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Abstract

This paper presents a new, fast and image-based tech-
nique for determining the connectedness of an iterated
function system attractors. The technique generates
a smooth continuous shape transformation sequence
from a given two I F'S attractors, initial and final. For
each shape interpolation, a two parameter family of
iterated function systems is defined, and a connected-
ness locus for these shapes is plotted. Interpolation
is performed by decomposing the IFS attractors us-
ing polar decomposition. Polar decomposition is sug-
gested to use for interpolation because it avoids sin-
gular intermediate transformations, better to simulate
articulated motion, and its factors have physical and
visual interpretation which are not found in other de-
composition methods.
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1 Introduction

Image metamorphosis algorithms have been widely
used in creating special effects for television commer-
cials, music videos such as Michael Jacksons Black or
White, and movies such as Willow and Indiana Jones
and the Last Crusade [1,3]. It has proven to be a pow-
erful visual effects tool in animation seen in the enter-
tainment and broad casting industry. Recent advances
in shape interpolation have discovered that alterna-
tive geometric representations such as iterated func-
tion system yields new features. The iterated function
system represents a shape using only transformations,
modeling a shape out of smaller copies of itself, yield-
ing a compact description of a highly-detailed objects
often, called fractal. Mandelbrot [2] formally defines

a fractal to be a set whose fractal dimension exceeds
its topological dimension.

The aim of this paper is, given two IF'S attractors,
initial and final, we have to generate a smooth contin-
uous shape transformation sequence from the initial
attractor to the final attractor. Such sequence is gen-
erated by decomposing both the initial and final IFS
attractors using polar decomposition which preserve
smoothness for such sequence. Moreover, this paper
explores the use of the iterated function system as a
geometric representation for shape interpolation using
polar decomposition. It uses IF'S as a representation
for two-dimensional shapes as sets, and doesn’t require
the association of probabilities with each IFS map
attractor that are often used to define a measure on
sets. It also focus on iterated function systems consist-
ing of affine transformations. The family of attractors
of such iterated function system are commonly called
linear fractals. Linear fractals are shapes that can be
constructed from finitely many smaller copies of them-
selves. Sierpinski triangle, Koch curve, dragon and C-
curve are good examples of linear fractal shapes.

The paper is organized as follows. Section 2 re-
views some of the previous work in shape interpola-
tion of linear fractal models. Section 3 provides a brief
summary of iterated function systems. Section 4 give
an overview of polar decomposition computations, ad-
vantages, and applies it to the affine transformations
of the IF'S using our proposed method. Finally, ex-
perimental results, conclusion and direction for future

work are discussed in section 5.

2 Related Work

Iterated function system interpolation has appeared
in several animations. Das et al. [14] interpolated a



Sierpinski’s tetrahedron into a 3-D dragon by element-
wise linear interpolation of the matrices representing
the linear transformation of the IF'S. Hart [6] con-
trolled only the scaling parameters of the IF'S maps
to simulate fractal fade-in and dissolve. Prusinkiewicz
et al. [12], interpolated L-systems based on turtle ge-
ometry (which can be used to represent linear fractals)
for the application of animating continuous plant de-
velopment. Bowman [13] explores the effect of chang-
ing scaling and rotation coefficients of the IF'S maps.
Hart (7] interpolated I F'S representations of trees and
platonic solids by interpolating the coefficients used in
their modeling, such as the parameters of the scaling,
rotation and translation operations that were com-
posed to creat each map of each IF'S.

The previous work show that interpolation of the
individual parameters (rotation angle, scale factor,
translation displacement, shear amount) used in the
composition of each IF'S map provide the best level
of control over the transformation. Unfortunately, in
a general key-frame animation, such parameters may
not be available, and the I F'S representation may con-
sist of nothing more than the affine transformation
Polar decomposition is used for interola-
tion to avoid singular intermediate transformations by

matrices.

extracting the individual transformation components
from a general affine transformation matrix and pro-
vides a basis for more controlled shape interpolation.
Moreover, it generates a continuous smooth transfor-
mation sequence that reflects the interpolation corre-
spondence for the I'F'S attractors.

3 Iterated Function Systems

One of the more common ways to generate fractals is
through iterated function systems. The mathematical
theory of IF'S has a unique advantages for addressing
a broad class of modeling problems including the mod-
eling of natural objects and scenes. The feasibility of
using IF'S theory in computer graphics was reviewed
previously at SIGGRAPH’85 [15] and [10]. Iterated
function system represents a shape using only trans-
formations and modeling a shape as smaller copies of
itself. It is defined as a pair {X;T,,n =1,2,---,N},
where X is a complete metric space and each T, are
affine contractions, that is,

Ti(z) =Ciz + B; (1)

where, C; is a square matrix with n rows and B; is
a vector with n elements. By a theorem of Hutchin-
son (8] there exists for each IF'S, a single compact
non-empty set A C R", called its attractor which is
the union of attractorlets A; = T;(A) under the IFS
maps, that is,

-~ N ~
A=T(4) (2)
=1

The Hutchinson operator W : R — R™ is a conve-
nient shorthand notation given by

w() =JT() 3)

that allows us to simplify the definition of an IF'S
attractor of equation (2) as

A=w(4) 4)

On the other hand, a transformation is affine if and
only if it takes parallel lines to parallel lines. Affine
transformations consists of a linear transformation (
which may rotate, scale, stretch and shear) followed
by a translation.
dimensional affine map is typically represented by 3x3
On the other
hand, given two I F'S attractors the problem is to com-

In computer graphics, the two-
homogeneous transformation matrix.

pute a continuous shape transformation sequence from
one to the other. These operation is known variously
as shape averaging, shape interpolation, shape blend-
ing, shape evolving and metamorphosis. Metamor-
phosis of shapes described by the IF'S representation
involves interpolation of the I F'S maps. In this paper,
interpolation of the I F'S maps will be performed us-
ing polar decomposition with the aid of the following

property,

Property 1 Let {T;(k)}X, be an IFS whose maps
are parameterized by a single bounded variable k € R.
Then the function f(k), that maps the parameter k
into the attractor of the IF'S parameterized by k, is
continuous.

The above property prove that small changes in the
IFS maps transform the IF'S attractor continuously,
and provided the basis for I F'S-based fractal transfor-
mations.



4 Interpolation of [F'S attrac-
tors

Shape interpolation is a problem which has been moti-
vated by different applications and attacked in several
different ways. Transformation of shapes described by
the IF'S representation involves interpolation of the
IFS maps. Iterated function system define shapes
using self-transformations, and interpolation of these
shapes requires interpolation of these transformation.
The interpolation is given in terms of individual pa-
rameters such as (rotation angle, scale factor, transla-
tion displacement, shear amount), which are the com-
position of each IF'S map. Given two IF'S attractors
the problem is to compute a continuous shape trans-
formation from one to the other. In this paper we
shall decompose the affine map T; of an IF'S attrac-
tors using polar decomposition.

4.1 Polar Decomposition: Computa-

tions and Advantages

In recent years interests in the polar decomposition
have increased because it is useful for a variety of pur-
poses, including matrix animation and interactive in-
terfaces. In this paper we will use it for matrix ani-
mation. The polar decomposition [4,11,17] is a gener-
alization to matrices of the familiar complex number
representation z = re®,r > 0. It is an iterative algo-
rithm for computing the orthogonal polar factor of a
non singular m X n matrix M. The algorithm is based
on the well-known Newton-iteration to compute the
square root of a number.

Definition 4.1 (Polar Decomposition) Let M be
an m X n matriz, then there exists a matriz U of
order m X n and a unique Hermitian positive semi-
definite matriz H of order n x n such that M = UH.
If rank(M)=n then H is positive definite and U is
uniquely determined.

Polar decomposition [5] separates a linear transfor-
mation matrix M into an orthogonal matrix U that
contains its rotation and reflection components and
a symmetric positive definite matrix H that contains
its scale and shear components [9]. The factor U is
computed by repeatedly averaging the matrix with its
inverse transpose. Let Up = M and compute

Uip1 = 1/2(U; + (UTHT), (5)

until U;4; — U; = 0. This sequence eventually con-
verges to the orthogonal component U of the linear
transformation matrix M. Finding the U matrix of a
2 X 2 matrix is easy. Suppose for example,

Then,

U = M + sign(det(M)) ( _db ‘ac > 7)

Where, det denotes the determinant of the matrix
M and sign denotes the (positive or negative) symbol
of the resulting determinant of matrix M. Now, given
U and M, then, H can be calculated as:

H=U"'M (8)

After computing the polar decomposition of a ma-
trix M, then H will holds the scale and shear param-
eters while U holds the rotation and reflection param-
eters. The arctangent of the first column of U yields
the angle of rotation. Interpolation of the U matrix
consists of constructing rotation matrices based on in-
terpolation of the angle. Polar decomposition is sug-
gested for interpolation because of some reasons:

o It extracts the individual transformation
components from a general affine transformation
matrix and provides a basis for more controlled
shape interpolation.

e The polar decomposition factors are unique,
coordinate independent, closeness, simple and
efficient to compute.

e The orthogonal matrix U is the closest possible
orthogonal matrix to M, a property which is also
coordinate independent. that is, U satisfies the
following conditions: Find @ minimizing ||U — M||%

subject to UTU — I = 0, where, the symbol F denote
the Frobenius matrix norm given by

U - ME =3, ;(ui; —mij)?

e Polar decomposition is applicable to matrices of
any size and shape, and its closeness property makes
it good for matrix renormalization.

e Polar decomposition has a very physical
interpretation as shown in figure 1.
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Figure 1. Physical View of Polar Decomposition

All these factors guarantees that small input per-
turbations will not produce large output variations.

4.2 IFS image-based Attractor De-
composition Algorithm

In this section, we will present a new image-based al-
gorithm based on polar decomposition by parameter-
izing all the transformation of an IF'S with two pa-
rameters. The algorithm plots a corresponding con-
nectedness locus, such that connectedness is main-
tained during the shape interpolation. During shape
interpolation, certain intrinsic properties of the shape
should preserved [16], and the most important of these
is connectivity. A connectedness locus maps the pa-
rameter space of a representation. This map depicts
regions of parameters whose resulting shape is con-
nected, and other regions of disconnectedness. These
regions themselves may be simple connected, multi-
ply connected or totally disconnected. As the param-
eter of an IFS change, during shape interpolation,
the connectivity of the resulting attractors can also
change. Decompose the affine map T; of an IF'S into
the polar component matrices U;, H;, and a vector
translation component B; is given as follows:

Let 8; be the angle of the rotation represented by
U; and let the operator U(6) return a rotation matrix
by the angle §. We decompose the IFS maps {T;}Y,
of equation (1) as:

Ti(z) = U(6:)Hi(z) + B; (9)

The parameter space for the connectedness locus is
spanned by two parameters (u,v) such that the point
(0,0) will indicate the parameters of the IFS repre-
senting the initial shape, and the point (1,1) will indi-
cate the parameters of the IF'S representing the final

shape. Suppose, 67, H?, B? parameterize the maps of
the initial IF'S and let 6}, H}, B! parameterize the
maps of the final JF'S. Then the two variables (u,v)
parameterize a family of an IF'S with N maps as fol-
lows:

Ti(z) = U((1 —u)(69) +uw(6]))((1 —w)(H?) (10)
+u(H}))z + (1 —v)(B}) + v(B})

Hence, the parameter u interpolates the linear part
of the IF'S maps, and the parameter v interpolates
the translation part of the IF'S maps.

5 Conclusion and Experimental
Results

This paper focused on interpolation of IFS attractors
whose iterated function system contained the same
number of maps using polar decomposition. For each
shape interpolation, a two parameter family of iter-
ated function system is defined and a connectedness
locus for these shapes is plotted to maintain connect-
edness during the interpolation. The proposed algo-
rithm generates smooth transformation sequence that
reflects the interpolation correspondence for the IFS
attractors. The most tedious part of shape metamor-
phosis is to define the IF'S attractor correspondence
automatically. Furthermore, interpolation between it-
erated function system with different number of maps
is remains an open problem. Recently, we are working
on an implementation to generate the in-between se-
quences for a given two I F'S fractal shapes attractors
automatically.

Figure 2, demonstrates a metamorphosis Dragon to
Sierpinski triangle using polar decomposition. Both
the initial and final attractors are described by three-
map iterated function system. Figure 3, shows a
smooth transformation sequence of two IFS attrac-
tors from sierpinski as an initial IFS attractor to a
tree as a final IF'S attractor.
nectdness algorithm of using polar decomposition for
interpolation is applied to demonstrates an animation
sequence of clouds based on changes to the transfor-
mations of its JF'S representation using polar decom-

Moreover, the con-

position as shown in figure 4. The smooth transition
from frame to frame is a consequence of the continuous
transformation result from using polar decomposition
for interpolation.



Figure 2. Dragon to Sierpinski triangle metamorphosis
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Figure 3. Sierpinski triangle to tree metamorphosis



Figure 4. A sequence of frames of IFS encoded cloud using polar decomposition
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