
Synchronization-Free Parallel Collision Detection Pipeline
Quentin Avril∗ Valérie Gouranton† Bruno Arnaldi‡

Université Européenne de Bretagne, France
INSA, INRIA, IRISA, UMR 6074, F-35043 RENNES

Figure 1: A sample of environments used to perform tests and to compare algorithmic performances.

ABSTRACT

We present a first parallel and adaptive collision detection pipeline
running on a multi-core architecture. This pipeline integrates
a first global synchronization-free parallelization of its major
steps and enables to dynamically adapt the parallelism repartition
during the simulation. We propose to break the sequentiality of
the pipeline by simultaneously executing the two main phases
(broad and narrow). We introduce and use a new buffer structure
to share objects pairs between threads. To fully exploit multi-core
performance, we propose a new dynamic load balancing technique
to distribute threads among phases of the pipeline. This dynamic
threads balancing acts on the broad and narrow phases in relation
to their computation time. This technique favors the longest
phase by giving it more CPU threads to run in parallel. Results
show that this new generation of parallel pipeline enables to
adapt computations to the simulation scenario evolution and to
the run-time architecture. We tested our solution on a 8*cores
architecture and performance measurements show that this first
parallel pipeline is well-suited for the collision detection problem
and enables to significantly reduce computation time compared to
the sequential one.

Index Terms: I.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

1 INTRODUCTION

Collision detection is a large research field in charge of determining
if two or several objects collide in a virtual environment. Colli-
sional computations are used in several fields including computer
animation, robotics, physical simulations (medical, cars industry,
civil engineering. . . ), video games and haptic applications. Virtual

∗e-mail: quentin.avril@irisa.fr
†e-mail: valerie.gouranton@irisa.fr
‡e-mail: bruno.arnaldi@irisa.fr

environments and 3D objects are constantly evolving to become
increasingly large and complex. The performance level for a
real time use becomes harder to ensure in large-scale virtual
environments. With the recent impressive advances in hardware,
algorithms for collision detection have greatly improved but re-
main mostly unprepared to new kind of architectures (multi-GPU,
multi-processor, multi-core. . . ).

During several years, hardware specialists have been able to in-
crease CPU clock frequency and provide parallelism improvement
in instruction sets. Thus, mono-thread applications became faster
on a new generation of processors without any code modification.
To have better management of power consumption and to still
increase performances, they now promote multi-core architectures.
Software, libraries and any piece of code must be written and
specially adapted to take advantage of this hardware evolution.
It is no longer possible to rely on the evolution of processing
power to overcome the problem of real-time collision detection.
The most efficient and fastest collision detection algorithm will
not necessarily insure the best performance throughout a parallel
simulation.

Main Results: We propose a first adaptive and parallel collision
detection pipeline in which the main phases (broad and narrow)
are simultaneously executed. These phases are executed in
parallel and share their data through a common buffer respecting
a producer-consumer pattern. This parallel collision pipeline runs
on multi-core architectures and enables to dynamically balance
threads among phases using a new dynamic parallelism balancing.
This technique enables to adapt the parallel pipeline on a X-core
architecture and to provide better performances.

The rest of our paper is organized as follows: In Section 2 we
report related work on collision detection and parallel algorithms.
In Section 3 we detail our algorithmic choices concerning the par-
allel pipeline. We present our parallel collision detection pipeline
in Section 4. Our new technique of parallelism balancing is
presented in section 5. Presentation and discussion of performance
measurements are shown in Section 6. Then, we conclude and
open on future work in Section 7.

20th International Conference on Artificial Reality and Telexistence
(ICAT2010), 1-3 December 2010, Adelaide, Australia
ISBN: 978-4-904490-03-7 C3450 ©2010 VRSJ

22



2 RELATED WORK

Collision detection problem has been intensively studied for many
years in the VR field [1, 17, 27, 32]. Our review will focus on the
the collision detection pipeline and parallel algorithms that have
been proposed.

2.1 Collision Detection Pipeline
Consider n moving objects in a virtual environment, to test all
objects pairs tend to perform n2 pairwise checks. When n is
large it becomes an important computational bottleneck. Collision
detection can be compared as a pipeline of successive filters
[16]. These filters provide an increasing efficiency and robustness
all along the pipeline traversal. This concept is similar to the
concept of a rendering or visualization pipeline. The input of the
collision detection pipeline is a set of objects, while the output
is a set of pairs of objects (and possibly polygons). This set is
then transmitted to the physical response module. The pipeline is
composed by two main parts: broad and narrow phase.

We present, in the following, the two phases of the collision
detection pipeline and main sequential algorithms that have been
proposed.

2.1.1 Broad phase
The first part of the pipeline is in charge of a quick and efficient
removal of objects pairs that are not in collision. Brute force
approach is based on the comparison of the overall bounding
volumes of objects to determine if they collide or not. In the
bounding volume family many models have been proposed
such as spheres [16], Axis-Aligned-Bounding-Box (AABB) [6],
Oriented-Bounding-Box (OBB) [10], discrete oriented polytopes
(k-DOP) [21] and many others. Other methods have been proposed
to use spatial partitioning and divide space into unit cells: regular
grid [29], octree [4], Binary Space Partitioning (BSP) [28] or k-d
tree structure [5]. Methods that take care of the objects movement
are called kinematic methods. If two objects move in opposite
directions, they can not meet together [34]. Topological approach
is based on the positions of objects in relation to others. One of the
most used is called ”Sweep and Prune” [7] and consists, first, in
projecting objects coordinates on the environment axis (x, y, z) and
then checking for overlaps between objects coordinates. Pairs with
simultaneous overlapping on the three axis are transmitted to the
narrow phase to check the presence or absence of collision.

2.1.2 Narrow phase
The second part of the pipeline is in charge of performing an exact
collision detection test between objects pairs previously filtered
by the broad phase. We can classify narrow phase algorithms
in four main families [23]. Algorithms working with objects
primitive (faces, edges and vertices) are called feature-based
algorithms. The first one appeared in 1991 [26]. It proposed to
divide space around objects in Voronoi regions and to detect closest
features pairs between polyhedrons. Another well-known family is
simplex-based algorithms, the GJK algorithm [9] is one of the most
famous that uses Minkowski difference between polyhedrons. Two
convex objects collide if and only if their Minkowski difference
contains the origin. Algorithms based on bounding volume are
very often used in physical simulation because they provide good
efficiency, quickness and they highly improve performances.
Bounding volume hierarchies (BVH) enable to arrange bounding
volume into tree hierarchies (binary tree, quad tree...) in order to
reduce the number of tests to perform. Deformable objects are one
the most important challenge for BVH because hierarchy structures

have to be updated during the simulation [6, 32]. Finally, image
space-based algorithms work using image-space occlusions queries
that are suitable to be used on graphics hardware. They rasterize
objects to perform either 2D or 2.5D overlap test in screen space [3].

2.2 Parallel Collision Detection
The parallel solution of collision detection algorithms is a recent
field in high performance computing. In the parallel collision
detection field we can distinguish two different families of algo-
rithms, namely GPU-based and CPU-based. The pipeline has never
been parallelized but Zachmann [36] made an evaluation of the
performance of a theoretical parallelized back-end of the pipeline
and showed that if the environment density is large compared to
the number of processors, then good speed-ups can be noticed.

A solution using image-space visibility queries has been
proposed for the broad phase [13]. The brute force of ”Sweep
and Prune” has also been adapted to a multi-core architecture and
reduces time by 6 on a 8-core architecture [2]. Parallelization is
made on AABB update coupled with the broad phase algorithm
with a sequential synchronization point between both phases.

The GPU-based family is used to perform collision detection
for few years using typical GPU solutions [8] but it becomes
more and more used to perform non-common GPU solutions.
Image-based algorithms have been proposed to exploit the growing
computational power of graphics hardware. Cinder [22] is an
algorithm exploiting GPU to implement a ray-casting method
to detect collision. GPU-based algorithms for self-collision and
cloth animation have also been introduced by Govindaraju et al.
[11, 12]. An article describes the use of several GPUs during
collision detection process where only one GPU is in charge of
the physical pipeline, the other ones are in charge of the rendering
operations [18]. Recent works use thread and data parallelism on
a single GPU to perform fast hierarchy construction, updating,
and traversal using tight-fitting bounding volumes such as oriented
bounding boxes (OBB) and rectangular swept spheres (RSS) [24].
Algorithms using Layered Depth Images (LDI) to detect collision
and create physical reaction have also been proposed [14, 8].

Multi-processor machines are also used to perform collision
detection [20]. Depth-first traversal of bounding volumes tree
traversal (BVTT) and parallel cloth simulation [30] are good
instances of this kind of work. Few papers also presented multi-
threading use on single processor (Lewis et al. [25] propose a
multi-threaded algorithm to simulate planetary rings). Broad phase
has also been developed on a Field-Programmable Gate Array
(FPGA) [35].

Few papers appeared dealing with new parallel collision detec-
tion algorithms using multi-core architecture. A new task splitting
approach for implicit time integration and collision handling on
a multi-core architecture has been proposed [33]. Tang et al.
[31] propose to use a hierarchical representation to accelerate
collision detection queries and an incremental algorithm exploiting
temporal coherence. The overall is distributed among multiple
cores. They obtained a 4X-6X speed-up on a 8-core processor
based on several deformable models. Kim et al [19] propose to
use a feature-based bounding volume hierarchy (BVH) to improve
performances of continuous collision detection. They also propose
novel task decomposition methods for their BVH-based collision
detection and dynamic task assignment methods. They obtained
a 7X-8X speed-up using a 8-core architecture compared to a
single-core. Hermann et al. [15] propose a parallelization of
interactive physical simulations. They obtain a 14X-16X speed-up

23



Figure 2: Overview of differences between the sequential collision
detection pipeline (on top) and our parallel one (at the bottom).

on a 16-core architecture compared to a single-core.

2.3 Positioning
Related work lets appear that many studies have been made to im-
prove efficiency and performance of collision detection algorithms.
The use of parallelism is becoming commonplace to address the
problem of real-time collision detection. Thus, only fine-grain par-
allelizations have been done on algorithms and, for the moment,
there is no work on a global parallelization of the pipeline stages
and on its adaptation on any number of cores.

3 TECHNICAL OVERVIEW

Our parallel pipeline is technically composed by two phases: broad
and narrow phase. The broad phase is based on the well-known
”Sweep and Prune” [7] and the narrow phase has several algo-
rithms to detect collisions between objects.

3.1 Broad Phase
In order to massively parallelize the broad phase algorithm, we
work with the brute force method of the ”Sweep and Prune”.
This method does not update an internal structure but starts from
scratch at each step. It consists in projecting objects coordinates on
the environment axis (x, y, z) and checking for overlaps between
objects coordinates. After projection on axis there are (n2−n)

2
objects to test. This kind of broad phase algorithm is well-suited
to the parallelization because there is no dependency between
computations. They can be distributed among 2, 4, 8 or more cores
without disturbing results.

3.2 Narrow Phase
As all objects in a simulation can be different in terms of geometric
properties, our narrow phase is a kind of dispatcher in charge
of finding and applying the most suitable algorithm to a pair of
objects. The selection is made by taking into account geometric
properties of objects like simple(cubes, spheres ...) or complex,
convex or non-convex, static or dynamic, etc. . For a cube-cube
detection we use a simple box-box algorithm as for spheres. For
more complex convex objects, we use the algorithm of the GJK
[9] and for non-convex objects we use a features-based algorithm
based on an AABB hierarchy traversal. This dispatcher works in
an easy way by taking the overall objects pairs previously filtered
by the broad phase and applying the most appropriate algorithm.

Figure 3: Example of our dynamic threads repartition between broad
and narrow phase. Both phases start with 4 threads each other and
we then adapt the repartition in relation to their computation time.
Objects are falling to the ground at the beginning without any contact
during the fall.

Its execution can also be massively parallelized by splitting and
distributing the object pairs array among different cores.

Therefore, we use a pipeline equipped with highly parallelizable
algorithms in order to take full advantage of multi-core architecture.

4 PARALLEL PIPELINE

We present in this section our novel parallel collision detection
pipeline. The execution of the two phases is not sequential but
parallel. Main problems of breaking sequentiality of an algorithm
are, first, to insure that there is no loss of computations and then,
that results are still coherent. In our case, we keep the sequentiality
of the process made on one objects pair but we break the global
sequential process of the overall pairs. In other words, a pair of
objects is first used by the broad phase to roughly determine if
there are potential collisions. If so, it is used by the narrow phase
to precise contact points. The previous sequential pipeline was
waiting for the end of the broad phase to start the narrow phase.
We propose to start both of them at the same time.

The two phases are linked by a buffer in which the broad phase
stores its processed data. The narrow phase uses them to continue
the collision detection. It is a producer-consumer pattern which is
an example of resources synchronization. This pattern is especially
adapted in our multi-threaded context. Figure 2 presents this new
parallel pipeline and illustrates differences between the sequential
one. Instead of first performing the broad phase and then the
narrow phase (shown on the top of Figure 2), two control threads
are created and executed in parallel on two different cores. As soon
as a pair has been processed by the broad phase and considered
as in potential collision, it is stored in the buffer in anticipation
of being used by the narrow phase. The narrow thread begins
at the end of processing the first pair of the broad phase. The
shared buffer is an object pairs array where the broad phase is only
allowed to put its processed pairs and the narrow phase to collect
them to pursue computations. On an architecture equipped with a
larger number of cores, the two father threads (broad and narrow)
will be in charge of the creation and the management of several
child threads.

24



Figure 4: Four examples to illustrate difference between sequential and parallel pipeline switched during a simulation. From top left to bottom
right: a: 500 screws and bolts in a bowl, b: 2000 Torus falling on to a cones environment, c: 3000 Cubes on a plane, d: 2500 Spheres on a
plane.

5 PARALLELISM BALANCING

The new parallel collision detection pipeline previously presented
is a well-suited model for a two-core architecture. One thread
in charge of the broad phase and the other one of the narrow
phase. Both of them running on one core. The question is now
to determine how it is possible to distribute threads on a 4, 8
or X-core architecture. Do we have to homogeneously separate
threads or is it better to use more thread for one phase than the
other one? We propose to use a new balancing method called
”Parallelism Balancing”. This method is in charge of determining
which phase is the longest one so which one needs more thread to
reduce computation time.

5.1 Computation Time Examples

We would naively say that narrow phase is the most time con-
suming phase but that is not completely true. We present two
opposite examples in order to precise our purpose. The first one is a
simulation with million of objects falling on to the ground. During
the fall, no object is in contact with others and they are widely
separated. In this case, broad phase has to check all objects at each
simulation step whereas narrow phase has almost no work to do.
The other example is a simulation with few complex objects that
are constantly colliding each other. In this case, as there are only
few objects, time spent by the broad phase is negligible whereas
narrow phase time is very long due to the objects complexity. In
these two opposite examples we illustrate that computation time
can be different between both phases during a simulation. These
two scenarios can also be found in a single simulation and we
see that a dynamic adaptation would be needed. Examples also
illustrate that it is hard to separate threads among phases before
knowing what kind of simulation scenario we have and how the
simulation will evolve.

5.2 Dynamic Control Step

We propose to use a dynamic parallelism balancing that adapts
threads repartition during the simulation. This repartition is made
thanks to time measurements achieved by a time step varying
during the simulation. Analyzing time spent by phases at each
simulation step is very costly, so we propose to fix a short control
step at the beginning of the simulation and to extend it all along the
simulation. At the beginning, the short time step is used to quickly
apprehend scenario behavior and performances of the run-time
architecture. We balance threads repartition in relation to time
spent by both phases. When a new repartition choice is performed,
we have to insure that time spent by this new repartition is better
than the previous one. To do so, after each repartition change, a
time control of phases is performed and frequency of the control
steps is increased. After that as configuration remains unchanged,
frequency decreases.

Figure 3 illustrates an example of a dynamic thread repartition
during a simulation. This test was made on a 8-core architecture.
Each phase starts with 4 threads which is the half of available
cores. We measure time spent by phases with 4 threads and as
broad phase is longer than narrow phase, one narrow thread is
transmitted to the broad phase. At the beginning, all objects are
falling on to the ground without contact so narrow phase has almost
no computation to perform. Around the 18th control step, there is
an inversion between threads repartition. This inversion means that
objects are now in contact with the ground and narrow phase has
more collisional computations to perform.

With this new dynamic parallelism balancing of threads during
the collision detection pipeline, we are able to provide the best
possible computation time all along the simulation. Examples
shown in the previous section can be differentiated and processed
in different ways. If these two examples of scenario are in the
same simulation, we are able to dynamically adapt the parallelism
repartition to face the scenario evolution. In the first example, our

25



Figure 5: Comparison between time spent by the sequential collision
detection pipeline and our new parallel collision one. Test was made
with 1000 Torus that fall on to a plane.

balancing technique will favor a more massive parallelization of
the broad phase while the second example brings a favor to the
narrow phase process.

6 RESULTS AND DISCUSSION

We have tested our new parallel collision detection pipeline with
different simulation scenarios, going from similar objects that
are completely independent to heterogeneous scenes of colliding
objects (cubes, spheres, torus, screws and bolts) (Sample of our
environments is shown on Figure 1). In the following, we first
present results of our parallel collision detection pipeline running
on a dual-core architecture, then we present results of our new
method of parallelism repartition on a 8-core architecture.

6.1 Parallel Pipeline
In this section tests have been performed on a Intel Core 2 CPU
X7900 @ 2.8GHz on Windows XP with 3GB of RAM. We
compare the use of the sequential collision detection pipeline and
the new parallel one. Figure 4 presents the computation time of
the pipeline during simulations in which we switched between
both pipelines. The simulation scenario we used is, from the
top left picture to the bottom right one, 500 screws and bolts
in a bowl, 2000 Torus falling on to a cones environment, 3000
Cubes falling on to a plane and 2500 Spheres falling on to a
plane. These four different simulations enable to cover a wide
range of geometric properties like convex or non-convex, few or
several polygons, dynamic or static and simple or complex objects.
For example, a torus is a non-convex object composed by 1152
polygons while a cube is a convex object composed by 12 Polygons.

The first picture on the top left of the figure 4 shows results of
the simulation made with screws and bolts and we notice that the
parallel pipeline enables to reduce computation time from almost
330ms to 200ms. On the right, results of the simulation made with
torus illustrates a first time reduction from 1700ms to 1200ms and
a second one from 1000ms to 600ms. A significant time reduction
is also noticed on the two other simulations below.

A global comparison of the parallel and sequential execution of
the pipeline is shown on Figure 5. We can see computation time
measured at each simulation step. We notice that speed-up, brought
by the parallel pipeline, is higher when sequential computation
time is longer. Parallel speed-up is proportional to the sequential

Figure 6: Results of our dynamic parallelism balancing technique that
manages and adapts the threads repartition between the broad and
narrow phase during a simulation. The Top test was made with 1000
Cubes and the Bottom one was performed with 500 Torus.

computation time.

We showed that in all of our test environments, the novel
parallel collision detection pipeline significantly reduces com-
putation time. On a dual-core architecture, instead of using the
sequential pipeline, this new parallel pipeline will provide better
performances without disturbing results.

6.2 Dynamic Parallelism Repartition
We present, in this section, results of our novel method of dynamic
threads repartition. It is used on an architecture composed by more
than two cores to fully exploit cores parallelism. Tests have been
performed on a Intel Xeon CPU X5482 @ 3.20 Ghz (8-core) on
Windows XP with 64GB of RAM. We first wanted to see main dif-
ferent between several possible configuration of threads repartition
in order to justify the use of a dynamic repartition. Figure 7 is a
comparison between computation time of the sequential pipeline
and different configurations of threads repartition between broad
and narrow phases. There are 7 different configurations to compare
(1-7, 2-6, 3-5, 4-4, 5-3, 6-2 and 7-1). X −Y means X threads for
the broad phase and Y for the narrow phase.

As previously presented, the parallel solution significantly
reduces computation time. It clearly appears that several con-
figurations of threads repartition are not suitable for the type of
simulation. For example, the 7-1 and 6-2 configurations in the
second simulation are longer than the other ones. However, when
we look for the best configuration at each time step on these curves,
we notice that the best candidate is constantly changing. The

26



Figure 7: We compare computation time of the sequential collision detection pipeline and different configurations of our threads repartition
technique (4-4 means 4 threads for the broad phase and 4 threads for the narrow phase). Tests are made on a 8-core computer with 500 Torus
(Top) and 1000 Cubes (Bottom) that fall on to a plane. The Left pictures are computation time results and the Right ones are the result of the
most efficient thread repartition at each step of the simulation.

two pictures on the right illustrate this phenomenon by showing
at each simulation step, which threads repartition is the fastest
one. We note the complete absence of the sequential execution.
Depending on the evolution of the simulation, phases have got
evolving requirements on the number of threads needed to reduce
their computation time.

These two examples support the fact that there is not one better
single threads repartition in a simulation. As broad and narrow
phases have evolving requirement in terms of computation time,
a dynamic adaptation is required. Figure 6 shows results that
we obtained with our dynamic threads balancing technique. The
black line shows the choice of threads balancing obtained by our
method. To obtain the blue line we reproduced the same simulation
with different thread repartition configurations and we measured
computation time. We then crossed results and check which con-
figuration obtains best results at each simulation step. Our solution
closely follows real results and does not punctually change like
computed results do. Limitations of our approach is also illustrated
by the way that it does not anticipate time variations. For example,
on the top picture, around the 67th step, we see that the adaptation
takes few steps to change the threads repartition due to the dynamic
control step. As explain in Section 5.2, we do not control time
spent by phases at each time step. When a new configuration
is chosen, the frequency of control steps becomes maximum to
insure that new time is better than the previous one. And as long as
configuration remains unchanged, frequency decreases. It explains
the reaction time of the adaptation. In the second picture, we only
gave to the repartition module 3 possibilities of threads repartition
(4-4, 7-1 and 1-7). The 4-4 configuration is used when both phases

spent almost the same computation time, the 7-1 configuration is to
favor the broad phase and 1-7 the narrow phase.

We showed that our new parallelism balancing technique
enables to adapt thread number in relation to computation time of
both phases. As phases have an evolving computation time, we are
able to detect it and to take it into account by adding or removing
threads. The dynamic control step enables to insure that new
repartition choices are correct and its varying frequency enables to
spend less time controlling phases time.

7 CONCLUSION AND FUTURE WORK

We have presented a first parallel and adaptive collision detection
pipeline for multi-core architectures. Compared to the sequential
pipeline, the two main phases of the pipeline have been developed
to run simultaneously. We proposed to use a producer-consumer
pattern between broad and narrow phases. Data filtered by the
broad phase are stored in a buffer in anticipation of being used
by the narrow phase. As soon as a pair has been processed by
the broad phase, it is stored and processed by the narrow phase.
This new pipeline is also coupled to a new dynamic parallelism
balancing to adapt threads repartition among both phases during
the simulation. An evolving control step is performed to measure
time and to insure that new threads repartition is better than the
previous one. This balancing technique enables to face scenario
evolutions of the simulation and to reduce computation time.

We now want to test our new collision detection pipeline on
larger multi-core architecture to analyze its behavior with large-

27



scale virtual environments. We also want to improve parallelism of
the narrow phase by studying several assumptions on computations
repartition.

This new parallel collision detection pipeline brings a multitude
of future directions. We plan to develop a new pipeline based on
this parallel one but adapted to multi-GPU architectures. It means
executing phases in parallel on multi-core and multi-GPU hardware
with a dynamic adaptation of tasks and data between computation
units. Multi-core architectures are going to be a key component of
parallel collision detection algorithms. The design of such systems
requires a detailed analysis of tasks and data repartition techniques
to optimize the performance of these complex run-time architec-
tures.

8 ACKNOWLEDGMENTS

The authors want to thank Florian Nouviale (INRIA Rennes) and
Colin Moore (Duke University, NC) for their help in the review pro-
cess and Pierre Allard (University of Rennes) for his help in graph-
ics representation. This research is supported by INSA of Rennes
(France) with Bretagne Region under project GriRV No4295.

REFERENCES

[1] Q. Avril, V. Gouranton, and B. Arnaldi. New trends in collision detec-
tion performance. In S. R. . A. Shirai, editor, VRIC’09 Proceedings,
pages 53–62, April 2009.

[2] Q. Avril, V. Gouranton, and B. Arnaldi. A broad phase collision de-
tection algorithm adapted to multi-cores architectures. In S. R. . A.
Shirai, editor, VRIC’10 Proceedings, pages 95–100, April 2010.

[3] G. Baciu and W. S.-K. Wong. Image-based collision detection for de-
formable cloth models. IEEE Trans. Vis. Comput. Graph, 10(6):649–
663, 2004.

[4] S. Bandi and D. Thalmann. An adaptive spatial subdivision of the ob-
ject space for fast collision detection of animated rigid bodies. Com-
put. Graph. Forum, 14(3):259–270, 1995.

[5] J. L. Bentley and J. H. Friedman. Data structures for range searching.
ACMCS, 11(4):397–409, 1979.

[6] G. V. D. Bergen. Efficient collision detection of complex deformable
models using aabb trees. J. Graph. Tools, 2(4):1–13, 1997.

[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-collide:
An interactive and exact collision detection system for large-scale en-
vironments. In SI3D, pages 189–196, 218, 1995.

[8] F. Faure, S. Barbier, J. Allard, and F. Falipou. Image-based collision
detection and response between arbitrary volumetric objects, Sept. 12
2008.

[9] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE Journal of Robotics and Automation, 4:193–203, 1988.

[10] S. Gottschalk, M. Lin, and D. Manocha. Obbtree: A hierarchical struc-
ture for rapid interference detection. In Proceedings of the ACM Con-
ference on Computer Graphics, pages 171–180, New York, Aug. 4–9
1996. ACM.

[11] N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and reliable col-
lision detection using graphics processors. In COMPGEOM: Annual
ACM Symposium on Computational Geometry, 2005.

[12] N. K. Govindaraju, M. C. Lin, and D. Manocha. Quick-cullide: fast
inter- and intra-object collision culling using graphics hardware. IEEE
VR, page 218, 2005.

[13] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. Cullide:
Interactive collision detection between complex models in large en-
vironments using graphics hardware. In M. Doggett, W. Heidrich,
W. Mark, and A. Schilling, editors, SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 025–032, San Diego, California,
2003. Eurographics Association.

[14] B. Heidelberger, M. Teschner, and M. H. Gross. Real-time volumetric
intersections of deforming objects. In T. Ertl, editor, VMV, pages 461–
468. Aka GmbH, 2003.

[15] E. Hermann, B. Raffin, and F. Faure. Interactive physical simulation
on multicore architectures. In Eurographics Workshop on Parallel

and Graphics and Visualization, EGPGV’09, March, 2009, Munich,
Allemagne, 2009.

[16] P. M. Hubbard. Collision detection for interactive graphics applica-
tions. IEEE Transactions on Visualization and Computer Graphics,
1(3):218–230, Sept. 1995. ISSN 1077-2626.

[17] P. Jiménez, F. Thomas, and C. Torras. 3d collision detection: a survey.
Computers & Graphics, 25(2):269–285, 2001.

[18] A. M. D. Jose M. Juarez-Comboni. A multi-pass multi-stage multi-
gpu collision detection algorithm. In Graphicon 2005 Proceedings,
2005.

[19] D. Kim, J.-P. Heo, and S. eui Yoon. Pccd: Parallel continuous collision
detection. Technical report, Dept. of CS, KAIST, 2008.

[20] Y. Kitamura and A. Smith. Parallel algorithms for real-time colliding
face detection. Robot and Human Communication, pages 211–218,
Nov. 07 1995.

[21] J. T. Klosowski, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Effi-
cient collision detection using bounding volume hierarchies of k-dops.
IEEE Transactions on Visualization and Computer Graphics, 4(1):21–
36, Jan. 1998.

[22] D. Knott and D. K. Pai. Cinder: Collision and interference detection
in real-time using graphics hardware. In Graphics Interface, pages
73–80, 2003.

[23] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe. Collision
detection: A survey. Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on, pages 4046–4051, Oct. 2007.

[24] C. Lauterbach, Q. Mo, and D. Manocha. gproximity: Hierarchical
gpu-based operations for collision and distance queries. In Computer
Graphics Forum (EUROGRAPHICS Proceedings), volume 29, pages
419–428, June 2010.

[25] M. Lewis and B. L. Massingill. Multithreaded collision detection in
java. In H. R. Arabnia, editor, Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Appli-
cations & Conference on Real-Time Computing Systems and Appli-
cations (PDPTA’06), volume 1, pages 583–592, Las Vegas, Nevada,
USA, June 2006. CSREA Press.

[26] M. C. Lin and J. F. Canny. A fast algorithm for incremental dis-
tance calculation. Technical report, University of Berkeley, California,
Mar. 19 1991.

[27] M. C. Lin and S. Gottschalk. Collision detection between geometric
models: a survey. In R. Cripps, editor, Proceedings of the 8th IMA
Conference on the Mathematics of Surfaces (IMA-98), volume VIII of
Mathematics of Surfaces, pages 37–56, Winchester, UK, Sept. 1998.
Information Geometers.

[28] B. F. Naylor. Interactive solid geometry via partitioning trees. In
Graphics Interface ’92, pages 11–18, May 1992.

[29] Overmars. Point location in fat subdivisions. IPL: Information Pro-
cessing Letters, 44, 1992.

[30] A. Selle, J. Su, G. Irving, and R. Fedkiw. Robust high-resolution
cloth using parallelism, history-based collisions, and accurate friction.
IEEE Trans. Vis. Comput. Graph, 15(2):339–350, 2009.

[31] M. Tang, D. Manocha, and R. Tong. Multi-core collision detection
between deformable models. In Computers & Graphics, 2008.

[32] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Straßer, and P. Volino. Collision detection for deformable objects.
Comput. Graph. Forum, 24(1):61–81, 2005.

[33] B. Thomaszewski, S. Pabst, and W. Blochinger. Parallel techniques
for physically based simulation on multi-core processor architectures.
Computers & Graphics, 32(1):25–40, 2008.

[34] G. Vaněček, Jr. Back-face culling applied to collision detection of
polyhedra. The Journal of Visualization and Computer Animation,
5(1), Jan.–Mar. 1994.

[35] M. Woulfe, J. Dingliana, and M. Manzke. Hardware accelerated
broad phase collision detection for realtime simulations. 4th Workshop
in Virtual Reality Interactions and Physical Simulation (VRIPHYS)
(2007), pages 79–88, 9 Nov. 2007.

[36] G. Zachmann. Optimizing the collision detection pipeline. In Proc.
of the First International Game Technology Conference (GTEC), Jan.
2001.

28




