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Abstract
   3-D mice are used for drawing 3-D computer graphics
in the field of Virtual Reality.  They are far more
expensive and complicated than usual 2-D mice.  This
paper proposes a low-cost, simple 3-D mouse.  It uses a
part of the 2-D mouse's mechanism for low-cost.  Its
software automatically corrects the coordinate errors
caused by hardware.  Its performance is shown through
experiments, comparing with other 3-D mice.
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1. Introduction
   A modeler using the stereoscopic vision and 3-D
mouse is proposed for easy drawing of 3-D computer
graphics [1][2].  Polhemus ISOTRACK II [3] was used
as a 3-D mouse in the study.

   The device uses magnetic sensors, and can measure 3-
D positions and angles without physical devices such as
strings and linkages.  But, measured coordinates are
distorted, when it is used near the computer display,
where the magnetic field falls into disorder.

   This paper proposes a low-cost and simple structural
3-D mouse, which uses a part of the 2-D mouse's
mechanism.

   A three-sensors version 3-D mouse [2] and a four-
sensors version 3-D mouse [4] are discussed in this
paper.  The former mouse is simpler than latter one.
However, it accumulates the positioning error, and needs
frequent calibrations.  The latter mouse has the
automatic-error-correction function, and requires no
calibration.

2. Simple 3-D Mouse
   Several studies have been made on the 3-D pointing
device [5].  However, they are far more complex and
expensive than usual 2-D mice.

  Our simple 3-D mice calculate the 3-D coordinates by
measuring the lengths of tensed strings (fishing lines)
attached to the pointer.

   Sato's SPIDAR [6][7][8] which can obtain 3-D
coordinates also uses the physical strings.  However, its
main purpose is to give users sense of feedback forces
by fixing and pulling the strings, and the mechanism is
large-scaled.  The purpose of our 3-D mice is to move
the cursor in the screen as well as usual 2-D mice.

   Hirata investigated the calculation method of 3-D
coordinates used for SPIDAR [7].  In the study, four
strings are used and if the length of one string is wrong,
correct coordinates can be obtained using the other 3
strings.  However, it cannot detect which length is
wrong.  When two or more lengths are wrong, correct
coordinates cannot be obtained.  If the initial lengths are
not given, coordinates cannot be calculated.  SPIDAR
needs to make calibrations beforehand to use it.  4-
sensors version 3-D mouse of this paper provides a
strong automatic error correction function.  Therefore,
even if all lengths are wrong, almost correct coordinates
can be calculated, and the calibration is unnecessary.

   An ultrasonic sensor is a typical solution for 3-D mice.
It measures the distance by the ultrasonic wave, and can
obtain 3-D coordinates.  However, its spread speed
changes depending on the temperature.  Moreover, it
interferes mutually with near other sources such as the
same kind of 3-D mice.  The 3-D mouse of this paper is
using the string, and does not have these problems.

3. 3-sensors version 3-D Mouse
   The outline of 3-sensors version 3-D mouse, which is
the basic type of the simple 3-D mice, is described.

3.1 Mechanisms and Structure

  To know coordinates of point ( )zyxP ,,  in the 3-D
space, the equation (1) is solved, where 1l , 2l  and 3l  are
distances from three already-known points ( )1111 ,, zyxP ,

ICAT '99



( )2222 ,, zyxP  and ( )3333 ,, zyxP  to point P .
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Fig. 1 Structure of the 3-sensors version 3-D mouse

   Figure 1 shows the structure of the proposed 3-sensors
version 3-D mouse.  Three rotation sensors are attached
under the board and three pinholes are made near the
sensors.  The pinholes form a equilateral triangle with
20cm long sides.  These are already known points.
Three strings are tied to the mouse pointer at an
unknown point.  The strings from the pointer go through
the pinholes, are wound around the shafts of the rotation
sensors and are connected to hanging weights at their
ends.

Fig. 2 Rotation Sensor

   The rotation sensors shown in Figure 2 are usually
used for 2-D mice to detect rotation of the mouse ball.
The disk at the right side of the Figure has slits, and a
photo-coupler beside the disk detects the cycle and
direction of the disk rotation.  In the proposed 3-D
mouse, the rotation sensors detect the movements of the
strings.  The lengths of the strings can be obtained from
the cycles and directions of the rotations if the initial

lengths of the strings are known.

3.2 Coordinate System
   Figure 3 shows the coordinate system of the 3-sensors
version 3-D mouse.  Coordinates of each pinhole are

assumed to be ( )0,0,01P , ( )0,0,12P , and 
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   The unknown pointer coordinates ( )123123123 ,, zyxP
can be calculated from the equations (2), (3) and (4),
these are derived from the equation (1) by substituting
the pinholes coordinates.
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   There are two solutions for the z coordinate because of
quadratic equation.  Since the pointer is able to move
only over the upper side of the board, the positive value
is adopted.

( )P1 0 0 0, ,
( )P2 1 0 0, ,
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Fig. 3 Coordinate System of the 3-sensors 3-D mouse

3.3 Calibration
   The pointing position is calculated from the data of the
lengths.  The 3-sensors 3-D mouse requires initial
calibration to obtain the initial lengths of the strings, as
the rotation sensors output cycles and directions which
give only increment of the string lengths.  This mouse
needs frequent calibrations, because the string slips on
the shafts of the rotation sensor bring about errors in the
measured lengths.



3.4 Problems

Fig. 4 3-sensors version 3-D Mouse

   Figure 4 shows the 3-sensors version 3-D mouse.  The
coordinate error was 1 to 2 mm immediately after a
calibration.  After five minutes usage, the error became
about 2.5 cm.  This amount of error has no problem,
because the pointer is handled, while seeing the
movement of the cursor on the screen, like in the case of
the 2-D mouse.  It is enough for the pointer operation to
know the relative amount of the movement.  If the error
is small, it is inconsiderable.

   However, the error will accumulate in longer use, and
make the coordinate distorted to the extent that the
movement of the pointer is not proportional to the
movement of the cursor, regarding direction and
distance.  Therefore, it is necessary to conduct frequently
calibrations.

   3-sensors version 3-D mouse has another problem in
operation.  The weight of the mouse pointer must be
hold by an arm of the operator who is easily tired.

Fig. 5 Structure of the 4-sensors version 3-D mouse

4. 4-sensors version 3-D Mouse
   To solve the 3-sensors version 3-D mouse's problems,
the 4-sensors version 3-D mouse is proposed.

4.1 Mechanisms and Structures
   Figure 5 shows the structure.  The forth rotation sensor
is attached to the second board above the pointer.  The
string is installed from the pointer to a hanging weight
through a pinhole and on a pulley on the second board,
winding around the shaft of the forth sensor.  The forth
pinhole and the other 3 pinholes form a tetrahedron with
20cm long sides.

   The equation for the 4-sensors 3-D mouse is shown as
follows.

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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   The linear equation (6) is obtained from equation (5).
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4.2 Coordinate System
   Figure 6 shows the coordinate system of the 4-sensors
version 3-D mouse.  Coordinates of the each pinhole are
assumed to be

( )0,0,01P , ( )0,0,12P , 
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   The pointer coordinates ( )123412341234 ,, zyxP  can be
calculated from the equation (7), (8) and (9), these are
obtained from the equation (6) by substituting the
pinhole coordinates.
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Fig. 6 Coordinate System of the 4-sensors 3-D mouse
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   The solutions use the data from the fourth sensor.  The
coordinates can also be calculated from the equation (2),
(3) and (4) without using the data from the fourth sensor.
The equation (2) and (7) are the same.  The equation (3)
and (8) are also the same.  The difference is the equation
(4) and the equation (9) for the z coordinate.

4.3 Error Detect
   This simple 3-D mouse has slips of the strings on the
shafts of the rotation sensors.  As a result, real lengths of
the strings are different from calculated ones.  This is the
main reason why the coordinate errors occur.

   The two sets of the equations can be used for the 4-
sensors version 3-D mouse to calculate the same
coordinates as mentioned in the previous section.  The
two sets of the calculation are different if there is a
sensor, which outputs an erred length information.

   The 4-sensors version 3-D mouse of this paper can
calculate the z coordinates by the two equations (the
equation (4) that uses the three sensors and the equation
(9) that uses the four sensors).

   Expression (10) is derived from these two equations.

1234123 zzd −= (10)

   This expression does not represent the true error.
However, the value of this expression becomes 0 if there
is no error.  Therefore, it can be used as an evaluation
function of the error.

4.4 Auto-error-collection function
   Auto-error-collection algorithms are proposed.

4.4.1 Normalization
   This algorithm is to re-calculate string lengths, based
on the output coordinates, when the value of expression
(10) exceeds a threshold.  This algorithm is called
"Normalization".

   Coordinates calculated from the equations (7), (8) and
(9) are used for the re-calculated string lengths.  The
lengths of the strings are replaced by equation (11) as a
result.

( ) ( ) ( )2
1234

2
1234

2
1234 nnnn zzyyxxl −+−+−=       (11)

( )4,3,2,1=n

   When Normalization is applied, the value of
expression (10) becomes 0.  However, when the pointer
is moved, the value of expression (10) increases again if
the error still remains in coordinates.  At this time, the
value of expression (10) is almost directly proportional
to the coordinate error.  It is also almost directly
proportional to the distance of the pointer movement
from the position where previous Normalization was
applied.

   When the coordinate error is larger than the threshold,
Normalization is applied once again, even if the pointer
moves only short distance.  Repeating Normalization
several times, the error becomes smaller.  When the
coordinate error is small, long distance movement of the
pointer is forgiven for next Normalization.
Consequently, the error stays in a small value.

   In the case that the coordinate error unfortunately
increases after Normalization is applied, Normalization
will be applied one after another in a short time until the
error decreases.  As the results, the coordinate error
decreases in a short time.

   The threshold is assumed to be 0.05(1cm) for the 4-
sensors version 3-D mouse.

4.4.2 Limiter
   This algorithm is to limit output coordinates within a
range.  If the calculated coordinates go beyond the
range, it is reset to the range limitation.  This algorithm
called "Limiter".

   Results of Normalization process are converged when
the coordinate error is small.  However, when the
coordinate error is large, the pointer coordinates become
unstable, jumping to far positions in Normalization
process, and there is a possibility of divergence.

   The range is assumed to be on a circumscribed
hexahedron to the regular tetrahedron, which consists of



the four pinholes for the 4-sensors version 3-D mouse.

4.5 Comparison of Algorithms

Fig. 7 4-sensors version 3-D mouse

   Figure 7 shows the 4-sensors version 3-D mouse.  The
outputs of the rotation sensors were recorded directly by
actually using the 3-D mouse for the comparative study
of each algorithm.  Each algorithm was evaluated by
simulation based on the record.

   The algorithms used for the comparison are as follows.

3 sensors:
   The coordinate values are calculated

by equations (2) (3) (4).

4 sensors:
   The coordinate values are calculated

by equations (7) (8) (9).

N. 4 sensors:
   4 sensors with Normalization.

NL. 4 sensors:
   4 sensors with Normalization and Limiter.
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Fig. 8 3-D Error (with initial calibration)

4.5.1 Simulation with Initial Calibration
   Figure 8 shows the simulation result with initial
calibration.

   The error accumulates in the “3 sensors” algorithm.
The error accumulates little by little in the “4 sensors”
algorithm.  Accumulation is not seen in the “N. 4
sensors” and “NL. 4 sensors” algorithms.

4.5.2 Simulation without Initial Calibration

4.5.2.1 Small Initial Error
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Fig. 9 3-D Error
(without calibration, initial error small)
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Fig. 10 3-D Error
(without calibration, initial error large)

   Figure 9 shows the simulation results in the condition
that an initial error is small without initial calibration.

   The error is accumulated in the “4 sensors” algorithm.
However, the accumulation of the error is not seen in the
“N. 4 sensors” algorithm and in the “NL. 4 sensors”



algorithm.

4.5.2.2 Large Initial Error
   Figure 10 shows the simulation results in the condition
that an initial error is large without initial calibration.

   The error is accumulated in the “4 sensors” algorithm.
The error rapidly becomes small within one minute in
the “NL. 4 sensors” algorithm.  The error become small
within three minutes, though the error increases once, in
the “N. 4 sensors” algorithm.

4.6 Summary of Algorithms
   The simulation results are summarized.

4.6.1 4 sensors
   The error is small compared with the error of the “3
sensors” algorithm.  However, the error accumulates.
Calibration is necessary.

4.6.2 N. 4 sensors
   When an initial error is large, it takes few minutes until
the error becomes small.  However, the error does not
accumulate.

4.6.3 NL. 4 sensors
   The result is better compared with the result in the
“N.4 sensors” algorithm, when the initial error is large.
The error does not worsen against the time.  Adopting
this algorithm, initial and later-on calibrations will be
unnecessary.

5. Evaluation Experiment
   The evaluation experiment was performed with three
3-D mice.  They are the 3-sensors version 3-D mouse,
the 4-sensors version 3-D mouse, and Polhemus
ISOTRACK II.

   Subjects who evaluated the 3-D mice are ten people.

5.1 Evaluation Method

3-D cursor

Cube (Target)

Fig. 11 Evaluation Method

   A virtual space is created in the personal computer
display by using the liquid crystal shutter glasses.  A 3-D
cursor, which synchronizes with a 3-D mouse, is

displayed in the virtual space.
   A cube, which is the target, is displayed there.  The
cube is moved to a new position at random when a 3-D
cursor hit the target as shown in Figure 11.  The
evaluations are made by numbers of hit counts within a
certain time.
   For the 3-sensors version 3-D mouse, the subjects had
to make initial calibrations.  The 4-sensors version 3-D
mouse has the “NL. 4 sensors” algorithm which is the
automatic error correction without calibration.

5.2 Experiment Results

Fig. 12 Screen of the Evaluation Experiment
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Fig. 13 Result of the Evaluation Experiment

   Figure 12 shows the screen of the evaluation
experiment.  After having had the subjects practiced,
they performed the evaluation experiment for three
minutes per one mouse.  The cubic size was reduced
every one minute.  Figure 13 shows the results of the
evaluation experiment.  There were a lot of hit counts for
the 4-sensors version 3-D mouse.

5.3 Result of the Questionnaire
   Figure 14 shows the results of the questionnaire
carried out at the same time as the evaluation



experiment.  This questionnaire asked for answers by
choosing one of five evaluation levels for each item 1-5.
Figure 14 shows the average scores for each item.

   The 3-sensors version 3-D mouse is inferior to
ISOTRACKII in all the points.  However, the 4-sensors
version 3-D mouse is improved in all the aspects.

5.4 Summary of the Evaluation Experiment
   The user should float the arm in the air, when using
any 3-D mouse.  Therefore, user's tiredness is larger than
for the 2-D mouse.

   The 3-sensors version 3-D mouse loads all the hanging
weights on the pointer.  Therefore, the load on the arm is
large and user's tiredness is also large.  The 4-sensors
version 3-D mouse pulls the pointer from the upper
board.  The pointer does not drop even if the hand does
not support the pointer, because the pointer has tendency
to go to the center.  In ISOTRACK II, the pointer drops
when the hand does not support the pointer as in the case
of the 3-sensors version 3-D mouse.  Moreover, it is
difficult to indicate a small object by moving the pointer
in the empty air.
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Fig. 14 Result of the Questionnaire

6. Conclusion
  In this paper, the simple structured and low-cost 3-D
mouse and the auto-error-collection function algorithm
are proposed.

   Existing 3-D mice are very expensive and far more
complex than usual 2-D mice are.  In this paper, the
simple 3-D mouse, which uses a part of 2-D mouse's
mechanism for low-cost, is proposed.  The 3-sensors
version 3-D mouse has the problem that initial
calibration and later-on calibrations are necessary,
because the coordinate error accumulate against the
time.  However, the 4-sensors version 3-D mouse has
achieved Auto-error-collection function and requires no

calibrations.

   It will be possible to improve the hardware to prevent
slipping in the future and reduce the coordinate error.

   However, the 4-sensors 3-D mouse, which needs no
initial calibration and gives easy operation, will keep
superior to the 3-sensors 3-D mouse, etc.
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