

Terrain Rendering With View-Dependent LOD
Caching

Ming Fan Ueng Jung Hong Chuang
Department of Computer Science and Information Engineering

National Chiao Tung University
Hsinchu, Taiwan, ROC

{mfueng, jhchuang}@csie.nctu.edu.tw

Abstract
Real-time and smooth rendering of a large-scale terrain
data has been a challenging problem. In this paper, we
propose a geometrically continuous view-dependent
level-of-detail (LOD) modeling aiming to speed up the
generation of terrain mesh and in the meantime achieve a
satisfied image quality. The terrain data is subdivided
into blocks and each of which will possesses its own
LOD mesh that is dynamically determined according to
the viewing parameters. Between two adjacent blocks, a
dike structure is proposed that aims to provide a smooth
blending between two meshes of different levels of
detail, and hence remove cracks that usually occur in
previous methods. We also propose a mechanism in
LOD modeling that caches the LOD of a block for the
possible reuse in the following frames after it is
generated. Since LOD selection and generation in
general requires computation on each node level, such a
LOD caching can potentially contribute a considerable
saving of computation time.

Key words: LOD, Terrain rendering, Caching

1. Introduction
A rendering system is a kernel for visual simulation and
virtual reality applications. In such applications, we are
very much concerned about the high-performance and
real-time visual capability. This leads to the quest of high
resolution, low latency, and high but constant frame rate
in the visual display. In the past years, many techniques
have been proposed. Among them, we mention fast view
and back-facing culling, visibility culling, level-of-detail
modeling, hybrid rendering, and image-based rendering.

As a special case of the general rendering system, a
terrain rendering system usually takes a terrain grid with
high-field values as input, and has found applications in
flight simulations, tank simulations, and other GIS
applications. Most applications usually cover a very
large area, and hence require a large-sized terrain grid.
This results in too many polygons to be efficiently
rendered by the current hardware. Level-of-detail (LOD)
modeling has been proven to be a very effective

technique for reducing the number of polygons.

This paper describes techniques for removing cracks that
occur between two adjacent blocks of different LOD, and
for caching LOD of a block and possible reuse in the
following frames. In the following sections, we review
previous work, and we describe the dike structure for
blending two different LOD models and the cache
mechanism of LOD model, and finally we show several
experimental results.

2. Related Work
LOD modeling techniques for terrain grid can be
classified into two major mesh structures: regular square
grid (RSG)[2,3,6,8] and triangulated irregular network
(TIN) [4,7,9].

In RSG approach, terrain grid is usually subdivided into
blocks to avoid global propagation in dependency
checking during LOD construction [2,3,6,8]. Such a
block subdivision also provides a good support in the
view culling and paging mechanism. In [6], a quadtree
structure is used for each block. The quadtree structure is
explicitly and hierarchically constructed based on a
regular and symmetric triangulation of the grid vertices.
This hierarchical structure allows efficient derivation of a
LOD model for new viewing parameters. During view
dependent navigation, the delta segment projection for a
node will be tested to see if the node should be simplified
or refined. A block-LOD-reduction scheme is also used
to reduce the LOD construction time by alleviating the
testing at a huge number of nodes and allowing LOD be
determined on the block basis. RSG approach has
several advantages. For examples, Delaunay trianglation
can be easily maintained for view-dependent selective
refinement, switching between levels can be efficient and
simple, and fast triangle strip can be easily constructed.
It, however, produces for each block a mesh that is
usually not optimal, and has cracks between two adjacent
blocks of different LOD resolutions..

In TIN approach, vertices can be added and removed, or
connection can be modified in order to obtain a mesh
that is better approximating the original shape [4,7,9]. As
a result, a reduced mesh with better approximation; but

less polygons is generally possible. Comparing to RSG
approach, this approach usually requires more
computation time, is more troublesome to locally modify
a terrain model , and less efficient in performing collision
detection.

3. The Proposed Terrain Rendering System
3.1 Overview

The terrain rendering system we implemented takes the
RSG approach; that is, we take the terrain triangulation
as in [6]. As a preprocessing, we divide the terrain grid
into blocks with a dike between each pair of adjacent
blocks. In run-time, blocks are first tested for view-
volume culling for each new frame, and for each of those
blocks intersecting the view volume, we check to see if
its cached LOD can be reused in the new frame. That is,
the cached LOD can be reused if its projected error with
respect to the new viewpoint is within a pre-specified
error, or a new LOD should be re-generated if the test
fails. The test is block-based: rather than vertex-based,
and thus can be very efficient. After the LOD of all
blocks within the view volume are ready, we triangulate
the dikes such that the LOD models of different
resolutions can be smoothly blended.

3.2 Hierarchical Structures

Two hierarchical structures are proposed. A dependency
hierarchy is used to facilitate the run-time selective
refinement. Moreover, we construct a triangle tree in
such a way that triangle mesh can be efficiently derived
once terrain vertices are selected for the current LOD
without traversing terrain vertices one more time.

According to the triangulation rule in RSG approach, a
terrain of (2n+1)×(2n+1) can be simplified to 2n+1 levels;
as shown in Fig. 1 for n=2. A triangle tree is a binary tree
in which each node represents a triangle in the RSG
triangulation. The refinement on each triangle results in
two triangles, representing the children of the
corresponding parent node. Fig. 2 shows the triangle
trees for a 3×3 terrain grid.

Fig. 1. Levels of LOD model.

While performing the refinement, a triangle in the RSG
triangulation is subdivided into two triangles by adding a
vertex on the bottom edge of the triangle. We call the top
vertex of the original triangle is the mother or father
vertex of the newly added vertex. The order that a vertex
is selected for and added to the LOD model determines a
hierarchy among terrain vertices. Vertices that are new in
level 1 constitute the first level of the dependency
hierarchy, and vertices that are newly added to level l
form the l-th level of the dependency hierarchy. In the
hierarchy, each vertex is associated with a father and a
mother pointer pointing to its mother and father vertices.

Fig. 3(c) is the dependency hierarchy for a 5 × 5 terrain
grid shown in Fig. 3(a).

Fig. 2. Triangle binary tree.

(c) dependency hierarchy

Fig. 3. Dependency hierarchy.

3.3 Dynamic Selective-Refinement

In navigation phase, the dependency hierarchy is
traversed to derive the mesh of a desired resolution.

Simplif
ication

level2 level3 level1

Simplif
ication

Level l=1

Level l=3

Level l=2

T3

T6

T12 T13

T7

T14 T15

T2

T3
T6

T7

T4

T5

T8 T9

T10

T11

T12 T13

T14

T15

level2 level3 level1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a) Vertex index

id

mother

father

sibling

(b) Data structure for vertex

When a node is visited, we do screen-error test to see if
the projection of its height difference exceeds a pre-
specified tolerance. If so, the vertex is selected, and in
the meantime, its parent vertices are locked and selected
without the screen-error test.

Each vertex is associated with two more variables,
namely active and lock. The variable active is a
Boolean recoding the selection state of the vertex. The
variable active is TRUE when the vertex is selected, and
FALSE otherwise. The variable lock for a vertex v is an
integer recording the number of vertices that are children
of v and are either selected or locked. A nonnegative lock
means that v is locked, and a zero lock represents that v
is not locked.

Two operations are involved in selecting the vertex v.
Dependency operation switches the active variable of v
from FALSE to TRUE while unlocking operation does
oppositely. In dependency operation, the variable lock of
parent vertices of v must be increased by 1. In case v has
lock value 0, parent vertices of v must repeatedly
perform dependency operation. In unlocking operation,
the variable lock of parent vertices of v must be
decreased by 1. In case v has lock value 1, parent
vertices of v must repeatedly perform unlocking
operation.

The dependency hierarchy is traversed in a bottom-up
fashion. If a vertex is locked, its corresponding triangles
are put into the display list. If a vertex is not locked and
passes the screen-error test, the active variable becomes
FALSE and unlocking operation is performed, provided
that its active variable is TRUE. If a vertex is not locked
and fails to pass the screen-error test, its active variable
becomes TRUE and dependency operation is performed,
provided that its active variable is FALSE, and its
corresponding triangles are put into the display list.

4. Removing Cracks
A dike structure is proposed to remove cracks occurring
between two adjacent blocks of different LOD
resolutions. See Fig. 4 for illustration.

Fig. 4. Dike structure.

After LOD models are obtained for all blocks, we begin
to triangulate the dike area one by one without altering
the selection state of block’s boundary vertices. In our

implementation, each dike area is first completely
triangulated and then simplified based on edge
collapsing guided by the selection status of block’s
boundary vertices.

5. LOD Caching

The screen-error test mentioned in previous section takes
the projection of vertex’s height difference into account.
As shown in Fig. 5, the height difference of B, denoted as

Bδ , is defined as the deviation in z-direction from B to ∆
AEC.

Fig. 5. Height difference on a vertex.

Following the formula in [6], vertex v will pass the
screen-error test if

where e is the eye point, d is the view plane distance, λ is
the ratio of the unit length in world coordinate system
over the pixel size in the screen coordinate system, δis
the height difference on vertex v, andτ is a user-
specified error tolerance. The above formula can
be viewed differently to define a s called
allowable height difference of v as follow:

As a result, the screen-error test is equivalent to
testing if)(vallowablev e,δδ ≤ .

The LOD caching mechanism aims to cache the LOD of
a block for possible reuse in the following frames with
the requirement that the screen error is within a user-
specified tolerance. We first denote the projection bound
of the delta allowable height difference as s (in pixel
unit), and suppose that a cached LOD model can be
reused if, for a new viewpoint, the projected delta
allowable height difference of the LOD model is less
than or equal to s.

Consider a vertex iv , we have)(0 iallowable v,eδ and

D
G

A

B

C

E

F

H

I

δB

() ()()
() () ()()

2
2222

22222
2
c),(τ

δλ
δ ≤

−+−+−

−+−
=

zzyyxx

yyxx
reens

veveve

veved
ve

() () ()()
() ()()2222

22222
2),(

yyxx

zzyyxx
allowable veved

veveve
v

−+−

−+−+−⋅
=

λ
τ

δ e

)(1 iallowable v,eδ , respectively for viewpoints e0 and e1. By

replacing τ with s, we obtain the bound on delta
allowable height difference of iv with respect to e0 as
follows:

We then claim that the selection state of iv with respect
to e0 can be preserved while viewing from e1 is the delta
allowable height difference),,(10 iallowable veeδ∆ is

less than)(0 iv,eε , where)(10 iallowable v,e,eδ∆ is

)()(01 iallowableiallowable vv ,e,e δδ − . In such case, we

can show that preserving the selection state of iv results

in a projected height difference bounded by τ+s.

Next, we extend the preserving of vertex’s selection state
to the LOD caching of a block. For the LOD caching of a
block, we, in principle, need to check if

),(),,(010 iiallowable vv eee εδ <∆ for all iv in the
block. This is, however, very time consuming. Since

)(0 iv,eε becomes smaller when the distance between

iv and e0 gets smaller, it is reasonable to say that

)(0 iv,eε is larger than or equal to the minimum of

)(0 ltv,eε ,)(0 rtv,eε ,)(0 lbv,eε , and)(0 rbv,eε ,
provided that e0 and e1 are outside the block; see Fig. 6.

Fig. 6. Variation on tolerable height deviation.

6. Experimental Results

We have implemented the proposed scheme using C
language, OpenGL, and GLUT library. Experiments
have been performed using terrain data of Dan-Shoei
River. Results are obtained on a PC with Pentium III
660Mhz CPU, 128MB Ram, and GeForce 256 3D
graphics card.

The terrain data includes an area of 26,400m×26,400m,
and is divided into 20×20 blocks, each of which has 33×
33 grid vertices. A complete triangulation of this terrain
data has 868,488 triangles. We set up a navigation path
with height about 1,000m, 40 degrees for field of view,

and a display window of 800×800 pixels.

Table 1 depicts the performance of LOD caching
mechanism based on several different τ and different s
for eachτ . More detail analysis is shown in Table 2.
Using LOD caching, we have seen a 25% to 46% speed-
up in frame time and 92% to 98% speed-up in LOD
construction time. Note that the LOD models obtained
using LOD caching have less number in triangles,
ranging from 2.2% to 8.7% in our experiment. Our
experience shows that the change ranges from 3% to 4%
when s = 0.1τ. Figures 7, 8, and 9 show the performance
plots for variousτ.

τ(pixel) S (pixel)
Average
triangle
number

Average
LOD

generation
time

(ms/frame
)

Average
rendering

FPS

0.05 47,487 1.2 6.9

0.10 45,972 0.7 7.1 0.5

- 49,097 34.8 5.5

0.05 24,595 1.4 13.7

0.10 24,025 0.8 14.0

0.20 22,950 0.6 14.9
1.0

- 25,158 23.7 10.2

0.10 11,028 0.9 32.1

0.20 10,770 0.7 32.4 2.0

- 11,277 13.3 22.1

Table 1. Performance of LOD caching - 1.

Average LOD
generation time

τ(pixel)

S
(pixel)

Change
in

average
triangle
number

(a) Gain
factor on

LOD
generation

(b) Gain
factor on

frame
time

(due to
LOD

caching)

(c)
Average

gain
factor

on
frame
time

0.05 -3.3% 96.7% 90.1% 25.4%0.5
0.10 -6.4% 98.1% 83.2% 30.3%
0.05 -2.2% 94.3% 89.2% 34.1%
0.10 -4.5% 96.5% 84.8% 37.6%1.0

0.20 -8.8% 97.3% 74.5% 46.0%
0.10 -2.2% 92.9% 88.6% 45.5%2.0
0.20 -4.5% 94.5% 90.0% 46.7%

Table 2. Detail analysis on performance of LOD caching.

e0 e1

vlt

vrt

vrb

vlb

() () ()()
() ()()2

0
2

0

2
0

2
0

2
0

0)(
yiyxix

zizyiyxix
i

veved

veveves
v

−+−

−+−+−⋅
=

λ
ε ,e

Triangle number (£ n= 0.5)

30000

35000

40000

45000

50000

55000

60000

1 101 201 301 401 501 601 701 801 901

Frames

s=0.05 s=0.10 s=0

(a)
LOD construction time (£ n= 0.5)

0
5
10
15
20
25
30
35
40

1 101 201 301 401 501 601 701 801 901

Frames

(m
s)

s=0.05 s=0.1 s=0

(b)
Rendering frame rate (£ n= 0.5)

4

5

6

7

8

9

10

1 101 201 301 401 501 601 701 801 901

Frames

(F
PS

s=0.05 s=0.1 s=0

(c)
Fig. 7. Performance plot for τ= 0.5.

Triangle number (£ n= 1.0)

10000

15000

20000

25000

30000

35000

1 101 201 301 401 501 601 701 801 901

Frames

s=0.05 s=0.1 s=0.2 s=0

(a)

LOD construction time (£ n= 1.0)

0

5

10

15

20

25

30

1 101 201 301 401 501 601 701 801 901

Frames

(m
s)

s=0.05 s=0.1 s=0.2 s=0

(b)
Rendering frame rate (£ n= 1.0)

5

10

15

20

25

30

1 101 201 301 401 501 601 701 801 901

Frames

(F
PS

s=0.05 s=0.1 s=0.2 s=0

(c)
Fig. 8. Performance plot for τ= 1.0.

Triangle number (£ n= 2.0)

4000

6000

8000

10000

12000

14000

16000

18000

1 101 201 301 401 501 601 701 801 901

Frames

s=0.1 s=0.2 s=0

(a)
LOD construction time (£ n= 2.0)

0
2
4
6
8
10
12
14
16
18

1 101 201 301 401 501 601 701 801 901

Frames

(m
s)

s=0.1 s=0.2 s=0

(b)

Rendering frame rate (£ n= 0.5)

0
10
20
30
40
50
60
70
80

1 101 201 301 401 501 601 701 801 901

Frames

(F
PS

s=0.1 s=0.2 s=0

(c)
Fig. 9. Performance plot for τ= 2.0

To do a better examination on quality performance of the
proposed LOD caching mechanism, we count the number
of vertices that should be selected but are not selected
due to LOD caching; that is, those vertices that have
projected height difference exceeding τ ; but are not
selected. Table 3 depicts that, when s = 0.1 τ , the
percentage of those vertices is bounded by 2%. Figures
10 and 11 are two images obtained in navigating the
Dan-Shoei River.

Vertices:
should be

selected; but
not selected

 τ
(pixel)

S
(pixel)

Average
number

of
selected
vertices

Average
number %

0.05 23,731 374 1.5%
0.5

0.10 22,971 782 3.4%

0.05 12,239 94 0.7%

0.10 11,953 205 1.7%1.0

0.20 11,414 434 3.8%

0.10 5,425 35 0.6%
2.0

0.20 5,295 74 1.3%

Table 3. Quality performance of LOD caching.

Fig. 10. Terrain image of Dan-Shoei River.

Fig. 11. Another terrain image of Dan-Shoei River.

4. Concluding Remarks

We have presented a terrain rendering system in which a
dike structure and a LOD caching mechanism have been
proposed to, respectively, remove cracks usually
occurring in the boundary of adjacent blocks and speed
up the LOD selection by reusing previously constructed
LOD models. The experiments we have done revealed
that dike structure successfully blends two LOD models
of different resolution, and the LOD caching mechanism
is able to speed up the LOD construction by 92-98%, and
the frame time by 25-46%. Among future study plans, we
will focus on frame-time control and the integration of
hybrid rendering techniques into terrain rendering
systems.

References
1. M. D. Berg, and K. T. G. Dobrindt, “On Levels of

Detail in Terrains” Tech. Rep. UU-CS-1995-12,
Department of Computer Science, Utrecht University,
April 1995.

2. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. Mineev. “ROAMing
Terrain (Real-Time Optimally Adapting Meshes).”
Proceeding of IEEE Visualization `97.

3. C. S. Fahn and S. T. Wu. “The View-Dependent
Real-Time Rendering of Large-Scale Terrain in
Continuous Level of Detail.” In Proceeding II of
NCS99, Pages B374-B381.

4. R. J. Fowler and J. J. Little. “Automatic Extraction
of Irregular Network Digital Terrain Models.”
Computer Graphics (Proceeding of SIGGRAPH `79),
Vol. 13, No. 2, pages 199-207.

5. R. Klein and D. Cohen-Or. “Incremental View-
dependent Multiresolution Triangulation Terrain.”
Proceeding of Pacific Graphics, 1997.

6. P. Lindstrom, D. Koller, W. Ribarsky, W. Hodges,
L. Faust, and G. Turner. “Real-Time, Continuous
Level of Detail Rendering of Height Fields.” In
Proceeding of ACM SIGGRAPH `96.

7. H. Hoppe. “Smooth view-dependent level-of-detail
control and its application to terrain rendering.”
Proceeding of IEEE Visualization `98, October 1998,
pages 35-42.

8. R. Pajarola, “Large Scale Terrain Visualization
Using The Restricted Quadtree triangulation.”
Proceeding of IEEE Visualization `98.

9. M. F. Polis, and D. M. Mckeown. “Iterative TIN
Generation from Digital Elevation Models.” In
Proceeding of IEEE Conference on Computer Vision
and Pattern Recognition, June 16-18, 1992, pages 787-
790.

10. J. Shade, D. Lischinski, D. H. Salesin, T. DeRose
and J. Snyder. “Hierarchical Image Caching for
Accelerated Walkthroughs of Complex
Environments.” Proceeding of ACM SIGGRAPH `96,
pages 75-82.

