
algorithm, petri nets, iterated function system,
reachability problem, PN duality

1 Introduction

Recently, the beauty of fractals has attracted wide
interest among mathematicians, computer scientists
and artists. Computer graphics made it possible to
recognize the beauty of fractals and turned them into
an art form [24]. Mandelbrot [21] formally defines a
fractal to be a set whose fractal dimension exceeds
In fact, fractals and de-
terministic chaos are mathematical tools to modelise

its topological dimension.

different kinds of natural phenomena or objects. Frac-
tals are most applicable in a graphic representation of

chaos, the apparently unpredictable behavior arising
in a dynamic system because of great sensitivity to ini-
tial conditions [12]. Fractal methods are quite popular
for the modeling of natural phenomena in computer
graphics ranging from random fractal models of ter-
rain [24], to deterministic botanical models such as
L-systems, iterated function system (IFS) and recur-
rent iterated function system (RIFS)[1,3,4].

On the other hand, petri nets (PN) [2,20,23] has
been proved to be a powerful graphical and mathe-
matical modeling tool for the formal description of
systems whose dynamics are characterized by concur-
rency, synchronization, mutual exclusion and conflict.
More details on petri nets can be found in [22,25].
Reachability analysis is fundamental and central to
the study of petri nets since many problems in petri
nets can be reduced to the reachability problem [13].
The reachability problem in case the of fractal image
generation can be viewed in some forms as an escape-
time algorithm [14,15,16,27] and other as a “chaos
game”[5,19] described by an IFS. Chaos game in frac-
tal image generation is similar to the nondeterminism
characteristic of the petri net execution. If at any
time more than one transition is enabled, then any of
the several enabled transitions may fire. The choice
as to which transition fires is made in a nondetermin-
istic manner, i.e., randomly. Several techniques for
generating fractal shapes were developed and used to
produce fascinating images (8,9,10,11,17,26].

In this paper we’ll present a new technique for reach-
ability problem solving in order to generate fractal im-
ages via two proposed methods one of them is called
PN-escape-time which modify the escape-time algo-
rithm using the petri net properties to generate frac-
tal images. The other one is called PN-chaos which
is based on chaos game. Compared with the previous
methods, our approach is suggested to use because it
is independent of geometry specification, easy to use



due to graphics visualization, simple for image gener-
ation, and has the ability to generate unlimited class
of fractal patterns.

The paper is organized as follows. Section 2, give
an overview of a petri nets reachability problem, def-
inition, execution and outlines our idea for using a
petri nets as a filter for image generation. Section
3, points out the relationship between fractal image
generation methods and their corresponding nets by
introducing our proposed methods. Finally, some ex-
perimental results with discussion and conclusion are
given in sections 4 and 5 respectively.

2 PN Execution and Reachabil-
ity Problem

In this section, we’ll derive an equation which form
the main idea for reachability problem and marking
The two
proposed methods depend mainly on these derived

execution with some illustrated example.

equation and the properties of a petri nets such as
deadlock, duality, bounded, reversible and live. The
derived equation exhibit a certain analogy for the it-
erative procedure of the fractal image generation via
the escape-time algorithm and chaos game for manip-
ulating the reachability problem in order to generate
images. A basis definition and execution of petri net
necessary for the present paper are given. A petri nets
PN = (N, M) consists of a structure N and initial
marking My, where:

N = (P,T,F,W) is a petri net structure,
P ={p1,p2, " ,Dm } is a finite set of m places,
T = {t1,t3,---,tn} is a finite set of n transitions,
FC(PxT)U(T x P) is set of arcs (flow relation),
W . F — {1,2,3,---} is a mapping which associates
to each arc (edge) of the net its weight.
My : P - {0,1,2,3,---} is the initial marking rep-
resenting the initial state of PN. PNT = ¢ and
PUT # ¢.

A special petri nets in which place capacities and
arc weights are equal to one is called a condition/event
net (C/E net). A transition without any input place
is called a source transition and one without any out-
put place is called a sink. Labels for unitary weight
are usually omitted. In modeling using petri nets, we
regard the places as conditions and the transitions as
events. The dual of a petri net N = (P, T, F, W) is the
petri nets N = (T, P, F,W) which results from inter-

changing places and transitions. On the other hand,
the state of a petri nets is described by means of the
concept of marking. A marking is a function that as-
signs to each place a nonnegative integer called token.
A token is a primitive concept of a petri nets (like
places and transitions). From a graphic point of view
places are usually represented by circles, transitions by
rectangles and marks by black dots into places. The
dynamics of the net is described by moving tokens
among places according to the following transition fir-
ing rules [25]:

1) A transition ¢ is said to be enabled to “fire” if
each input place p of ¢t is marked with at least

W (p,t) tokens, where W (p,t) is the weight of the arc
from p to t.

2) An enabled transition may or may not fire
depending on whether or not the event actually takes
place.

3) A firing of an enabled transition ¢ removes W (p,t)
tokens from each input place p of ¢ and adds W (¢, p)
tokens to each output place p of t, where W (t,p) is
the weight of the arc from ¢ to p.

4) The marking of the other places which are neither
input nor output of ¢ remains unchanged.

Reachability is a fundamental basis for studying the
dynamic properties of any system. The firing of an en-
abled transition will change the tokens distribution in
a net according to the transition firing rule described
before. In general, firing a transition will change the
state marking M to a new marking M. The state
space of a petri nets with n places is the set of all
markings, that is N". We’ll formulate such state
change caused by a transition firing using a partial
function § which we call the next-state function, where
6: N™ xT — N™. The function § when applied to a
marking M and a transition ¢; yields the new marking
M which results from firing the enabled transition t;
in marking M that is,

S(M, t;) = { undeﬁnefl ?f t; ?s not enabled
M if ¢; is enabled

) (1)

where, M is the marking which results from remov-
ing tokens from the inputs of t; and adding tokens
to the outputs of ¢;. The function § given by equa-
tion 1, incorporate a notion of distributed state and a
rule for state change of a net via a sequence of mark-
ings (Mo, M;,M,---) and a sequence of transitions
(tj0)> tia)stj(2)» - --) which were fired. The relation-
ship between these two sequences form the main idea
of our proposed methods because of its similarity with



the recursive procedure for generating images of both
escape-time algorithm and chaos game. Thus, we for-
mulate equation (1) in terms of such two sequences in
a recursive manner as follows:

5(Mk,tj(k)) = Mp41 for k=0,1,2,--- (2)
Equation (2), forms an iterative process of marking
which exhibit a certain analogy of the iterative proce-
dures for the fractal image generation which we shall
discuss later. An example of a petri net execution
which illustrate the marking reachability of equation
(2) with initial marking My = (1,0, 1,0,2) is shown in
Figure 1.

Figure 1. An illustration of marking reachability

1., two transitions t; and t3 are enabled
(1,0,1,0,2). Choosing
one arbitrarily, we can fire ¢35 producing the mark-
ing 6(Mp,t3) = (1,0,0,1,2) = M;. In this marking
transitions ¢; and ¢4 are enabled. Firing ¢4 changes
the marking to 6(M;,ts) = (1,1,0,0,2) = M,. In
M, t, is enabled and firing it leads to 6(Ma,t;) =
(0,2,1,0,3) = M.

In Fig.
from the marking M, =

[I Transition

3 PN Tools for Fractal Image
Generation

Petri nets presents several degree of freedom. For in-
stance, the marking of the net, the sequence of fir-
ing or the number of firing could be selected to be
displayed. In this section, we’ll solve marking reach-
ability problem in order to generate images via two
proposed methods. The solution is based on such de-
gree of freedom, equation (2) and the properties of
PN. Such properties are initial marking, final mark-
ing, transition firing sequence, deadlock, duality, place
invariants and the so-called zero-testing through the
introduction of inhibitor arcs [6,22]. An inhibitor arc
connects a place to a transition and is represented by
a dashed line terminating with a small circle instead
of an arrowhead at the transition. The introduction
of inhibitor arcs adds the ability to test “zero” (i.e.,
absence of tokens in a place). In principle, the pro-
cedure for generating fractal images are given as an
iterative mapping function from pixel coordinate on
the screen to pixel color. Thus the relationship be-
tween the PN and the generated image is to search
for a given marked petri net for two functions g; and
g2 such that g; mapping from the spatial coordinates
(x,y) on some region D on the screen to the initial
marking My then after some firing sequence of a petri
net, the function g, maps the obtained final marking
M; into a color C(z,y). For each of the two proposed
methods, we’ll discuss some suggested rules for such
mapping functions.

3.1 Suggested Rules

To map the space of pixel coordinates (z,y) into the
space of markings we need a mapping functions g1 :
N? » N™and g5 : N™ — N3 where, m is the number
of places in the net. We choose two different cases for
such mapping:

e gl = Ao B, as a composition of two functions say
A and B where, A: N> 5 N and B: N - N™. For
instance, B may be selected in such a way to put the
same number of marks into each place that is, B;(y) =
y,J = 1,---,m. The function A strongly characterizes
the image pattern. The other case is to choose the
function g; as a projection function that is, g (z,y) =
(z,y,0,0,---). This means that the values of the point
coordinates are assigned to two some places from the
m places.

e The function g, is given as a map g, : N™ — N3



which assign some color for a given point (z,y) as an
RGB components chosen from the marking of three
selected places.

3.2 PN-Escape-time Algorithm

Escape-time algorithm, were originally developed as
a method for visualizing the dynamics of complex
quadratic fractals. It consists of testing how fast
points z outside the attractor diverged to infinity while

iterating in complex plane the function:
f(z) =22 +c (3)

where, ¢ is some constant. The dynamics of these
functions become evident by examining the resulting
orbit of their iteration on an initial point. Given an
initial point 2o and a function f., the points in the

orbit (z1, 29, -) are defined recurrently as:

% = fc(zi—l) 4)

The PN-escape-time method assign pixel colors on the
basis of the number of iterations of the net before a
deadlock on the marking occur. It is derived from
the study of both equations (2) and (4). The differ-
ence is that the circle of infinity in case of escape-
time algorithm correspond to deadlock case obtained
from the duality of the net from the final marking
to the initial marking. The resulting image produced
by these method performs the same procedure of the
escape-time algorithm because color counters indicate
the time required for the marking of a net to be in
a deadlock case. The algorithm is given as follows:
Assume the monitor has a graphical resolution a x b
points and K colors then steps for generating image
patterns for this method is given as follows:

Stepl (Initialization)
o Select some suitable attractor domain D for
drawing.

¢ Fix the maximum number of iterations Maziter.
Step2 (Loop)

e For all pixels (i,j) in the domain D do
esetn=0.

¢ Calculate the initial marking as My = g1 (4, 7).
Step3 (iteration)

o Let the enabled transition fire.

en=n+1.

Step4 (Condition Evaluation)

o If (no deadlock) and (n < Maziter) then
determine the PN duality and go back to step 3.

o If (deadlock) and (n < Maxziter) then calculate
color ¢ as ¢ = go2(n) and goto step 5.

o If (no deadlock)and (n > Maziter) then choose
the red color as a color ¢ and goto step 5.

Step5 (Color Assignment)

o Assign color ¢ to the pixel (7, j) and goto the next

pixel starting again with step 2.

3.3 PN-Chaos Algorithm

Fractals in general have an equally valid existence as a
limit of random processes. The chaos algorithm gen-
erates a sequence of points which fall onto (or near)
the attractor. Mathematically the chaos process is de-
scribed by an IFS and the rate of convergence of points
towards the attractor is determined by the contractiv-
ity of the IFS mapping [7]. IFS is defined as a pair
{X;T,,n=1,2,---,N} where, X is a complete met-
ric space and each T, are affine contractions that is,

Ti(z) =Ciz + B; (5)

where, C; is a square matrix with n rows and B; is a
vector with n elements. By a theorem of Hutchinson
(18], there exist for each IFS a single compact non
empty set A, called its attractor which is the union of
images of itself under the IFS maps.

In implementing the IFS method, one important
question is the prediction a priori of the region of
space containing the fractal attractor. Without such
a prediction, one could only approximately estimate
the spatial extent based on calculating several points
of the attractor with no guarantee that these points
are near the bounds.

The chaos representation is approximates the at-
tractor of an IFS {T;}Y, with a point clouds. The
attractor of a random algorithm can be viewed as a
limit of random process. It starts with a point zg in a
metric space X and generates a sequence of points as

Ti41 = (T5) (1) (6)

where j is an integer from one to N randomly chosen
for each new point in the sequence. This sequence is
dense in the attractor [18].

On the other hand, the PN-Chaos algorithm is de-
rived from the study of both equations (2) and (6),
where the new points are calculated in terms of net
marking and enabled transitions firing instead of the
contraction mappings {T},j = 1,2,---, N} of the IFS.
The coordinate of the points of the resulting image are
calculated as a function of the firing transition and its



color as a function of marking. The algorithm of such  other PN is shown in figure 6 which has characteristic
method for a given marked PN is given as follows: of non bounded, live and non reversible. The corre-

sponding output images are shown in figure 5. Such
Stepl (Initialization) P g outp ges ar wn in fig

*zo=0,9% =0

e Assign to each transition ¢ a point u; in the plane
which forms a vertices of some polygon.

Step2 (Loop)

e For a fixed number of times do

Step3 (Calculation)

¢ Randomly fire the enabled transition ¢ for some k.
e Calculate : & = (ux + 20)/2, ¥ = (ur + 10)/2.
Step4 (Color Assignment)

¢ Calculate the pixel color from the actual marking.
e Set (2o, y0) to the new points: zg = &, yo = -

images have spatial separation of colors because firing
a transition always produces the same marking. In
principle, investigating other petri nets with different
features and properties of the transitions will lead to
other generated images.

According to the above procedure, the firing sequence
is assigned to the spatial information and the actual

marking to the color information.
(a) Generated image

4 Experimental Results and

Inhibitor are

Discussion

The result of the image patterns obtained from the
two proposed methods depend on some factors. These
factors are given in terms of the class of mapping func-
tions chosen, the upper bound of the number of firing
sequences set, the characteristic of the petri nets (live, ~ Figure 2. Image generated using PN-Escape-time
bounded, fair and reversible), the domain D for draw-  algorithm with inhibitor arc

ing, and the properties of the transitions (dead, fair,
live and conflict) [22,25].

(b) Corresponding PN with inhibitor arc

For instance, the resulting images of the PN-escape
time algorithm are mainly affected by the feature of
the PN chosen, the number of iteration, the domain
D setting and the deadlock case for the transitions.
We investigated two classes of petri nets. One with
inhibitor arcs is shown in figure 2(h) with its corre-
sponding image given in figure 2(a). The other one

(a) Generated image

without inhibitor arcs is shown in figure 3(b) with its
corresponding image in figure 3(a). The area with red p
color corresponds to a deadlock case for transitions. 1 ( )2
The resulting images of the PN-chaos algorithm are O

mainly affected by the characteristic of the petri nets

and the properties of the transition with the point co- t2 3
ordinates assigned to each transitions. Different point ” " O
coordinates assigned to each transition will lead to Q ﬂ r\_/ |

different images. We investigated two petri nets with Ps P4 P
different coordinate points assigned to each transition.
The first one which has the characteristic of bounded,

live and reversible is given in figure 4(b), with its cor-  Figure 3. Image generated using PN-Escape-time
responding output image shown in figure 4(a). The  algorithm without inhibitor arc

(b) Corresponding PN without inhibitor arc
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(a) Sierpinski triangle Figure 5. Some quadrangular images generated using
the PN-Chaos algorithm

(b) Corresponding PN

Figure 4. image generated using PN-Chaos
algorithm with its corresponding PN Figure 6. Corresponding Petri net for images of figure 5.

5 Conclusion

Many different approaches have been proposed for
generating fractal images. In this paper we have pre-
sented a new idea for computer image generation via
a new kind of analysis method for the dynamics of a
petri nets and its reachability problem. This prob-
lem is manipulated via two proposed methods which
exhibit a certain analogy with fractals. The visual
aspects of the resulting images of the two proposed
methods depend on the following petri nets features:
the final marking of the net after a sequence of fir-
ing, the nature and the number of transitions fired
during the simulation and the firing sequence. Fur-
ther research effort is needed to derive more classes of
images and to carry out a deeper analysis of the re-
lationships between images and petri nets. Moreover,
future computer systems designers and users will re-
quire new conceptual mechanisms and theories to deal
with their systems. Petri nets incorporate the funda-
mental concepts which can be used as a basis for these

models and theories.
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