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ABSTRACT

Wireless technology can be adopted in wearable computing to
facilitate many important applications, including the elimination
of cabling and offloading process-intensive tasks to powerful
servers remotely. However, a crucial challenge of adopting
wireless technologies for wearable computing is the extra latency,
which may be a critical issue for real-time mixed and augmented
reality applications using optical or video see-through devices.
This paper investigates the impact of latency while adopting video
coding techniques to reduce wireless traffic. Trade-offs between
processing complexity and latency for different augmented reality
applications are investigated in this paper. Two video coding
techniques using (1) standard H.264 video codec which yields
superior compression efficiency, and (2) compressing sensing
based video codec which demands low encoding complexity, are
compared in this paper. The study investigates the feasibility of
adopting low latency or low complexity design of future wearable
devices facilitating optical or video see-through features.

KEYWORDS: Wireless networking, video coding, compressive
sensing, mixed and augmented reality.

INDEX TERMS: H.5 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and
virtual realities.

1 INTRODUCTION

Facilitating augmented reality (AR) on portable devices such as
smart-phones or PDAs has attracted attentions from industry and
academia in the recent past. These readily available mobile
devices eliminate the need for developing hardware prototypes,
and hence shortening the time and effort for research and
development. Research projects on top of smart mobile devices
assume sufficient computing power are readily available, or will
be available in the future, to perform complex operations.

The focus of this paper differs from the above-mentioned
assumptions regarding the availability of abundant processing
power. When AR applications perform beyond simple tracking
tasks, and involve complex computer vision algorithms and access
large database such as face recognition applications, the system
may demand significant processing power and storage space
which are impractical to be embedded on portable devices.

Remote computing was also proposed in_a study of marker
tracking for handheld augmented reality The approach
proposed in this work is targeted for marker tracking, and thus the
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colour image is converted to black/white binary image and then
compressed using run-length coding. Although the conversion and
compression algorithm applied inis low in complexity, the
performance in terms of compression time and power
consumption may not be very efficient by using general purpose
processors which does not take advantage of vectorized data for
the pixel-by-pixel colour conversion and run-length encoding.

While advanced video codec are readily available on off-the-shelf

smart-phone processors (either as DSP or ASIC), we argue that

real-time video compression is achievable at similar level of
power-consumptions.

It is debateable whether or not the mobile AR devices
should be equipped with high performance computing facility;
similarly, the feasibility of using thin-client instead of PC, or
netbook instead of high-performance laptops, is subject to
personal preference. This paper assumes the need for a light-
weight, ultra-portable, and inexpensive wearable thin clients.
Thus, this paper investigates the feasibility of designing such
portable devices which offloads heavy computational demand and
excessive storage to a remote server. Specific scenarios under our
investigation include latency sensible applications for video-see-
through or optical-see-through wearable display as oppose
to handheld devices which has more latency tolerance. Questions
arising in this research include:

1. What are the most critical features for the portable wearable
devices?

2. While it is mandatory to display a high quality video for
photo-realistic immersive AR experiences, is it necessary to
deliver the same video quality level for computers to process
the data?

Low complexity and low latency are possibly the most popular
answers to the first question. Therefore, we examine the
properties of wireless video and its latency characteristics in each
proposed scheme. For Question 2 above, we investigate the
behaviour of adopting wireless video for marker based tracking
applications. The experiment is done by generating encoded video
with different quality levels for the remote server in each
proposed scheme, and the remote server calculates the tracking
information according to the coarse reconstruction and returns it
to the portable wearable devices, then the portable wearable
devices utilize tracking information to blend virtual objects onto
the real scenarios captured by the wearable camera or goggles. In
other words, the proposed system attempts to lower the latency by
adopting video codec with high compression rate. The quality of
the video can be degraded as long as the server can effectively
detect the marker. The degraded video quality will be
unnoticeable to the user, since the raw video will be directly
displayed from either optical see-through or video see-through
devices.

This paper compares the two video coding schemes using
standard H.264 video codec and compressive sensing based video
codec. H.264 is chosen for its popularity and ubiquity;
compressive sensing is investigated because of the unique feature



of its reduced encoder complexity. The design of wearable
computers using these two approaches can be (1) fast time-to-
market using off-the-shelf H.264 codec, or (2) low power
consumption devices by adopting compressive sensing. The
objective of this paper is comparing the performance of the two
coding technique, hardware implementation based on the study of
this paper will be considered as a future work.

The rest of the paper is organised as follows. We firstly explain
the design of the proposed system in Section 2. A proposed
scheme based on H.264 is introduced in Section 3. Next, another
proposed scheme based on compressive sensing is explored in
Section 4. In Section 5, we examine the performance of two
proposed schemes, followed by the conclusion.

2 DESIGN OF WEARABLE THIN CLIENTS

Many of the existing wearable computing systems for AR
applications ensure sufficient processing power to handle complex
processing tasks. To meet this objective, excessive processing
power, memory and storage spaces are integrated to the wearable
devices, thus increasing the weight and making them less
“wearable”.
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Figure 1. Processing stages for wearable thin clients

Another way to interpret wearable devices is that, these devices
are designed to be ultra-portable. These devices possess just
sufficient processing power to enable interfacing and interacting
between computers and users. In other words, wearable
computing could be considered as thin clients in the client/server
architecture, with main functions to facilitate data capture

(a) Wearable thin client

——»  ASIC J))>

O |
o 1~

g (H.264 Encoding)
/

CCD/CMOS Video Camera

r@ o ASIC
‘!,' o

(Virtual Object Rendering)

_v)
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The partition of the processing tasks on a client and on a server
is illustrated in Figure 1. It is important to denote that since the
user interaction (such as gesture or head movement) returns to the
data capture block, latency minimization plays a major role for
facilitating an immersive experience for virtual and augmented
reality applications. Another point of interest is the virtual object
rendering block. Other work insuggests that this block could
be handled on the server by moving it before the video decoding
block. However, since 3D gaming are becoming popular on
handheld devices, graphical processing unit is moving into the
mobile processors just like video codec described before.
Therefore, the power budget and processing time is improved with
application specific integrated circuits (ASIC), and we believe the
minimal feature set on a wearable thin client should be equip with
sufficient 3D rendering capacities.

3 WEARABLE COMPUTING BASED ON H.264

3.1 The Framework of Wearable Computing Based
on H.264

Video is one major feature in today’s smart phones, and advanced
video codecs are readily available on modern_mobile processors.
Among these video codec standards, H.264(also known as
MPEG-10 AVC) is prominent due to its high compression
efficiency. A framework based on H.264 codec is easily set up
according to the proposed system in Section 2. Figure 2 shows the
block diagram based on the proposed H.264 scheme. A CCD or
CMOS video camera is used to acquire the video samples. Then,
the video samples are compressed using the H.264 codec ASIC
and transmitted to the server via wireless transmission. The server
reconstructs a degraded image with the received bitstream and
computes tracking information. The tracking information is then
reported to the wearable thin client. Another ASIC at the wearable
thin client renders the virtual objects according to the received
tracking information and displays the virtual object for the user.
The H.264 video codec usually applies frame prediction technique
to improve the compression efficiency. In general, mainly three
types of frames (or their derived extensions) are used to encode
videos: Intra (I) frames, Predictive (P) frames, and Bi-directional
(B) predictive frames. The experiment conducted in Table 1 and
Figure 3 applies H.264 codec, with different quality levels
achieved by adjusting the quantization levels of these different
types of frames (30 for high quality, 40 for medium quality, and
50 for low quality). The frame rate used for the experiment is 30
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Figure 2. A proposed scheme based on H.264 for the wearable computing system



frames per second, and the bitstream data rate for different quality
level and their corresponding quality measures using peak signal
to noise ratio (PSNR) are illustrated in Table 1. Each pixel in the
video frame is sampled using 8-bits, and PSNR measures the
quality of the video respect to the peak value 255 (or 2%) using the
following formula
PSNR = 10 log; (255% / MSE).

The MSE is the mean square error between the original and
reconstructed video frame. Figure 3 illustrates samples of the
reconstructed videos in Table 1.

3.2 Latency Analysis

As discussed previously, low-latency or real-time is a critical
requirement for wearable displays. For voice applications, one-
way transmission should not exceed 150 msec, preferably below
100 msec for highly interactive applications, as recommended
ITU-T’s G.114 A sample latency of head mounted display
studied ias a mean value of 122 msec.

Candidate of wireless standards to be considered include IEEE
802.15.3 ultra wideband network, or IEEE 802.11n wireless local
area network. The setup of the wireless communication should be
using either the ad hoc mode with a point-to-point direct
connection between the wireless node and the computing server;
alternatively, if infrastructure mode is selected, it is desirable to

connect the access point to the computing server on a LAN
network. This is because both WLAN and UWB adopt collision
avoidance techniques to share the physical transmission medium
among different wireless devices. Eliminating wireless access
point helps reducing collisions and scheduling, hence improving
the performance.

Given that both 802.11n and 802.15.3 facilitate high data rate
(802.11n at over 600 Mbps and 802.15.3 at up to 480 Mbps. Let r
denote the utilization ratio of the entire transmission channel (due
to protocol headers, contention-based and contention-free
congestion avoidance protocols, and number of concurrent users,
etc). Using the car sequence for instance, the transmission delay
ranges from 0.1/ msec to 2.4/r msec. The maximum throughput
ratio r is typically around 50%, depending on the protocol
overhead and number of concurrent users. Assuming the channel
is congested and r is 10%, the transmission delay will range from
0.17 msec to 3.5 msec (using the extreme values in Table 1). Note,
the session setup time (such as protocol handshakes, authorization,
authentication, and accounting) are ignored because these
introduce an initial delay when establishing a session. The
wearable thin client will not start rendering the virtual objects
until the session setup is completed.

Table 1: Rate and quality of H.264 video compression

Hall (CIF, 352x288) Garden (RGB, 320x240) Car (Monochrome, 320x240)
Bit Rate (kbps) Quality PSNR'Y | Bit Rate (kbps) Quality PSNRY | Bit Rate (kbps) Quality PSNR'Y
(dB) (dB) (dB)
Raw 36495.36 N/A (infinite) 55296 N/A (infinite) 18432 N/A (infinite)
High Quality 193.05 38.14 1657.36 35.36 472.59 35.79
Mid Quality 31.21 30.94 207.76 26.89 59.94 28.94
Low Quality 9.99 24.31 51.01 22.00 19.84 23.39

T (3a)

EE))

(3-0)

Figure 3. Sample reconstructed video frames (1) hall sequence (2) garden sequence (3) car sequence. For each sequence, (a)
represents the high-quality, (b) represents the medium quality, and (c) represents the low quality in Table 1.
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Figure 4. Video frame types and coding sequence

Assuming the hardware video coder encodes at real-time for
video at 30 frames per second, the time to encode or delay each
frame is at most 33 msec. The inter-dependencies between
different frames for modern block-based video codec are
illustrated in Figure 4, and the order of encoding sequence is
indicated below each frame.

Thus, if multiple B frames are used, it is possible to introduce a
framing delay. Let R denote the frame sampling rate, and let Ny
denotes number of B frames between I-and-P or P-and-P frames,
Assume the coder operates at real-time or faster. The coding delay
(including framing) is

(Ng + 1)/R < T <2(Ng+1)/R.
Because each B-frame introduces an additional 33ms delay, this
accounts for a significant impact to the latency. Although B frame
helps reducing the size of the compressed bitstream, the additional
delay does not justify the low-latency requirement for augmented
reality applications. Therefore, B-frames should be eliminated for
minimizing the latencies, which is a crucial need for real-time AR
applications. The extra latency over traditional head mounted
display include the coding delay (less or equal to 33msec), the
framing delay (33msec, and most of this latency overlaps with the
existing latency), and transmission delay (less than 3.5 msec
depending on the compression ratio and network utilization level).
It is recommended to use a fast hardware codec which run beyond
real-time to minimize the coding delay.

4 WEARABLE COMPUTING BASED ON COMPRESSIVE SENSING

41 The Framework of Wearable Computing Based

on Compressive Sensing

Real-time compression based on H.264 can be achieved today
using off-the-shelf processors, as commonly used on smart phones
today. However, a common challenge for traditional
transformation and motion-compensation based video codec such
as H.264 is the high power consumption due to high-complexity
encoding strategy. Recently, a new approach using compressive

sensing has attracted great interest for video codec because of its
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low encoder complexity. Compressive sensing, also known as
compressed sensing and compressive sampling, is an emerging
technique for sampling and reconstructing n the basis of
the prior knowledge that the target signal is or
compressible [8][9][10]. The main idea behind compressed
sensing is to directly exploit the sparse representations of
interesting signals if they can be sparsely represented in another
domain. The rising technique is introduced in this section to
facilitate a wearable thin client.

Generally, a discrete image signal can be vectorized into a real-
valued, finite-dimensional vector in Euclidean space. Provided
that a column vector X=[x1, x5, -**, xn]T denotes a discrete image
signal. The literature of image signal processing has revealed that
most natural images are sparse or compressible in the discrete
cosine transform (DCT) domain [11]. Let ¥ denote the collection
of DCT orthogonal basis, then,

X=¥S=Xi s ¥ (1)
where S=[s{, Sy, ..., Sp] is a sparse representation of X in the
DCT domain and contains K non-zero DCT coefficients. ¥ =
(W1|P2] - |Py) is an n-by-n DCT transformation matrix with {s;
being a column vector of V.

The sampling process of compressive sensing is to use an m-by-
n measurement matrix ® to measure X and obtain an m-
dimensional measured vector Y as (2). The components in the
measured vector are called measurements. The measurement
matrix ® = (@1|@;z] ... |@yn)T is mostly given to be a random
matrix whose entries are established from Gaussian independent
and identically distributed random variables of zero mean [9, 10]
and @; denotes a row vector of @. Usually O is used to denote the
product of @ and V.

Y = dX=Qp¥YS=0"'S 2

Generally, m is much smaller than n and comparable with K,
which means the n-dimensional signal is reduced to an m-
dimensional measured vector, so the sampling procedure
embodies an inherent compressing process. If ® and ¥ comply
with the Restricted Isometry Property (RIP) and the number of
measurements in the measured vector satisfies (3), the original
signal can be ideally reconstructed with the measured vector Y
[10].

m > O(cKlog(n/K)) 3)
where c is a universal constant and K denotes the number of non-
zero coefficients of the DCT representation.
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Figure 5. A proposed scheme based on compressive sensing for the wearable computing system
(The single-pixel video camera component is adapted from http://www.dsp.ece.rice.edu/cscamera/)
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Many advantages of compressive sensing are concluded in
[12][13]. Among them, two merits might be advantageous to the
wearable thin client:

i. Compression is built into the measurements. In other words,
the samples acquired by compressive sensing can be
transmitted to the decoder without compression process.

ii. Sampling is simple while reconstruction is complex. That
means the heavy computation is shifted to the decoder so that
the encoder maintains an advantage of low complexity.

The single-pixel camera developed at Rice University is an
example of adopting compressive sensing for image compression
[13]. Figure 5 shows the block diagram based on the compressive
sensing scheme. A single-pixel video camera is equipped to
acquire the original image. The acquired data are called
measurements (also samples). Then, these measurements after
A/D conversion are directly transmitted to the server via the
wireless network. An optional entropy coding can be employed in
the proposed scheme to further increase the compression ratio. In
order to simplify the wearable client, the entropy coding strategy
is unemployed in this proposed scheme. The server is assumed to
have powerful computational capability. A degraded image is
reconstructed at the server with the received CS measurements,
but it is sufficient to identify the contours of the markers. The
tracking information is consequently calculated and fed back to
the wearable thin client. The ASIC at the client side renders the
virtual objects base on the received tracking information and
displays it to the user.

4.2 OMP with Sorted Random Matrix

Usually, the sampling process of compressive sensing is universal
and low-complexity while the recovery algorithms are flexible but
high-complexity. Many recovery algorithms have been proposed
for the compressive sensing [14][15][16]. Among various
recovery algorithms, orthogonal matching pursuit (OMP) is a
popular choice due to its low computational cost and its ease of
implementation [14]. It has been proposed to be applied in many
image and video signal processing applications [17][18].

However, OMP usually needs more measurements than some
other recovery algorithms in order to achieve the same
reconstruction quality [19]. In other words, it is hard for OMP to
achieve a high compression ratio. The basic idea of OMP is to
pick the most correlated information with the target signal in a
greedy fashion [14]. The most correlated information is generally
corresponding to the largest DCT coefficient of the target signal.
But sometimes OMP is unable to precisely locate which is the
most correlated information due to some reasons mentioned in [20]
so that it needs more measurements to revise these mistakes. As a
common recovery algorithm of compressive sensing, OMP is
suitable for any sparse signal recovery. The original signal is
usually supposed unknown before it is reconstructed, including
the positions and the values of non-zero coefficients. But, the
sparse representations of most image signals are exceptional after
they perform DCT transform. The literature of image signal
processing reveals that the larger non-zero DCT coefficients are
mostly located at the low-frequency positions [11] though the
precise positions cannot be obtained prior to its recovery. Thus, on
the basis of this common feature, a sorted random measurement
matrix is proposed to assist OMP to locate the most correlated
coefficient more precisely in [20].

The recovery algorithm of OMP with sorted random
measurement matrix is introduced as follows. Let S = [sy, so,...,
s.]" be a sparse representation of the signal X in DCT transform
domain. And there are K non-zero DCT coefficients in S. Let ® =
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[gi] gl.-.| g.], and g; denotes the /th column vector of ©. And
simultaneously the expansion of @ is also expressed as follows:

Aqg A
0 = : : 4)
Aml Amn
Then gi=[A;, Aojy ---» Ami]T, and rewrite (2) as below:
Aqq Aqy
Y=0:S=| : : S
Aml Amn

=81t g tsyt &t syt gy 5)

The basic idea of OMP is to find a vector g; from @, in which
direction Y can achieve the largest projection P. The vector g; is
named the most correlated vector with Y. Let Rf denotes the
residual vector on the direction orthogonal to g;, then,

Y=<Y,g > g +Rf 6)

where <Y, g; > indicates the inner product of the vectors Y and g;,
which is the projection of Y on the direction of g; if g; is a unit
vector. Thus, g;is orthogonal to Rf. Suppose (g; , g, ..., 8, ) are
all unit vectors, then,

IYII? = 1< Y, g >I? + IIRfl|? @)

Note, the inner product of g; and Rf is zero because they are
orthogonal. Then, the largest projection P can be found by solving
the following formula:

|P| = max;|<Y,g; >|

and g; € 09,i € (1,2,---n) 8)

The most correlated vector g; is usually corresponding to the
largest DCT coefficient s; Therefore, when the correlated vectors
corresponding to the non-zero DCT coefficients are iteratively
located, the sparse DCT representation of the original image
signal can be retrieved with least-squares method [20].

The sorted random measurement matrix @ is usually drawn
from uniform distribution random function. Then, each row in this
matrix is sorted in descending order. Next, this sorted random
matrix can be applied to measure the target image signal. The
sorted random matrix is universal so it can be repeatedly adopted
for any image signal. Considered the sizes of most image signals
are large, a block-based compressive sensing method [21] is
employed in the experiment. The target image signal is divided
into equal-size blocks, and each block is independently sampled
and then reconstructed. At last, these reconstructed blocks are
reorganized into a reconstructed image. This paper follows the
same setup as in [21] by setting the block size as 32 in the
experiment, and N is 1024. In order to simplify the experiment,
we choose ¥ to be the DCT orthogonal basis. The sorted random
matrix is universal and it can be repeatedly used for each image
block. Meanwhile, the sorted random matrix is known by both the
client and the server in advance, so it is unnecessary to transmit
via the wireless network. The algorithm is summarized as follows:

Sampling:

1. Generate an M-by-N random matrix ® whose entries are drawn
from uniform distribution random function.

2. Sort each row of @ in descending order.

3. Measure the target image signal with @: Y = ®X



Reconstruction:

1. Initialize the residual Rf = Y, the matrix of chosen correlated
vectors Q = {}, and the iteration counter t = 1

2. Find the index i of the most correlated vector via resolving (8).
If the maximum occurs for multiple indices, break the tie because
the iteration times might be beyond the number of non-zero
coefficients in S or something else is disordered.

3. Build a new matrix of chosen correlated vectors Q = {Q, g;}
and remove the chosen vector g; from @.

4. Obtain a new approximation S via resolving the following
equation with least-squares method.

Y=Q-§
5. The new residual is calculated as follows:
Rf=Y-Q:-S
6. Increase t, go back to step 2 if t<K or ||Rf|[>0
7. § is the approximate solution of S.
8. The original image signal can be retrieved with S: X = ¥§

Figure 6 illustrates some sample reconstructed video frames based
on compressive sensing with different sample rates.

4.3 Latency Analysis

Because compressive sensing is an emerging technique, there are
limited prior study on the latency of video codec and transmission
based on compressive sensing. In this paper, comparisons between
H.264 and compressive sensing based video codec for wearable
computer are studied.

- ,VA -
(a) PSNR: 22.19(dB)
(Sample Rate;: 10%)

(d) PSNR: 27.09(dB)
(Sample Rate: 30%)

(c) PSNR: 24.84(dB)
(Sample Rate: 20%)

Figure 6. Sample reconstructed video frames based on
compressive sensing with different sample rates

At the wearable thin client side, the wearable computing based
on compressive sensing has the same structure as the wearable
computing based on H.264 except that the CCD or CMOS video
camera and the ASIC for H.264 encoding are replaced with the
single-pixel video camera. The single-pixel video camera has
been proved to possess the advantage of fast speed [13]. Therefore,
the single-pixel video camera has the potential of yielding
comparable or superior performance in terms of the latency than
CCD or CMOS video cameras. On the other hand, the encoding
latency is unavoidable for the wearable computing based on
H.264. However, the encoding latency is inexistent in the
wearable computing based on compressive sensing because the

68

samples acquired by the single-pixel camera can be directly
transmitted to the remote server. Hence, the wearable thin client
based on compressive sensing possibly possesses the advantage of
low latency than the one based on H.264.

At the server side, in order to increase the compression ratio,
the P-frame and/or B-frame encoding strategy is usually adopted
in the H.264 video codec scheme. The previous analysis reveals
that if the B-frame encoding strategy is employed, each B-frame
between [-and-P or P-and-P frames introduces an additional 33ms
delay due to the order of I-frame, P-frame and B-frame.
Furthermore, the latency of the reorder cannot be eliminated even
if the server owns a powerful capacity of computation. In addition,
if the P-frame encoding strategy is employed, the dependencies
between P-frames and I-frames will increase the risk of the
latency. If an error occurs in some I-frame, all the P-frames
dependent on the I-frame have to be discarded. The server must be
waiting until the next I-frame is received. In comparison,
compressive sensing has an inherent advantage of high robustness.
The measurements of compressive sensing are independent with
one another. Losing a few measurements does not hurt the others
and the reconstruction can still be carried out. Little effect is on
the quality of reconstruction if the number of lost measurements is
small [12]. If the computation ability of the server is sufficiently
powerful, the latencies of decoding or reconstruction process can
be negligible for both H.264 codec and compressive sensing.
Consequently, the wearable computing based on compressive
sensing is potential to exhibit a lower latency than the wearable
computing based on H.264 with respect to the server.

In terms of the wireless network latency, the wearable
computing based on H.264 presents a great advantage due to its
high compression ratio. On the other hand, since the sample
process of the wearable computing based on compressive sensing
embodies an intrinsic compression, the compression process is
usually suggested to be unemployed in order to maintain a low-
complexity and low-power wearable thin client. But, when the
sample rate of compressive sensing is about 10%, the encoded
video based on compressive sensing just achieves the
reconstruction quality equivalent to the low quality of the encoded
video based on H.264 with compression ratio approximately 0.1%.
Therefore, the wearable computing based on H.264 exhibits a
lower latency than the wearable computing based on compressive
sensing with respect to the wireless network.

However, the improvement of compressive sensing sample rate
is promising along with extensive research. For example, a
perceptual compressive sensing has been proposed to improve the
reconstruction quality and/or sample rate in [22] while
maintaining the characteristics of low-complexity and low-power
encoder. In addition, if the bandwidth of the future wireless
network is ultra-broad, the latencies of the wireless network will
be negligible in comparison with the latencies spending on the
wearable thin client and the server. Therefore, the wearable
computing based on compressive sensing is potential to exhibit a
lower latency than the wearable computing based on H.264.

5 CASE STUDIES

In this section, a popular AR application using marker-based
tracking is examined by sending wireless video with different
quality levels. A mathematical model is used as a substitution for
single-pixel video camera. The raw video captured by the
wearable camera is encoded using H.264 or compressive sensing.
Then, the compressed video stream is transmitted to the server (a
remote computer) for processing. Finally, the tracking information
is generated at the server side and transmitted to the wearable thin
client. It is possible that a low-quality video is transmitted to the
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Figure 7. Marker tracking experiments

remote computer for the generation of tracking information, but
the user can see the real scenarios blending with the virtual
objects whose tracking information (virtual object type,
orientation and position) is fetched from the remote computer.
The real scenarios are captured by the wearable camera or goggles
which are integrated as part of the thin client. In our experiments,
all the markers are black and white so only the luminance data are
necessarily sampled and transmitted to the server for the
generation of tracking information. But, the user can see the
colour scenarios blending with virtual objects. For the
compressive sensing scheme, since the wearable goggles is still
an open question, an additional conventional camera will be
equipped to capture the real scenarios for blending with the virtual
objects.

Figure 7 shows partial experimental results of marker-based
tracking applications using the aforementioned two schemes at
different quality levels: Sub-figure (a)-(f) show some sample
video frames of the wearable computing based on H.264, and
Sub-figure (g)-(1) show some sample video frames of the wearable
computing based on compressive sensing; the monochrome
pictures show the reconstructed video frames at the remote
computer while the chromatic pictures show the video frames
blending with the virtual cubes which are displayed to the user.
The H.264 scheme exhibits an excellent performance in all test
cases, and the target markers are detected and the orientation of
the virtual cubes is properly found. However, some markers may
not be tracked properly in the compressive sensing scheme when
the sample rate is 15% and the video quality is 23.55dB in PSNR.
It is hinted that a human intervention to manually control the
video quality may be required.

6 CONCLUSION

In this paper we investigate the feasibility of adopting wireless
video for wearable computing. We also investigate features of
wearable thin clients which are equipped with limited processing
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capabilities, and applications are processed remotely. Two
optional schemes are studied in this paper: the wearable
computing based on H.264 and the wearable computing based on
compressive sensing.

The wearable computing based on H.264 is not a fresh idea.
The H.264 scheme exhibits high compression ratio and low
network latency. However, the separation of sampling and
compression will increase the complexity and power consumption
of the wearable thin client. In addition, the frame prediction
technique contributes the merit of high compression ratio, but
introduces the demerits of high-complexity encoding and high
latency of encoding and decoding process as well.

Video coding based on compressive sensing is proposed for
wearable computers, since it demonstrates the advantages of low
complexity and low power consumption in comparison with the
H.264 scheme. The wearable computing based on compressive
sensing consequently facilitates the wearable thin client more
slender. On the other hand, the theoretical information in this
paper reveals that low compression ratio of compressive sensing
may introduce high network latency. So, the improvement of
compression efficiency of compressive sensing is a potential
research-worthy problem for the wearable computing based on
compressive sensing. For example, a low-computation entropy
coding technique can be imported to improve compression ratio.

For marker-based tracking applications, our observation
suggests that it is possible to achieve identical results with video
at low quality. Low reconstruction quality means high
compression ratio so that the network latency is reduced. But the
tracking performance may degrade if the quality is extremely low.
Therefore, we suggest a manual control for video quality
adjustment. Our study indicates that it is feasible to adopt proper
quality video (with Y-PSNR values over 24dB) for real-time
augmented reality applications, where low latency (framing,
coding, and transmission delays) and high quality output
(blending virtual objects onto the real scenarios captured by the



wearable camera or goggles) constraints are met for both the
H.264 scheme and the compressive sensing scheme.

This paper focuses on the discussions of major design issues of
wireless wearable thin client, and compares two different video
coding approaches with different design objectives: (1) using
readily available H.264 standard for fast time-to-market; and (2)
using compressive sensing to reduce encoder complexity for
wearable computers. Hardware implementation based on the study
presented in this paper will be considered as potential future work.
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