
Distributed Collaborative Virtual Environment:
PaulingWorld

Simon Su1, R. Bowen Loftin2, David T. Chen1, Yung-Chin Fang1, Ching-Yao Lin1
1Department of Computer Science

University of Houston
Houston, Texas, USA

2Virginia Modeling Analysis & Simulation Center
Old Dominion University

Suffolk, VA 23435

{ssu, chingyao}@cs.uh.edu, bloftin@odu.edu, dave@chen.net, yfang2@bayou.uh.edu

Abstract
This paper introduces Distributed PaulingWorld, a
Distributed Virtual Environment application that
supports collaborative visualization of molecular
structures among multiple users within the same virtual
environment. All the participants in the virtual
environment have the same level of interaction in the
application. In the application, a virtual menu that is
attached to the left hand of the user is used to
manipulate the molecule and the environment. The
user that has the virtual menu has total control of the
environment and the viewpoint of the users in the
virtual environment. However, the virtual menu can
also be transfer to another user in the virtual
environment. Only the user that has the menu can
chose to transfer the menu. At that point, the other
user, upon receiving the virtual menu, will have the
capability to manipulate the molecule and the virtual
environment. Users are represented by avatars to
indicate their location within the virtual environment.

Key words: Distributed Virtual Environment, Virtual
Reality, Responsive Workbench, Collaboration.

1. Introduction
An individual computer system can no longer provide
sufficient computing power to support the increasing
requirements and complexity required in creating a
realistic Virtual Reality application. Even on some
single user Virtual Reality applications, multiple
computer systems are required to create a Virtual
Reality application that looks accurate and behaves
realistically. Single user Virtual Reality applications
have benefited from distributing their sub-processes on
different processors to increase their performance. In a
Distributed Virtual Reality application, multiple
computer systems are used to accommodate multiple
users regardless of their locations as long as those
computer systems are networked. This communication
will provide collaborators with a tool to work together
without having to be physically present in the same
location.

PaulingWorld (PW) is a Virtual Reality (VR)

application that simulates and visualizes molecular
structures [4]. It also supports acceptable soft real-time
interaction and manipulation performance. PW uses
static local two-dimensional control widgets to interact
with molecular data. PW allows one user to examine
the structure of a molecule via five different
representations: ball-and-stick, vanderWaals’ spheres,
coded sticks, backbone, and icons that replace
repetitive structures. Figures 1 and 2 show snapshots
of the application using the vanderWaals’
representation and partially expanded icons that replace
the repetitive structures. The user is free to fly through
the virtual environment while examining the molecule
representation from different viewpoints. The
application also allows the user to scale, translate,
rotate, or attach the molecule to his hand to inspect the
molecule at different levels of details.

Distributed PaulingWorld (DPW) is a Distributed
Virtual Environment (DVE) application that allows
more than one distributed operator to interact with the
same molecular structure by sharing the same virtual
world. DPW allows collaborative visualization of a
molecular structure among distributed users. DPW
introduces a multi-user mode into PW described in the
previous paragraph.

PaulingWorld allows a single user to visualize and
investigate in detail the structure of the molecule.
However, if the user wants to conduct a collaborative
study with another person, the user will be limited by
the functionality provided by PaulingWorld. It will also
be impossible to share a finding with another person
since the user cannot take a snapshot of the view of
interest at that moment and share the findings with a
second person. DPW provide a perfect solution to the
collaboration problem in PaulingWorld by supporting
multiple users in the virtual environment. In addition to
provide support for multiple users, DPW can also bring
together users that are physically dispersed into the
same virtual environment without having the users to
travel to the same physical location.

2. Related work
Research laboratories funded by both the government

and private institutions have developed several
practical and promising Distributed Virtual Reality
applications [1][5][7][9][11][12][13][14][16][17].
Most Distributed Virtual Reality applications have
some common properties. They are comprised of
computer systems located at the same site or at
geographically distant sites that are networked together,
they use multiple processes, and they are used
simultaneously by multiple people. The users interact
with one another, and they are represented by an
abstract representation to notify each other of their
positions in the virtual environment. Un-Jae Sung et al
[15] outlined some of the general characteristics of a
DVE application. In general, DVE applications can be
classified into large-scaled and small-scaled
applications. A large-scaled DVE application may
consists of several hundred nodes or participants,
whereas a small-scaled DVE may consists as few as
two participants within the same virtual environment.

Stytz at the Air Force Institute of Technology has done
much work involving large-scaled DVE training
applications that can support hundreds of participants
in shared virtual environments [10]. The Synthetic
Battlebridge gathered information from both the
computer generated actors and human participants in
real time and rendered a 3D image of the battlespace
and its contents. This DVE application uses the
Distributed Interactive Simulation (DIS) protocol [2] to
manage its complex and active virtual environments.
The DIS protocol governs the communication between
hosts participating in the virtual environment.

Close Combat Tactical Trainer (CCTT) is another
large-scaled DVE joint US Army-Loral project [14].
CCTT is a US Army training program that will help
train ground combat tank and mechanized infantry
forces within a realistic virtual environment. This DVE
application also utilizes the DIS protocol to manage its
complex and real time virtual environment. The
simulator and individual workstations exchange data
about their state information with respect to the virtual
environment over the Fiber Distributed Data Interface
(FDDI) using the DIS protocol. This application can
support up to several hundreds of manned participants,
computer-generated forces, and simulated vehicles.

In a more recent work by C. R. Karr et al [5], Synthetic
Soldiers is a US military Joint Simulation System that
was intended to create a single distributed virtual
environment. The system is intended to provide joint
training for all four branches of the armed services. As
with most large-scaled DVE, Synthetic Soldiers also
employs DIS to manage the communication of the
hundreds of entities within the virtual environment.

Other than military research projects, most of the
research done by academic institutions can be classified
as small-scaled DVE. R. Bowen Loftin’s work on the
Hubble Space Telescope (HST) training project
demonstrated a cross continental collaborative training
in a shared virtual environment by astronauts in
Houston and Darmstadt, Germany [3]. The virtual
environment consists of a model of Space Shuttle
payload bay and the HST. In the application, the
training took the form of a simple extra vehicular
activity (EVA) simulation that enable two astronauts on
opposite sides of the Atlantic ocean to train within the
same virtual environment. During the training, the two
astronauts practiced the changeout of the HST’s Solar
Array Drive Electronics (SADE) and the real time hand
off of the SADE within the virtual environment. The
exchanging of state data was managed by IGD-
developed communication software, and the virtual
environment was rendered by NASA-developed
graphics software. An Integrated Services Digital
Network (ISDN) line was used to connect the sites
together. Since absolute synchronization of the
participants was required, no dead-reckoning
algorithms were used in the application. A duplicate
copy of the 3D environment database was also kept at
all participants site to minimize the network traffic to
the state change among the participants of the virtual
environment.

Leigh’s work in Collaborative Architectural Layout Via
Immersive Navigation (CALVIN) shows the use of a
DVE application to perform an architectural design and
collaborative visualization [6][7]. In this DVE
application, Leigh emphasized the use of
heterogeneous perspectives in viewing an architectural
design to aid in the design and the collaborative
visualization processes. With heterogeneous

Figure 1 vanderWaals’ Representation

Figure 2 Iconic Representation

perspectives, CALVIN also demonstrated the use of
virtual reality technology in the active design phase
rather than the just as a walkthrough of the finished
design.

Mourant’s work in the Distributed Driving Simulator
provided another example on a small-scaled DVE
application [11]. Distributed Driving Simulator
simulated the driving of a multiple driver within the
same virtual environment. As in the case of HST
training program, no dead-reckoning algorithms were
used since the state change of one driver must be
propagated immediately to the other driver to simulate
a real time driving simulation. To minimize the
network traffic, duplicate databases for the 3D
environment and vehicles were also stored at the
participants’ local site.

Concurrency control within the shared virtual
environment is also an important issue that needed to
be addressed in a DVE application. The Collaborative
Immersive Architecture layout (CIAO) paper described
how concurrent actions are coordinated in a multi-user
DVE application [15]. It achieved optimal response
and notification time without compromising
consistency through a new multicast-based, optimistic
concurrency control mechanism.

3. Hardware and Software Environments
DPW is currently implemented between sites that have
interactive workbenches. At each site, an SGI Onyx2
with multiple graphics channels drives a projector that
produces display on the workbench. Tracking of the
participants are accomplish by using Polhemus
FastrackTM each with a stylus and two other sources.
Both the user’s hands and the viewpoint are tracked at
interactive rates.

Although we chose workbench as the display device,
the application can easily be modified to use
homogeneous socket communication protocol to
display on a multiple-wall CAVETM display device or a
head mounted display device. The use of Polhemus
FastracksTMas the tracking device can also be replace
with Ascension’s Flock of Birds tracking device.
VrTool was the software toolkit used to develop this
application [8] (not to be confused with Vr-tools
developed by Christian Michelsen for NorskHydro).
Figure 3 shows the workbench setup that was used in
the application.

4. Application Design

4.1 Application Architecture
The DPW application is controlled by a main
VrController process that manages and synchronizes all
the states among the participants of the virtual
environment. In addition, all the processes on a
participant site are managed by their own local

VrController. The main VrController is responsible to
process and communicate with all the local
VrControllers running at the participant site. Figure 4
shows the connection between the local VrController
and all the processes at a participant site.

Each participant process in the virtual environment can
be divided into VrDevice, VrCollision, VrRenderer,
VrSound, and VrController. The local VrController
manages and synchronizes all other 5 processes of the
local participant in the virtual environment. VrDevice
is a process that is responsible for reading the raw data
from the hardware devices and pre-process the data
into the format that the application can use. VrCollision
is responsible for detecting any collision among the
objects that have been registered for collision within
the virtual environment. VrRenderer is responsible for
traversing through the scene graph that has been
continuously updated by the VrController and render
the object on the scene graph onto the display device.
VrSound is responsible for playing any sound even in
the virtual environment. The user application is the
process that actually implements all the features of
DPW. Commands that the user executes will be process
in this process and the state change is sent to
VrController to be updated accordingly.

DPW employs a distributed database model to sustain
the DVE. Every site retains a copy of all the models
used in the DVE. This replication allows the DPW to
be implemented over a regular Internet connection with
no dedicated network connectivity with acceptable lag.
Since all sites have copies of all the models, only the

Figure 3 Workhench and Polhemus Fastrack

Figure 4 Application Architecture

necessary state change information is propagated to the
sites. State changes lost due to communication error is
insignificant, since the actual state, not the relative
state, are transmitted to all the distributed
environments.

4.2 Collaboration Issues
All existing DVE applications allow certain degrees of
collaboration among distributed users. Distributed
users have been able to see and signal each other
through visual gestures in a virtual world [15]. Virtual
environments have been synchronized to render the
same content in all sites. State changes in one site are
propagated to the rest of the connected sites to refresh
all local state. One of the most powerful features of a
DVE application is the exchange of objects among
distributed users. It allows true collaboration among
distributed users [10]. However, most of the DVE
work supports a sole manipulator and passive observers
only. Allowing only one user to control the DVE
imposes a great limitation on the level of interaction
and collaboration.

Our system provides all users with an equivalent
interaction priority in the shared virtual environment.
This feature allows a more free and equal collaboration
capability for all distributed users to share their
opinions about certain objects in the DVE. At any
moment, one user can interact with the visualized data
by using the two-dimensional control widget while the
other distributed user can observe the manipulation
process. The current manipulator of the DVE can pass
the control widget to other user in the DVE. This
enables the receiving user to manipulate and interact
with the DVE. Only the user who has the control
widget in hand can transfer its control to other users in
the DVE.

During the transfer process, the controlling user
relinquishes the control to the other user in the virtual
environment. After the transfer command has been
issue, the controlling user’s application will send a
command to the other user’s application to activate the
virtual menu of that user. The other user’s application,
upon receiving the command, will attempt to turn on
the virtual menu of the user. If the virtual menu is
successfully turned on, the application will then send a
command to disable the controlling user’s virtual menu.

The disable command must be acknowledged by the
controlling user’s application. If the acknowledgment
was not received from the controlling user, the disable
command will be resent until an acknowledgment is
received. The protocol ensures that at least one user
will have a virtual menu on the left hand. This
guarantee is important because all interactions with the
application are accomplished through the virtual menu.
This protocol also guarantees that only one user can
have access to the virtual menu at any given time.

4.3 Viewpoint Control
After the initial testing of the prototype application, we
found that when distributed users were exchanging
opinions about an object, they were occasionally
discussing two different objects. This situation occurs
because every user has different viewpoints. To
eliminate this problem, we designed our system to
provide a feature that will give all users a coherent
viewpoint. The manipulator of the virtual environment
can synchronize all viewpoints to a temporarily
coherent viewpoint.

This methodology can guarantee that all distributed
users are observing and discussing exactly the same
object in the DVE. The controlling user can activate
temporarily coherent viewpoints and restore the
original viewpoints through the virtual menu. This
feature enables the user who has the virtual menu on
hand to show the other distributed users the viewpoint
of interest and guarantees that distributed users are
observing the object from the exact same viewpoint and
discussing about the same issue. However, the user
that has the control of the widget will also have to reset
the viewpoint to its original settings before
relinquishing the virtual menu to another user.

5. Future work and Conclusion
The current implementation of DPW supports two
simultaneous users. However there is no pre-
determined limitation of the number of simultaneous
users that DPW can support. The user process of DPW
can be easily modified to support more than two
simultaneous users. The limitation on the number of
users will depend only on the network bandwidth that is
available to support an acceptable real time interaction
among the distributed users.

Future development planned for this DVR application
includes the verification of the usefulness of the
features supported in DPW. We plan to run human
subject to determine the usefulness of the viewpoint
control and virtual menu transfer features.

DPW provides a homogenous collaborative working
environment for remotely located scientists to
cooperate designing a new drug, new gas ...etc. With
team members scattered all over the globe, remote
collaboration should substantially reduce the
turnaround time in the design phase. DPW can also be
use as a distance-learning tool. Both an instructor and
a student can be immersed in a virtual environment at
the same time to examine an object. The teacher can
illustrate the construction of a molecular structure in a
way never before possible to the trainee even in a
virtual world.

Acknowledgement
The first author would like to thank Dr. R. Bowen

Loftin for his support and guidance over the past years.

This material is based upon work supported in part by
the National Science Foundation under Grant No.
NEC95-55682, NASA grant NAG9-985, and funding
from the Institute of Somatic Sciences. Any opinions,
findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding
agencies.

Reference
1. A. Johnson, J. Leigh, and J. Costigan, “Multiway

tele-immersion at Supercomputing 97”, IEEE
Computer Graphics and Applications, pp 6-9,
(1998).

2. B. Blau, J. M. Moshell, and B . McDonald, “The
DIS (Distributed Interactive Simulation) Protocols
and Their Application to Virtual Environments,”
Proc. Of the Meckler VR 93 Conf, Mecklermedia
Press, Westport, Conn,. (1993).

3. Bowen R. Loftin, “Virtual Environment for
aerospace training,” Proceedings of WESCON 1994,
pp. 384-387, (1994).

4. C. Dede, M.C. Salzman, and R.B. Loftin,
“ScienceSpace: virtual realities for learning complex
and abstract scientific concepts,” Proceedings of
Virtual Reality Annual International Symposiom,
pp246-252, 271, (1996).

5. C. R. Karr, D. Reece, and R. Franceschini,
“Synthetic soldiers [military training simulator],”
IEEE Spectrum, pp39-45, (March 1997).

6. J. Leigh, A.E. Johnson, “CALVIN: an
immersimedia design environment utilizing
heterogeneous perspectives,” Proceedings of the
Third IEEE International Conference on Multimedia
Computing and System, pp. 20-23, (1996).

7. J. Leigh, A. E. Johnson, C. A. Vasilakis, and T. A.
DeFanti, “Multi-perspective collaborative design in
persistent networked virtual environments,”
Proceedings of the IEEE 1996 Virtual Reality
Annual International Symposium, pp. 253-260, 271-
2, (1996).

8. LinCom Corporation, VrTool User’s Guide and
VrTool Application Programmer’s Interface
Functions, LinCom Corporation, 1020 Bay Area
Blvd, Suite 200, Houston, TX 77058-2682, pp. 196-
201, (1995).

9. Martin. R. Stytz, J. Vanderburgh, and S.B. Banks,
“The Solar System Modeler,” IEEE Computer
Graphics and Applications, pp. 47-57, (Sept.-Oct.
1997).

10. Martin R. Stytz, E. G. Block, B. B. Slotz, and K.
Wilson, “The Synthetic Battle bridge: a tool for

large-scale Ves,” IEEE Computer Graphics and
Applications, pp. 16-26, (1997).

11. R. R. Mourant, N. Qiu, and S.A. Chiu, “A
distributed virtual driving simulator,” IEEE Virtual
Reality Annual International Symposium, pp 208,
(1997).

12. S. Stansfield, D. Shawver, N. Miner, and D.
Rogers, “An application of shared virtual reality to
situational training,” Proceedings of Virtual Reality
Annual International Symposium 1995, pp 156-161,
(1995).

13. S. Stansfield, D. Shawver, and A. Sobel,
“MediSim: a prototype VR system for training
medical first responders,” Proceedings of IEEE
Virtual Reality Annual International Symposium
1998, pp 198-205, (1998).

14. T.W. Mastaglio, and R. Callahan, “A large-scale
complex virtual environment for team training,”
Computer, pp 49-56, (July 1995).

15. Un-Jae Sung, Jae-Heon Yang, and Kwang-Yun
Wohn, “Concurrency control in CIAO,” Proceedings
of IEEE Virtual Reality 1999, pp 22-28 (1999).

16. V. D. Lehner and T. A. DeFanti, "Distributed
virtual reality supporting remote collaboration in
vehicle design," IEEE Computer Graphics and
Application, Vol. 17, Issue 2, pp. 13-17, March-
April (1997).

17. W.D. McCarty, S. Sheasby, P. Ambrun, M. R.
Stytz, and C. Switzer, “A virtual cockpit for a
distributed interactive simulation,” IEEE Computer
Graphics and Applications, pp49-54, (Jan. 1994).

