
Declarative Behaviors for Virtual Creatures
Philippe Codognet

University of Paris 6 and INRIA
LIP6, case 169, 8, rue du Capitaine Scott, 75 015 PARIS, FRANCE

Philippe.Codognet@lip6.fr

Abstract

We present a high-level language for describing
behaviors of autonomous agents in 3D virtual worlds. In
order to describe agent behaviors, we have designed
VRCC, a concurrent constraint programming language
integrated in the VRML (Virtual Reality Modeling
Language) environment. The basis of this declarative
language is the notion of constraint, and it is based on
the Timed Concurrent Constraint framework, which
integrates a discrete notion of time adequate for
animation systems such as VRML. We illustrate this
approach by some simple examples of virtual creatures
that can autonomously move in the 3D world, and we
describe some simple behaviors derived from
biologically-inspired models of navigation.

Key words: Virtual Reality, VRML, Autonomous
Behaviors, Artificial Life, Constraints.

1. Introduction

Our aim is to design a high-level language for describing
behaviors of autonomous agents in 3D virtual worlds.
The basis of this declarative language is the notion of
constraint, which can be used to enforce hidden relations
between agents and/or between an agent and the
environment (e.g. minimal distances, non-collision, etc)
or general integrity rules (such as gravity) and thus make
sure that the simulated virtual world does not depart too
much from our real one.

A constraint is simply a logical relation between several
unknowns, these unknowns being variables that should
take values in some specific domain of interest. A
constraint thus restricts the degrees of freedom (possible
values) the unknowns can take; it represents some partial
information relating the objects of interest. The whole
idea of constraint solving is to start reasoning and
computing with partial information, ensuring the overall
consistency and reducing as much as possible the
domains of the unknowns. This is in sharp contrast to
classical programming (either imperative, object-
oriented or functional) where one only computes with
complete values and has no support for propagating
partial information. Constraint Programming has proved
to be very successful for Problem Solving and

Combinatorial Optimization applications, by combining
the declarativity of a high-level language with the
efficiency of specialized algorithms for constraint
solving, borrowing sometimes techniques from
Operations Research and Numerical Analysis [14]. We
plan to use the power of constraint solving techniques,
for developing complex and efficient planning modules
for autonomous agents integrated in 3D virtual
environments.

VRML (Virtual Reality Modeling Language) has
become since a few years a de facto standard for
publishing 3D scenes on the Web. It is a very interesting
model because of its generality and versatility, see for
instance [4] or [7] for a good introduction. Many plug-
ins for Web browsers now exist for interpreting the
VRML file format, and there is moreover an ISO
normalisation of this language. However, VRML is
more than a mere specification format for 3D scenes
because one can specify complete virtual worlds in
which the user can wander at will and where it can
interact with 3D objects. More importantly, there is
currently a growing interest in developing support for
shared virtual worlds, which is putting the (virtual)
reality of 3D digital communities at hand.

Nevertheless, most of these shared virtual worlds suffer
from an important drawback, namely they are not lively
or interactive enough. As interaction is usually limited to
chat with other users co-located in the same virtual
world, the interest of a site depends more on the number
of other people « visiting » it than on the originality or
theme of its design. We will therefore consider in this
paper the problem of “populating” such worlds with
virtual agents representing life-like creatures which
could autonomously navigate and react to their
environment, and also possibly interact with users. As a
first step in that direction, we will consider agents with
simple reactive behaviors inspired from research in the
field of Artificial Life and robotics. For this purpose, we
need to design a language in which such behaviors can
be stated, and this language should be both simple,
declarative and powerful in order to make it possible to
express a great variety of operations. We propose a
framework based on VRCC, an integration within the
VRML model of a timed Concurrent Constraint
language. Moreover, in order to design autonomous, life-

ICAT '99

like 3D creatures that can autonomously move in the
virtual world, we propose some simple behaviors derived
from biologically-inspired models of navigation. A key
point here is to consider situated agents, reactive to an
unknown and constantly changing environment. The first
example is motion planning for a virtual robot in a maze.
The idea is to go to a point identified as a goal and to
avoid obstacles. The agent is reactive and can thus take
into account moving obstacles and goal. Secondly, we
investigate exploration guided by a stimulus (e.g. smell)
towards a source (e.g. food), location of which is
unknown, using either temporal difference or spatial
difference methods.

2. A Declarative Language

In computer graphics and animation systems, the
formalism which is the most commonly used to represent
behaviors is the finite state automaton (FSA). Many
variants exist, such as the PatNets of [2], the
Hierarchical FSA [6] or the parallel FSA [5]. Our
approach rather considers that for representing complex
life-like behaviors, one should not be restricted to some
extended FSA formalism but indeed needs the power of
a complete programming language. The ability to
handle states, variables, parameters, or recursion is
indeed crucial. We have thus investigated the formalism
of Concurrent Constraint Programming (CC) which is
bot declarative, high-level and yet simple. Concurrent
Constraint Programming (CC) has been proposed a few
years ago [12] as a new programming paradigm that can
be seen as the merging and generalization of Constraint
Logic Programming and Concurrent Logic Languages. It
makes it possible to combine both approaches, that is, on
the one hand, the ability to reason (symbolically) and to
compute (numerically) on specific domains (constraints)
and, on the other hand, the possibility to have a dynamic
data-driven control of the execution flow (concurrency).
The fundamental idea of Concurrent Constraint
Languages is the use of constraints for defining the
synchronization and control mechanisms. Therefore,
several agents could communicate and synchronize
through a global store where all information is added in a
monotonic way through the time line. However such a
framework, if well-suited for problem-solving or
concurrent computing is not suited

2.1 Timed Concurrent Constraint language

The Timed CC (TCC) extension of classical CC
languages, described in [13] is the framework needed for
integration within a 3D animation system such as
VRML. It basically introduces a notion of discrete time
that is compatible with that of VRML (time sensors).
The basic idea of TCC is that of synchronous
programming exemplified by languages such as Esterel
[3] : programs run and respond to signals intantaneously.
Time is decomposed in discrete time points, generated
by clocks outside the system and programs are executed
between time-points. Program execution takes « zero
time », that is, is neglectible w.r.t. the time clocking the

overall system. Surprisingly as it seems, this scheme,
called the perfect synchrony hypothesis, is nevertheless
adequate for modeling real-time systems and a language
such as Esterel is indeed used to program low-level real-
time controllers. In TCC, the concurrent computation of
running agents is started at each time point and continues
until quiescence of the computation. Control is then
given back until another signal (time point) is generated.

2.2 Syntax

At each time point, concurrent agents are running
simultaneously until quiescence and then the program
moves to the next time-point. Basic actions performed
by the agents are either posting a constraint to a shared
store (Tell operation), suspend until some constraint is
entailed by the store (Ask operation), perform some
method (Call operation), or post an action to be
performed at the next time-point (Next operation). The
syntax of these operations, in the classical algebraic CC
style, is given below. We will use letters X,Y,… to
denote program variables, letter A to denote an action
and letter c to denote any constraint.

tell(c) constraint addition

ask(c) => A synchronization

A , A concurrent execution

X:A + Y:A max-indeterminism

p(X,Y,...) agent creation

∃ X. A local variables

next (A) temporal construct

goal(c) goal constraint

With respect to classical TCC, there are two new
operations. Goal constraints are relations that the agent
should try to achieve in the following time-steps if they
are not satisfied at the current time-point. One thus need
for each such constraint some iterative-repair method
that should eventually converge to a satisfiable state.
Max-indeterminism consists in choosing among two
couples (variable,agent) to run the agent whose variable
has maximal value (if any, otherwise an agent is
randomly chosen). Obviously such a construct extend
usual (blind) indeterminism and it is trivially extended to
a Σ construct ranging over a finite set of agents.

2.3 Constraint Solving

The use of constraints as goals in order to describe
behaviors is a simple and declarative way to specify
animation of virtual creatures. Several goal constraints
can be stated concurrently (e.g. non-collision with
obstacles together with minimal distance w.r.t. a specific

goal area) and solved together by the constraint solver.
However this somewhat differs from classical constraint
satisfaction techniques, where the constraint solver is in
charge of finding an assignment of the variables of the
problem in order to achieve a global solution. Indeed the
outcome of a behavior could be considered as a sequence
of actions that will eventually lead to the satisfaction of
the goal, but not within a single time-step. Thus the
reactive nature of behaviors naturally leads to consider
reactive constraint solving techniques instead of classical
(transformational) ones. We propose to use "iterative
repair" methods in order iteratively select actions that
will eventually lead to the satisfaction of the goal
constraints. We have therefore developed a new solving
method called “adaptive search”, derived from local
search techniques [1] [17].

One has to observe that, with respect to a general
planning module, we restrict goals to be within the
constraint domain proposed by the host language. It will
thus be in general either numeric and symbolic
constraints over finite domains, or arithmetic interval
constraint over continuous domains, which are the two
main domains for which efficient constraint solving
techniques exist today [14].

2.4 VRCC

Let us consider how to integrate the TCC framework
within the VRML model.

VRML is a very interesting model because of its
generality and versatility, which grew out of SGI's
format for storing 3D scenes in Open Inventor, and was
thus primarily design to describe static 3D objects and
scenes. VRML is based on the classical scene graph
architecture for representing and grouping the 3D
objects. Scene can be constructed from built-in nodes
(boxes, spheres, cone, or any polygon-shaped form) and
new user-defined nodes can be also constructed using
PROTO nodes. VRML provides basic light sources and
performs basic scene illumination calculations. VRML
version 2.0 [16] introduced primitives for animation and
user interaction, based on a simple event model: each
object in the virtual world can receive input events and
send output events, these events are communicated
between objects through predefined routes, completely
independent of the structure of the scene graph. A
VRML world basically consists of nodes, describing
various geometries, in the scene graph and of a series of
routes between objects. An important feature is the
possibility to have script nodes, with associated Java or
JavaScript programs, for treating and modifying events.

VRML is based on a discrete time model, with special
nodes called time sensors driving the animation.

The main idea for integrating TCC within the VRML
environment is to consider that VRML should clock the
TCC system, i.e. that some TimeSensor node in VRML
should send its clock ticks (events) for generating time

points in the TCC part. This means that TCC
computations should run between two events generated
by a VRML time sensor node, that is, two frames drawn
by the browser. The basic assumption here is that time is
external and driven by VRML; there is no control over
time in Timed CC. Concurrent computation of running
agents is started at each time point (generated by
VRML) and until quiescence of the computation.
Control is then given back to VRML when quiescence is
achieved (that is, no agent can further be reduced), and
so on so forth.

The first interesting property of VRCC computations is
given by the underlying concurrency of TCC, both
between agents and inside a single agent. Indeed, one
can consider an agent composed of different sub-parts,
with their own methods to perform animation, but which
are linked together by some structural constraints.

The second property of the execution model is reactivity:
changes in VRML world are taken into account at each
time-point and therefore behaviors (TCC computations)
can react in real-time, or more precisely at the next time-
point. One should therefore take care of avoiding to
slowdown the system by heavy computations in the TCC
part.

The third property is compositionality : because one has
logical variables and constraints for programming
behaviors in TCC, constraints can be accumulated by
several agents (or sub-agents) to compositionally
construct a single behavior. Several constraints for the
same agent will be treated together in order to propose a
global solution.

Last but not least, the integration of constraint in the
behavior language makes it possible to express problem
solving capabilities: for instance a planner module, or
scheduling of tasks, are easy to implement in a
constraint-based language.

3. A Classical Example: N Queens as
Intelligent Agents

Let us take a well-known example in order to understand
the behavior of intelligent agents in VRCC.

We will consider the perennial N Queens problem which
consists in placing 8 queens on a 8x8 chessboard in such
a manner that no two queens attack each other. Only one
kind of constraint will be used to prohibit two queens to
be on the same row or diagonal : the disequation.
Considering that there should be only one queen on each
row, we will note Qi the queen on the ith row, and
consider that the value of this variables is the number of
the column on which it stands. We shall thus have for
each couple of variables (queens) Qi and Qj :

Qj ≠ Qi. , Qj ≠ Qi + j – i , Qj ≠ Qi - j + i

Although very classical in the constraint programming

community, this problem is quite artificial and there
exists many methods to efficiently solve it. We use it
only to illustrate the idea of hidden relations (the above
mentioned disequations) constraining agents to move in
order achieve a coherent state and we will focus on one
particular point : how to express the problem solving
aspects as a multi-agent system where each queen is an
autonomous agent moving on the chessboard and
cooperating with others to find a solution. This is close
in spirit to the work of [18], but will indeed give rise to a
quite different model. Another aspect is important as we
want with to depict visually, as a 3D world, the solving
process : when moving from one partial solution to
another we are limited to physically feasible moves, that
is, we cannot have queens randomly jumping from place
to place, but only continuous moves from one position to
another. The following figures depicts the initial and
final states of the problem.

Fig 1. Initial state

Fig 2. Final state

4. Biologically-inspired creatures

We have experimented with less trivial examples of
autonomous agents, adapting from biologically-inspired
models of navigation. There is currently a growing
interest for such models both in the Artificial Life and
the robotics community, as exemplified for instance by
[11] or [15] which provide excellent surveys of recent
researches.

4.1 Obstacle Avoidance

Our first example will be motion planning for a virtual
robot in a room filled up with various obstacle, see
figure 3 for a snapshot of the initial configuration of this
problem. The idea is to go to a point identified as a goal
(the psychedelic sphere in the bottom right of the screen)
and to avoid the brick-textured obstacles.

Fig. 3. Obstacle avoidance configuration

Let us remark however, that this example is nevertheless
a complex robot navigation problem with moving target
goal and with moving obstacles, because both could be
interactively dragged by the user in real-time. The agent
is thus reactive and has to take any modification of the
environment or target goal position into account.

In this example avoidance constraints with respect to
obstacles are used, in conjunction with a minimal
distance constraint between the current position of the
creature and that of the goal.

Fig. 4. Trajectory of the agent

Fig. 5. Another configuration

Fig. 6. Another Trajectory

4.2 Stimulus-driven Search

Biologists usually consider that the navigation system of
small animals (rats and mice, etc) can be decomposed in
two subsystems : one based on maps (called the locale
system, as it is based on the recognition of locations
linked in a graph-like manner), and the other based on
routes (called the taxon system, for behavioral
orientation). There seems to be evidences that the
hippocampus is used to store the cognitive map for the
locale system, cf. [10]. We will here only consider an
agent with a very limited intelligence building no
cognitive map but using only the taxon system for route
navigation. The second example that we will consider is
indeed an extension of the first one, where we will not
give to the agent the location of the goal but rather use a
exploration guided by a stimulus (e.g. smell) towards the
goal (e.g. food), location of which is unknown. This
exploration will be performed by using two different
methods : temporal difference or spatial difference. The
temporal difference method consists in considering a
single sensor (e.g. the nose) and checking at every time-
point the intensity of the stimulus. If the stimulus is
increasing, then the agent continues in the same direction,
otherwise the direction is changed randomly and so on
so forth. This is exemplified for instance by the
chemotaxis (reaction to a chemical stimulus) of the
Caenorabditis Elegans, a small soil nemapode [9].
Therefore the only constraint here is non-collision, that
is, enforcing some minimal distance with respect to
obstacles. However the creature will also have an
additional operational (programmed) behavior that will
be to check the input stimulus on its sensor at each time-
step and to change direction if necessary. Again, as in the
previous obstacle avoidance example, the source of the
stimulus and the obstacle can be moved interactively in
real-time and the agent has to react accordingly.

Figure 7 and 8 depicts the top and side views of the
initial setting. Observe that the corridor between the two
obstacles is not large enough for the creature to pass
through and thus a detour will be needed. The source of
the stimulus (“smell”) is the cake on the right-hand side.

Fig. 7. Top view of initial configuration

Fig. 8. side view of initial configuration

The resulting trajectories of the creature on two different
runs of this experiment are depicted on figure 9 and 10,
showing that the agent performs not so bad, i.e. it
eventually reach the source of the stimulus, although it
does not perform a direct trajectory and might wander in
some irrelevant regions of the environment.

Fig 9. Temporal difference method (1)

Fig 10. Temporal difference method (2)

A more efficient strategy is possible by using the spatial
differences method. It requires to have two identical
sensing organs, placed at different slightly positions on
the agent (cf. the two ears). The basic idea is to favor
motion in the direction of the sensor that receive the
most important stimulus, as in the well-known sensory-
motor coupling in robotics. This behavior gives very
good results, and the agents goes directly towards the
source of the stimulus, see the corresponding trajectory
depicted on figure 11.

More complex strategies are possible, e.g. by
considering more sensors or by combining the temporal
difference of several sensors, but they are not really
more effective than the basic spatial difference method
[8].

6. Conclusion

We have presented a high-level language for describing
behaviors of autonomous agents in virtual environments.
We use VRML for the 3D visualization part and a timed
concurrent constraint programming (TCC) for agent

programming. This framework seems well-suited for
animating simple 3D autonomous creatures. Interesting
behaviors such as obstacle avoidance or stimulus-driven
exploration towards a source (gradient-following) are
easily expressible in this system and opens up for a
variety of biologically-inspired behaviors.

References
1. E. Aarts and J. Lenstra (Eds). Local Search in

Combinatorial Optimization, Wiley, 1997.

2. N. Badler. Real-time virtual humans, Pacific
Graphics 1997.

3. G. Berry and G. Gonthier. The Esterel Programming
Language : Design, Semantics and Implementation,
Science of Computer Programming, vol. 19 no. 2,
1992

4. R. Carey and G. Bell. The Annoted VRML 2.0
Reference Manual, Addison–Wesley, 1997.

5. S. Donikian. Multilevel Modeling of Virtual Urban
Environments for Behavioural Animation. Proc.
Computer Animation 97, Genève, Suisse, IEEE
Press 1997.

6. Y. Koga, C. Becker, M. Svihura, and D. Zhu. On
intelligent Digital Actors. Proc. Imagina 98,
Monaco, 1998.

7. R. Lea and K. Matsuda. Java for 3D and VRML
Worlds, New Riders, 1996.

8. W. Leow. Computational Studies of Exploration by
Smell, in [11].

9. T. Morse, T. Ferrée and S. Lockery. Robust Spatial
Navigation in a Robot Inspired by Chemotaxis in C.
Elegans, in [11].

10. J. O’Keefe and L. Nadel. The hippocampus as a
cognitive map, Clarendon Press 1978.

11. R. Pfeifer and R. A. Brooks (Eds.). Special issue on
Practice and Future of Autonomous Agents,
Robotics and autonomous systems, vol. 20, no. 2-4,
June 97.

12. V. Saraswat. Concurrent Constraint Programming,
MIT Press, 1993.

13. V. Saraswat, R. Jagadeesan and V. Gupta. Timed
Default Concurrent Constraint Programming,
Journal of Symbolic Computing (1996) 22, pp 475-
520.

14. V. Saraswat, P. Van Hentenryck, P. Codognet et al.
Constraint Programming, ACM Computing Surveys
vol. 28 no. 4, December 1996.

15. N. Schmajuck (Ed.). Special issue on Biologically-
inspired models of Navigation, Adaptive Behavior,
vol. 6, no. 3/4, Winter/Spring 98.

16. The VRML Architecture group. The virtual reality
modeling language specification, version 2.0,
August 1996. Available at
http://vag.vrml.org/VRML2.0/FINAL

17. J. P. Walser. Integer Optimization by Local Search :
A Domain-Independent Approach, LNAI 1637,
Springer Verlag 1999.

18. M. Yokoo and T. Ishida, Search Algorithms for
Agents, In: Multiagent Systems, G. Weiss (ed.), MIT
Press 1999.

.

