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Abstract. This paper describes a visibility importance based scene graph distribution method for
client-server based distributed virtual environments. It is very important for distributed virtual
environments that all users share the same environment on a service. In order for users to share an
environment, a scene graph that describes the virtual environment must be distributed to all clients by
the server. The method we propose divides a scene graph into segments and distributes these
segments incrementally. The distribution is performed according to the importance of the object’s
visibility, and the measurement of importance is evaluated by each client. This measurement is
performed in a traversing process for scene rendering, so it does not expend any extra processing cost.
If an important but still as yet undistributed scene graph segment is found by a client, the client
requests its distribution of the server, at which time the server distributes the segment upon demand.

The method realizes an efficient scene graph distribution in a narrow bandwidth network.
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1. Introduction

In recent years, implementation methods of distributed
virtual environments have been well researched, and the
technology is expected to become an excellent service
platform in the network [Maxfield95, Broll95,
Stansfield95]. Many researchers have focused on a data
exchange method for dynamic information such as event
data and motion data [Barrus96, Kessler96,
Macedonia95, Singh95]. Efficient dynamic information
exchange methods are very important: However, we
believe that a scene graph distribution method is equally
important for distributed virtual environments.

It is very important in distributed virtual environments
that all users share the same environment on a service.
In order to share the same environment, a scene graph
that realizes the virtual environment must have been
received from somewhere else previously. However,
almost all researchers assume that the use of the
distributed virtual environment will be used by the
people who work together, and that the network
bandwidth would be as wide as a local area network.
They also assume, therefore, that a scene graph has been
previously distributed to each user’s machine. However,
if a distributed virtual environment is to be used by an
unspecified number of people, as is the case with the
WWW (World Wide Web), it would be difficult to have
had this scene graph distributed previously. In this case,

a user must download the scene graph at the start time of
a session.

Downloading is a well-known method amongst VRML
(Virtual Reality Modeling Language) users, and those
users also know that the download time is long,
especially with a large scene graph. Users must wait
until the scene graph is completely downloaded, and
users cannot actually see the visual scene of the virtual
environment until the download is completed. This
situation can clearly be shown in the case of a narrow
bandwidth connection, especially in modem based
connections, and when the amount of scene graph to be
distributed is large. For example, the download time for
a scene graph that the amount is 10M bytes is at least one
hour. This situation can lead to heavy stress for users.
In order to accommodate a widely accessible distributed
virtual environment like the WWW, we must introduce
an efficient scene graph distribution method.

This paper describes a visibility importance based scene
graph distribution method for distributed virtual
environments. A scene graph for a large virtual
environment is constructed from a large amount of data.
However, a user can see only a small part of the
environment at one time, so reference for the scene graph
has locality. Therefore, the user only needs a small part
of the scene graph which describes near his or her
viewpoint instead of the whole of the scene graph data.
We introduce a scene graph distribution method that uses
the locality effectively. In order to apply the locality, our

—143—



method evaluates the visible importance of objects, and
distributes a scene graph incrementally, according to the
object’s importance.

2. Distributed Virtual Environment

In this chapter, we show the system overview we
assume; we discuss a scene graph distribution method for
this system.

The distributed virtual environment system is
constructed based on a client-server model.  The
relationship between clients and servers is shown in
Figure 1. In this system, every client can connect to all
servers. This concept of connection is similar to that of
the WWW. Many clients can connect to one server at a
time, and the connection is used to exchange information
in order to provide the distributed virtual environment
service.

Figure 1: Client server relationship.

Each server provides an individual distributed virtual
environment service to its clients. In order to provide a
service, a server distributes a scene graph that describes
its virtual environment, gets event information from
clients, and performs simulation of the virtual
environment. The system we are developing performs
the simulation with a server in order to maintain the
consistency of the environment.

Clients act as communication front-ends for their users.
A client gets a scene graph, and renders a 3D graphics
visual scene based on the scene graph. The client also
handles events from input devices such as the keyboard,
mouse, and joystick, and sends this information to the
Server.

3. Scene Graph Distribution

In this chapter, we discuss scene graph distribution
methods.

3.1 Scene Graph

In this section, we review a scene graph [Hartman96,
Wernecke94, Sense8-96], which we focus on in this

paper.

The scene graph was originally designed for 3D graphics
systems, and is now an essential form of technology for
real-time 3D graphics systems, especially for virtual
reality systems. The scene graph contains data about all
objects in a virtual environment, such as their shape,
size, color, and position. Each piece of information is
stored as a node in the scene graph. In the scene graph,
these nodes are arranged hierarchically in the form of a
tree structure. The 3D graphics system traverses the tree
structure to extract information and renders the
appropriate scene based on the information.

We show an example of a scene graph in Figure 2. This
scene graph describes a room, and the room might be a
subpart of a larger scene graph. The scene graph for the
room shows that there are four objects in the room. The
node described “Group (Desk)” shows the visual
description of the desk. This scene graph shows that the
desk is constructed from two parts, one is a desk top and
the other is legs. The scene graph also shows that both
parts are constructed from their sub parts. The scene
graph of the desk is traversed by a rendering system to
render a visible scene.

Group
(Room)
[ 1 L I 1
Group Group Group Group
(Chair) (Desk) (Booksheif) (Locker)
{ . 1
Group Group
(Desk Top) (Legs)

l—]—_l [ I . I 1

Shape Shape Shape Shape Shape Shape
(Box) (Box) (Cylinder)| |(Cylinder)| |[(Cylinder)| |(Cylinder)

Figure 2: An example of scene graph.

In the scene graph, the Group nodes show what the parts
of the objects are, so that the nodes have some sub-
nodes. The Group node has information that shows:

e  Position.
e Bounding box.
U Sub-node list.

The bounding box specifies an outline size of the object.
The bounding box is a box that encloses the shapes in a
sub-node of the node, and it is used to provide a visibility
evaluation of the object to be described later.

The Shape nodes show what the visual shapes of the
object is, and the nodes become terminate nodes. The
Shape node has information that shows:

e  Shape.
. Size.
. Color.

In the VRML[Hartman96], which is a widely used scene
graph, the Group node corresponds to a Group node and
a Transform node, and the Shape node corresponds to a
Geometry node and an Appearance node.
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3.2 Scene Graph Distribution Problem

There are some options to implementing a scene graph
distribution method. 1In this section, we discuss two
major distribution methods.

3.2.1 CD-ROM Basis

Scene graph distribution by CD-ROM is appropriate for
large virtual environments, because the capacity of a CD-
ROM is quite large. Some service providers of
distributed virtual environments choose this distribution
method for their service. The advantage of this method
is that there is no need to distribute a scene graph at each
connection time.

However, this distribution method has drawbacks. First,
the person who wants to present a service using a
distributed virtual environment must publish the CD-
ROMs which contain the scene graph of his or her virtual
environment. This restriction makes it impossible for
ordinary people to publish their own virtual environment
material on the network. Second, a person must publish
a new CD-ROM when he or she changes his or her
virtual environment. In addition, users may not wish to
have to keep several CD-ROMs for individual distributed
virtual environment services.

3.2.2 Network Basis

Scene graph distribution by network is well known as the
method for VRML. This method has advantages in that
anyone can access any VRML scene graph provided on a
WWW server, and anyone can get the latest version of
the scene graph. However, this method also has a
disadvantage in that during a scene graph distribution,
the user has to wait for the completion of a distribution,
and usually cannot see the visual scene of the scene
graph until this is done. For example, the amounts of the
scene graph used by some service providers of
distributed virtual environments are from 1M bytes to
20M bytes. These amounts indicate the compressed
sizes of the scene graphs. The download time for an 1M
byte scene graph is at least 6 minutes and the download
time for 20M bytes is at least 2 hours, in the case of a
user useing a 28.8K bps modem.

In order to reduce the waiting time, a method called
Inline is introduced in VRML scene graph. The Inline
method provides an ability to divide a scene graph into a
main scene graph and segments. In this method, a user
can download the scene graph, segment by segment, and
a visual scene is immediately displayed on screen after
the main scene graph is downloaded. Therefore, a user’s
waiting time is reduced if the size of the main scene
graph is maintained small.

The Inline method, however, has several disadvantages.
The order of the downloading of segments, for instance,
is not considered, so the order is usually inefficient for a
visual effect. The download completion time also
becomes lengthened because each downloading of
segments expends individual connection setup time. In
addition, extra work is required by the author of a scene
graph to divide the scene graph into its parts effectively.

Moreover, the VRML has a facility to share a sub-scene
graph with some scenes. However, the Inline method
disables the facility between divided segments, so the
total amount of the scene graph usually becomes lager.

3.3 Requirements for Scene Graph Distribution

First of all, we believe that it is very important that
everyone be able to publish his or her virtual
environment with ease. In addition, everyone should
always have access to the latest versions of virtual
environments. In order to satisfy these requests, the
distribution method of scene graphs must be on a
network basis instead of on a CD-ROM basis. Second,
from the user’s point of view, the current waiting time
for the downloading of a scene graph at the start of a
session must be eliminated. Third, from the system’s
point of view, the amount of scene graph distribution in a
session must be reduced in order to reduce network
traffic. In addition, processing loads must be distributed
to clients as a whole instead of concentrated on a server.

4. Visibility Importance Based Scene Graph
Distribution

In order to satisfy the requirements discussed in section
3.3, we propose a visibility importance based scene
graph distribution method, and this method has these
features:

e Partial scene graph distribution.
¢ Incremental segmented scene graph distribution.
e  Visibility importance order distribution.

e Client-side visibility importance evaluation.

4.1 Partial Scene Graph Distribution

A scene graph for a large virtual environment is
constructed from a large amount of data. However, a
user can see only a small part of the environment at one
time, so reference for the scene graph has locality.
Therefore, the user only needs a small part of the scene
graph which describes near his or her viewpoint instead
of the whole of the scene graph data. Our method uses
this locality to reduce the amount of data that must be
distributed.

In addition, a virtual environment could be used by many
users at a time. This means that these users need their
own individual part of the scene graph of the virtual
environment. Therefore, the part of the scene graph that
is required for each user must be evaluated by a system
at its execution time instead of at the design time of the
scene graph. This evaluation is performed based on the
visibility of objects in the virtual environment, and this
process is known as culling. This culling process is
performed as follows.

First, a culling process calculates a viewing frustum
(Figure 3) which shows the viewing area of a user in a
virtual environment. Next, the process checks which
objects are in the frustum and which are not. The objects
in the frustum are visible because they are located in the
viewing area of the user. The objects outside of the
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viewing frustum are, on the other hand, invisible,
because these objects are not located in the viewing area
of a user. Our method distributes only the parts of a
scene graph which correspond to the visible objects for
the user.

Viewing Frustum

Visible

Viewing Point
(Eye)

Figure 3: Visibility evaluation.

4.2 Incremental Scene Graph Distribution

In order to distribute a partial scene graph, it must be
divided into a number of segments. The hierarchical
structure of the scene graph is used to determine this
segmentation.
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Figure 4: Scene graph partitioning.

Figure 4 shows how a scene graph is divided into
several segments, and the dotted enclosures in this figure
indicate divided segments of the scene graph. In this
example, the scene graph is divided into four segments.

In our method, the scene graph segments that express
visible objects are distributed incrementally from a
server, but scene graph segments that express invisible
objects are not distributed. In order to realize such
selective distribution, an evaluation of the importance of
an object’s visibility is very important.

4.3 Evaluation of Visibility Importance

According to a visibility evaluation, there are objects
chosen which should be distributed to a client. However,
all chosen objects might not be distributed at one time,
because the network bandwidth is limited. Therefore, we

must consider the distribution order to achieve
distribution effectively. In our method, the objects are
distributed according to their visible importance and their
distribution efficiency order, is shown below:

e The object that is located near a user in the virtual
environment is important

*  The object that has a large visible size is important

e  The object that is described by a small amount of
data is efficient for distribution

The distance of an object can be calculated from the
object’s position. The visible size of an object can be
calculated from the object’s distance and bounding box
size. The distribution efficiency of an object can be
calculated from the object’s visible size and data size of
immediate sub-nodes of the node.

4.4 Server Side Visibility Evaluation

The visibility evaluation process usually needs
information regarding what objects are present and
where they are located. This information is described by
a scene graph. The whole of the scene graph is managed
by a server, so it is quite natural that the visibility
evaluation is performed by the server. However, this
method has one serious handicap.

This visibility evaluation processing requires extra
processing expenditure of the server because the standard
processing of the server does not include such
evaluation. In addition, visibility evaluation processing
is required for each client that is currently connected to
the server. This means that the cost of the evaluation
process becomes extremely expensive when many clients
are connected to the server at a time. This extra
processing uses almost all the processing power of the
server, causing the inability of the server to perform the
simulation of the virtual environment.

4.5 Client Side Visibility Evaluation

The culling process is a basic process of scene rendering
in which each client performs culling in each rendering
process. Clients can, therefore, perform a visibility
evaluation without any extra processing cost. In our
method, we use the information produced by the
rendering system to perform a visibility evaluation.

This method has strong advantages in that a processing
load can be distributed to each client, and there is no
extra load for the server and clients. However, this
method displays a paradox. The paradox is as follows:
The visibility evaluation is performed to choose what
scene graph segments should be distributed. This means
that the information of the chosen segments is not placed
with the client, but the evaluation must be performed by
the client using the segment’s information.

In order to break the paradox, our method divides node
information into two categories, one has a sub-node list,
the other has position, bounding box, and color. The
server distributes a segment of a scene graph in a form
illustrated in Figure 5. The segment is constructed from
a parent node and its immediate sub-nodes. A parent
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node has information about the sub-node list, and the
sub-nodes have their own position, bounding box, and
color. This segment form enables the culling system to
evaluate the visibility of a node, and the rendering
system to render a temporary shape to a screen.

Parent-node
“list of sub-node
*position *position *position
*bounding box *bounding box “bounding box
*color *color *color
‘data size “data size *data size

Figure 5: Distribution unit of a scene graph.

All of the scene graph segments are distributed according
to the requests of a client. However, a visibility
evaluation process requires a root node to start the
process. Therefore, only the root part of a scene graph is
actively distributed by a server except when a client
connects to that server.

5. Implementation

We have been developing an evaluation system, and the
system is written in Java and C.

5.1 Processing Timing

In distributed virtual environments, the service is
provided on as a real-time basis. Therefore, both the
simulation process in a server and the rendering
processes in clients are executed as real-time processing.
In order to display a visual scene smoothly, both
processes are performed cyclically and continuously
more than ten times in a second. This is to say that both
processes are performed repeatedly in a period, and that
the period is shorter than 100ms. We call this period a
“Tick”.

Simulation End

A

Event Information
} | | | | >
D AN I

Client Tick
Screen Update

v

Figure 6: Processing timing.

In a server, a simulation process is cyclically performed
at every Tick. In this process, the effect of event
information provided by the clients is also considered.
After every simulation process, information that has
changed in a virtual environment such as position, and
orientation of objects, is picked up. This information is
distributed to clients as update information.

In a client, the update information provided by the server
is used to reflect the state of the server to the client.
After the reflection process, the client renders an updated
visual scene. These processes are also performed
cyclically and continuously at every Tick.

5.2 Client Side Processing

There are two major processes in a client, one is visual
scene rendering, and the other is communication with a
server.

The process flow of clients is shown in Figure 7, and
this rendering process is performed continuously in every
Tick. This process is invoked with data which refers to
the root part of a scene graph in a client. In many cases,
a client has only a subset of the scene graph which is
managed by its server.

A rendering start.
The node is visible.

YES

YES
The node is Shape.

NO

The node has sub-
nodes.

Render the outline
shape.

Generate a request
for the sub-node to
the server.

Render the Shape. To render all sub-nodes,

call this routine recursively.

L |

End

Figure 7: Rendering process for client.

The rendering process tries to render an object in detail,
but the information provided by the server would not be
enough to render it in detail. The rendering process then
tries to render the outline of the object based on the
information that is provided by the simplified node. This
simplefied node has information such as position,
bounding box, and color. In addition, the client can
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request information from the server about a more
detailed part of the scene graph of the object.

In a client, another process which communicates with a
server is executed with a rendering process in parallel.
This process receives the scene graph segments which
are distributed by the server, and constructs a local copy
of a scene graph in the client.

5.3 Server Side Processing

A server will distribute segments of a scene graph,
according to a request from a client. The segments
requested by the client are distributed by the server
which complies with the order in the request. The
distribution for each request is performed during a time
that corresponds to a Tick, because new requests will
come from the client at every continuous Tick. The
process flow is shown in Figure 8.

‘ A request arrives. )
A

Distribute a few scene graph

segments according to the order

in the request.

NO

YES

Discard remaining segments in

'

Figure 8: Distribution process for server.

the request.

After the distribution, if some segments are remaining in
the request, the request for segments is simply discarded.
If the segments in discarded requests are important for a
continuous visual scene in the client, a request for the
segments can be generated by the client again. In the
request, the priorities of the segments might be increased
if segments that have higher priorities are already
distributed according to the previous request; the request
for a higher priority of segments would then be removed.

6. Example of Scene Graph Distribution

In this section, we illustrate an incremental scene graph
distribution and discuss the advantages of our proposed
method.

6.1 Client Startup

Initially, only the root part of a scene graph is actively
distributed by a server when a client connects to that
server. The root part is constructed from a complete root
node and simplified immediate sub nodes of the root
node. In this example, the root node is for a room shown
in Figure 9. A dotted lined box expresses a simplified
node. A solidly lined box expresses a complete node.
The information stored in each node is the same as that
of Figure 5.

Group
(Room)
[ I I I 1
Group Group Group Group
(Chair) (Desk) (Bookshelf)! | (Locker)

Figure 9: Initially distributed scene graph.

6.2 Rendering on the Client

According to the distributed root part of the scene graph,
a rendering system of a client tries to render a visual
scene. Here, we assume that only the desk is in a user’s
viewing area. The rendering system tries to render the
desk in detail, but the information already provided by
the server is not enough to render it in detail. The
rendering system then tries to render the desk based on
the information that is provided by the simplified node.
This simplefied node has information such as position,
bounding box, and color. In this situation, the desk is
rendered as shown in Figure 10, (A). Thus, a user
cannot see the detailed shape of the object, but can
understand that something is there. As shown in here,
the user can see an outline of an environment
immediatery after connection.

(A) Top Node

(B) Second Node

(C) Third Node

Figure 10: Incremental desk distribution.

6.3 Scene Graph Segment Request

The client can then request more detailed information
about the scene graph from the server. According to the
request, the server distributes the detailed part of the
scene graph (Figure 11), the desk, to the client. The
client then grafts the scene graph into an existing scene
graph. Figure 12 shows the result.
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Group
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Group Group
(Desk Top) (Legs)

Figure 11: Scene graph segment.

As shown above, our method divides a scene graph into
these segments automatically, and distributes the
segments incrementally according to requests from
clients. In this manner, scene graphs in clients are
developed continuously, and the appearances of objects
that are seen by users are developed as time goes on.

Group
(Room)
I I I I el
Group _Group___ Group Group
(Chair) | { (Desk) ") |(Bookshelf)| | (Locker)
1’: Group _.-+-._Group ‘}
“jlDEskTop}! | (Lagsyi1~

Figure 12: Scene graph grafting.

6.4 Processing in Next Cycle

In the next rendering cycle in the client, the rendering
system uses the grafted scene graph shown in Figure 12,
so that the desk is rendered from the scene graph shown
in Figure 10, (B). Now, the user can guess that the
object may be a desk or a table. The client then requests
information about a more detailed part of the scene graph
of the desk from the server. As a result, the scene graph
shown in Figure 13 is constructed.
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Figure 13: Completed description of a desk.

In the next rendering cycle on the client, the rendering
system uses the scene graph shown in Figure 13, so that
the desk is finally rendered completely from the scene
graph shown in Figure 10, (C). Now, the user cleary
understands that the object is a desk.

As shown in Figure 13, our method distributes only the
required parts of a scene graph. This means that our
method never distributes unnessesary parts of the scene
graph. This method realizes an efficient network
bandwidth utilization. In addition, the distribution of
nessesary parts of the scene graph could be accelarated,
because the distribution of unnessesary parts of the scene
graph are automatically avoided.

Figure 14 shows another example of an incremental
scene graph distribution and rendering. This example
shows the distribution of a house.

Figure 14: Example of house shape distribution.

7. Conclusion

In this paper, we proposed a visibility importance based
scene graph distribution method for distributed virtual
environments. The method realizes an efficient scene
graph distribution in narrow bandwidth network.
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