Efficient Inter-camera Management for Multiple Objects Tracking
in Mobile AR Environments *'

Woonhyuk Baek*

Woontack Woo$

GIST U-VR Lab.
Gwangju 500-712, S. Korea

ABSTRACT

This paper presents a real-time multiple objects tracking based
on inter-camera approach for mobile devices. The key idea of
our approach is to accommodate the pose of each cameras by
sharing the results of tracking on heterogeneous inter-camera.
Our approach accomplishes the time-consuming multiple objects
tracking on a server while the mobile device tracks only a single
object and then shares the result of the tracking with the mobile
device. The proposed approach enables mobile devices to track
multiple and complex objects with limited network bandwidth.
As experimental results, the proposed inter-camera approach has
shown that it is possible to track occluded objects. The proposed
approach can be effectively used for mobile augmented reality
applications that need to consider multiple and complex objects
like desktop AR applications; then it is easy to extend the desktop
approach to mobile AR applications.

Index Terms: H.5.1 [Information Interface and Presentation]:
Multimedia Information Systems—Artificial, augmented, and
virtual realities; 1.4.1 [Image Processing and Computer Vision]:
Scene Analysis—Object recognition, and tracking

1 INTRODUCTION

As mobile phone use has spread throughout the world and as the
phones are increasingly equipped with cameras and wireless ca-
pability, augmented reality (AR) has also become increasingly at-
tractive. Mobile AR applications have generally used sensor-based
tracking, but this method lacks the ability to combine the real and
the virtual world in 3D. Generally, the purpose of object tracking
in AR is to compute a relative camera pose, represented in a rota-
tion and a translation to 3D. Object tracking using natural features
has a high accuracy in 3D and it has now been well explored by
AR applications [15]. However, mobile phones have limited com-
putational performance and a small memory size. It is not enough
simultaneously to track multiple objects and to render the contents
in 3D.

Mobile AR has applied the server-client approach to solving the
limitations of mobile phones. The AR-PDA [5] and other mobile
AR projects[12] have used a server-client approach. They send the
video stream by mobile radio communication to the AR-server. The
server recognizes the object by analyzing the image, which is added
to the video stream (like 3D content) and then sent back to the

*This research is supported by MCST and KOCCA, under the CT R&D
Program 2010.

This research was supported by the Global Frontier project of MEST in
S.Korea.

*e-mail:wbaek @gist.ac.kr

Se-mail:wwoo @gist.ac kr

20th International Conference on Artificial Reality and Telexistence
(ICAT2010), 1-3 December 2010, Adelaide, Australia
ISBN: 978-4-904490-03-7 C3450 ©2010 VRSJ

89

client. However, the mobile radio communication network band-
width is not enough to transfer the client camera image to the server
in real-time. Moreover, the lack of network bandwidth causes a de-
lay in tracking. In particular, even if there is enough network band-
width, the quality of mobile phone cameras is not good enough to
recognize multiple objects.

In this paper, we separate the server and mobile phone devices.
The server tracks multiple objects while the mobile phones tracks
only a single object. The server detects and tracks multiple objects
using cameras, and shares only the pose of the objects with mobile
devices. Then, the mobile devices restore the pose of objects by
tracking only one of them. Our approach is able to efficiently deal
with several objects using computational power of the server and
saving network bandwidth. The proposed inter-camera approach
supports real-time multiple objects tracking, including hard track
objects, such as an occluded object.

In the remainder of the paper, we discuss related work on mobile
tracking for mobile AR applications in Chapter 2. Chapters 3 and
4 describe our method and present our experimental results. We
conclude this paper with suggestions for future work in Chapter 5.

2 RELATED WORKS

Mobile AR applications are generally used in Global Positioning
Systems (GPS) and electronic compasses, and inertial sensors are
widely used in outdoor tracking and AR systems [13, 7]. Com-
pared to model-based vision tracking [8] and feature-based vision
tracking[18], these tracking technologies are often more robust and
accurate.

Indoor mobile AR systems often use fiducial markers [20] rather
than sensor data to simplify feature detection and matching. How-
ever, many markers become difficult to recognize if they are off-
screen or occluded. Therefore, natural feature tracking algorithms
are better than marker-based approaches. They use interest point
detectors and matching schemes to associate 2D locations in the im-
ages with pre-defined 3D locations in the reference model. SLAM-
based methods have been used in unknown environments to realize
mobile AR [6].

Mobile AR applications require multiple objects tracking, us-
ing natural features, in order to realize indoor mobile AR systems.
The natural feature-based multiple objects tracking algorithm[11]
is closed to our multiple objects tracking approach, which detects
multiple targets over multiple frames, but without considering mo-
bile devices. D. Wagner’s algorithm [19] used multiple objects
tracking by means of natural features on a mobile phone. It was
able to track multiple objects on a mobile phone, but it was not
able to realize mobile AR applications due to the heavy computa-
tion costs of calculating multiple objects tracking on only a mobile
device. The AR-PDA project [5] used the computational power of
a server to solve the limitations of the mobile device. This project
sends image streaming to a server. But it is unreasonable to expect
a real-time response that is, the results of multiple objects tracking
because of lack of network bandwidth.

Our method overcomes the limitations in the performance of
mobile devices by using an inter-camera approach. The proposed

Server side

image I

Keypoint tracking

i

Feature Extraction

—

g 1
E
5
e Descriptor creation
g
S |
£ \ 2
Descriptor matching m
#1
Compute o o,
camera pose #1

v

Compute relation of camera pose

Client side

image, |

Keypoint tracking

|

Feature Extraction

!

Descriptor creation

+

Descriptor matching
#1

{

1

Outlier removal

—p

L

Compute camera pose

#1

Restore

v

Compute camera pose
#1

AR Application

Figure 1: Overall flowchart of the proposed inter-camera approach

method differs from [5][12] in which we added cameras to a server
to reduce information transfer.

3 INTER-CAMERA APPROACH

Multiple objects tracking using natural features in mobile devices,
such as smart phones, is an essential part of realizing mobile AR ap-
plications. But the mobile devices have limited performance com-
pared to desktop PCs, low throughput, limited storage, and slow
memory. Mobile devices lack the processing performance to track
multiple objects. Specifically, an arbitrary shape object tracking al-
gorithm needs a high-performance processor, such as a multi-core
CPU and GPU. Therefore, we add a server to make up for the lack
of processing performance in mobile devices.

As shown in Fig. 1, the proposed inter-camera approach divides
server and client. The server tracking is focused on multiple
objects; it tracks using natural features and calculates relations
between multiple objects using the results of tracking as, camera
pose. Client tracking is single object tracking only, using natural
features and restoring the camera pose of the other objects, using
received data that is relational data from the server.

3.1 Object detection

Multiple objects tracking using natural features is a must for real-
izing server tracking. It has to guarantee processing speed in real-
time. This part is important for server tracking and client tracking.
But client object detection considers a single object that reduces
part of multiple objects.

The natural feature tracking is composed of four steps (see
Fig. 2): feature extraction, feature description, feature matching,
and pose estimation. The feature points are enough interesting
points of an image captured by a camera. It is robust enough to
recognize a point that is the same point in different images. First,
we do not estimate the feature points scale using the FAST corner
detector [14]. To reduce the time consumption for scale estimation,
we acquire the database containing descriptors from the multi-scale

90

B Original Method e

B Proposed Method [y
[

« Scale-less FAST Keypoints
+ using Rosten’s FAST corner

(scale space)
[L e
A
S F 2

N

F L) 4

+ Histogram based patch

+ Maxima&minima of DoG
3
b

sampling points
or’s method

v e
L2 2

ol

v

+ Image gradients
with gaussian weight

+ Pre-calculate
multi-scale descriptors

+ Scale estimation

Figure 2: Comparison of object detection using natural features
between the original method(SIFT[9], Wagner's work[18], Scale-
estimation[17]), and the proposed method(FAST[14], corner and
SURF[1]).

. S | Image based
image *
 Ee—
Feature Extraction Adaptive Threshold
i |
Descriptor creation ===
|
v v L 4
Descriptor matching - . e
#1
Compute - .. G
camera pose #1

Figure 3: Multiple objects using natural features with guaranteed process time

Client-side camera

Object 1

Figure 4: Relation between objects independent server and client cameras

feature points in advance. Second, we estimate the orientation of
each feature point based on the image patch that is the area around
the feature point [16]. Then, by exploiting the calculated orienta-
tion, it makes each feature invariant to the rotation. The patch is
rotated to compensate for the rotation. Based on the rotated patch,
a descriptor is created. That is the SURF[1]-like descriptor.

The descriptors for all feature points in the input image have
been created. They are matched with the descriptors in the
database. The database is pre-computed for every feature point
and descriptor from the registered image. The descriptor database
constructs a tree structure, using KDtree [2], to find nearest
descriptor quickly. Finally, we estimate a camera pose from the
correspondence points between feature points in the input image
and feature points in the database. Moreover, to support the robust
and fast feature tracking, we use image-to-image feature tracking
method to reduce the processing time for physical object tracking.

3.2 Multiple objects tracking

Our proposed detection algorithm, using the natural features in sec-
tion 3.1, is enough to track several objects. However, we should

91

guarantee process time in real-time for multiple objects tracking.
So, we add several techniques to increase the speed, less effect on
the number of tracked objects (see Fig. 3).

We apply an adaptive threshold to keep the number of features
at the feature extraction step for every frame and the time division
approach to guarantee the processing time because the process
time for the feature extraction step and the description step are
dependent on the number of features. The feature matching step is
also highly dependent on the number of objects. We apply the time
division approach, but this approach has a problem. The problem
is the term of divided times. To connect this term, we keep the
feature points, using the image-to-image tracking method, which
is independent of the number of objects since the image-to-image
tracking method depends on the image resolution. Therefore, this
method is less influenced by the entire processing time for object
tracking.

3.3 Pose restoration

The server tracks multiple objects and calculates the relations of
the camera pose to restore the camera pose for each object in the

client. But the server and client cameras may have different lenses
and hence different intrinsic parameters.

Ky # K.)
Therefore, we divide the camera pose P into intrinsic matrix K and
extrinsic matrix (R|f) to remove the effect of the intrinsic parame-
ters on each side

P =K(R|t).)

Fig. 4 shows the camera pose of multiple objects (Rs 1. »|fs.1..n)
in the server. We can calculate the relation between objects

o (R/|t/) that is independent not only of the intrinsic parameters
but also of the pose of the camera in the server using Eq. 3;

/ ! 71
R t _ Rs,l 51 Rs72 Is2
0 (0 1) = (0 1 0 i ®
The relation between objects 8(R |r') is independent of the server
camera, not only of the pose, but also of the intrinsic parameters.

So, the client can restore the camera pose of object 2 using the
extrinsic matrix of object 1, and the relation between the objects

may be expressed as
Rep tep N\ _(Rep 1t R 1
(0 1)‘(0 1>X5(0 1) @

Then, it is possible to restore the camera pose of object 2 using
Eq. 4, as shown in Eq. 5:

Pc,2 =K. (Rc,2|tc,2)~ (5)

4 IMPLEMENTATION AND RESULTS

In this section, we explain the practical implementation issues of
the proposed approach and show experimental results. We used a
general PC with a 2.93 GHz CPU for a server and a TOSHIBA
TGO1 equipped with Windows Mobile 6.5 OS and snapdragon
as the ARM-based 1 GHz CPU for the client. The camera in
server resolution was 640x480 pixels, and it supported up to 30
frames per second for tracking. The camera in the smart phone
was 320x240 pixels and produced up to 15 frames per second for
tracking and rendering the image onto a screen. We implemented
an inter-camera system using OpenCV[4] library and oscpack[3]
as the UDP networking library. We implemented different code
paths for the PCs and mobile phones based on the flowchart (See
Fig. 1). In the server, we concentrate on the accuracy of the camera
pose results. In the client that is a smart phone, we focus on the
speed of the natural feature tracking.

4.1 Server tracking

The server tracking system (see Fig. 5) that supports multiple tar-
get tracking needs to run both the multi-target detection as well as
the tracking task that each targets simultaneously: the tracker must
estimate the poses of all previously detected targets while another
tracker detects other targets.

The server tracking system will guarantee processing time less
effect on the number of tracking objects. Fig. 8 shows the perfor-
mance of the multiple objects tracking. The results of the perfor-
mance are less effect on the number of tracking objects and trained
objects.

92

30

251 1

N
=]

processing time (ms)

[1FAST comer Extraction
[Descriptor Generation
[Feature Matching
I Opticalflow

I Pose Estimation

n 12 13 1/4 1/5
number of tracked objects / number of trained objects

(a)

30

251 4

n
=]

processing time (ms)

[_1FAST corner Extraction
— Descriptor Generation
[Feature Matching
I opticalfiow

I Pose Estimation

1/5 2/5 3/5 415 5/5
number of tracked objects / number of trained objects

(b)

Figure 8: Results of the multiple objects tracking performance ((a)
performance difference of the number of trained objects; (b) perfor-
mance difference of the number of tracking objects)

Fig. 8(a) shows that the change in processing time is dependent
on the number of trained objects. If the number of trained objects is
larger than 2, this graph shows that the processing time is less effect
on the number of trained objects, and a point of difference appears
on the number of trained objects between 1 and 2 because multiple
objects tracking is needed to switch the search tree and manage the
feature points.

In case of a change in the number of tracked objects, Fig. 8(b)
has increased the processing time a little by changing the number
of tracked objects because the server tracking is detecting multiple
objects over frames. That, we can keep the entire processing time
in real-time.

4.2 Mobile tracking

The mobile tracking system (see Fig. 6) that supports sufficiently
speedy tracking of the single target in real-time needs to run
both the detection and the tracking tasks simultaneously while the
tracker estimates the pose of all previously detected targets in a few
frames. Code optimization is one of the important parts of a mobile
tracking system [10]. This work aims at accelerating single object
tracking using source code-level optimization based on the multiple
objects tracking method.

We measured the processing time to recognize a planar object

5
§
£
8
@

Detecfi‘un Nurmbe;

f O —

Ay CameraCapture

nti:

Figure 7: Result of calculation of relation and restoration ((a): multiple objects tracking in server, (b): restoration in client)

Table 1: Performance results of the single object tracking on mobile phone (ms)

Algorithms Feature Feature Extraction Feature Pose Sum
Tracking Describing Matching Estimation
Process Time 35.73 10.24 36.71 15.83 98.51

Table 2: Average difference between result of restoration from server and result of tracking in client (units : mm)

X-axis y-axis Z-axis
Average of error 3.632 12.553 18.159
Standard deviation of error 2.795 4.030 5.506

93

400 -

200 -

position(mm)
=)
T

=200

=40

—-600

—+— x—axis detection in client
—6— X—axis restoration
—>— y—axis detection in client
— ' = y-axis restoration
—HE— z-axis detection in client
—¥— z-axis restoration

1 1 1 1
400 410 420 430 440

1 1
450 460 500

Frames

Figure 9: Difference between result of restoration from server and result of tracking in client each axis in sampled range

700

z-position(mm)

) failure points in client tracking

—¥— x-axis detection in client
—HE— x-axisrestoration

-10 !
0 100 300 400

I 1 I
500 600 700 800 900 1000

Frames

Figure 10: Difference between result of restoration from server and result of tracking in client z-axis

and to track the natural features (see Table 1). The average
processing time per frame is around 100ms on a smart phone,
resulting in a potential frame rate of 10 frames per second. So we
can possibly track the planar target in real-time to restore the poses
of multiple objects and to realize an AR application.

4.3 Relation & restoration

We mentioned an inter-camera approach in using the relation be-
tween objects. Fig. 7(a) shows the server tracking that represents
the multiple objects tracking and calculation of the relationships.
Fig. 7(b) shows client tracking that consists of restoration using the
relations from the server. In particular, the yellow rectangle and
inside 3D axis represent the pose of a hard-to-track object.

We measured the accuracy of the restoration using relation data
from the server in sampling data that is well detected by both the
server and client tracking algorithm (See Fig. 9 and Table 2). Each
group of lines is a restoration of the camera position from the
server and the detected camera position on the client side. The

94

result of difference camera poses between server and client is quite
accurate (within 2 centimeters) and is, moreover, stable. Fig. 10 at
point of circle and after 760 frames shows points of cannot tracked
the object in the client, but the server tracker is able to track that
object. Thus, the client can restore the pose of that object from the
relation data obtained from the server.

5 CONCLUSIONS

We have proposed an inter-camera approach that supports real-time
multiple objects recognition and tracking in mobile devices. We
showed that the proposed inter-camera tracking is useful for
tracking in mobile devices. By using the proposed inter-camera ap-
proach, we have made it possible to realize mobile AR application.
In the future, we will consider multiple cameras in the server and
multi-user’ cameras to support more robust tracking. Especially,
in the case of multi-users, it is possible to use the results of object
tracking in another client’s mobile devices, and it is also possible
to realize interactive mobile AR applications.

REFERENCES

[1]
[2]

[3]
[4]

[5]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust fea-
tures. In ECCV 2006, 2006.

J. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in highdimensional spaces. In CVPR 1997, 1997.
R. Bencina. oscpack. http://www.audiomulch.com/ rossb/code/oscpack/.
G. Bradski. The opencv library. http://opencv.willowgarage.com/,
2000.

J. Gausemeier, J. Fruend, C. Matysczok, B. Bruederlin, and D. Beier.
Development of a real time image based object recognition method for
mobile ar-devices. In Inetrnational Conference on Computer Graph-
ics, Virtual Reality, Visualisation and Interaction, pages 133-139,
2003.

K. Georg and M. David. Parallel tracking and mapping on a camera
phone. In ISMAR 2009, 2009.

B. Jiang, U. Neumann, and S. You. A robust hybrid tracking system
for outdoor augmented reality. In VR 2004, pages 3-10, 2004.

G. Klein and T. W. Drummond. Robust visual tracking for noninstru-
mented augmented reality. In ISMAR 2003, pages 113-122, 2003.

D. Lowe. Distinctive image features from scale-invariant keypoints. In
International Journal of Computer Vision, volume 60, pages 91-110,
2004.

N. Mcallister. Rethinking code optimization for mobile and multi-
core. http://www.infoworld.com/d/developer-world/rethinking-code-
optimization-mobile-and-multicore-505, 2009.

Y. Park, V. Lepetit, and W. Woo. Multiple 3d object tracking for aug-
mented reality. In ISMAR 2008, 2008.

W. Pasman and C. Woodward. Implementation of an augmented real-
ity system on a pda. In in Proc. The Second IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality (ISMARO3, pages
276-277, 2003.

W. Piekarski, B. Gunther, and B. Thomas. Integrating virtual and
augmented realities in a outdoor application. In IWAR 99, pages 45—
54, 1999.

E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV2006, pages 430443, 2006.

J. P. Suya, J. Park, S. You, and U. Neumann. Natural feature tracking
for extendible robust augmented realities. In International Workshop
on Augmented Reality (IWAR) 98, 1998.

S. Taylor, E. Rosten, and T. W. Drummond. Robust feature matching
in 2.3 microseconds. In IEEE Workshop on Feature Detectors and
Descriptors, 2009.

T. Tuytelaars and K. Mikolajczyk. K.: Local invariant feature detec-
tors: A survey. pages 177-280, 2008.

D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In ISMAR
2008, pages 125-134, 2008.

D. Wagner and B. Schmalstieg, D.and Horst. Multiple target detection
and tracking with guaranteed framerates on mobile phones. In ISMAR
2009, 2009.

D. Wagner and D. Schmalstieg. Artoolkitplus for pose tracking on
mobile devices. In Computer Vision Winter Workshop, pages 139—
146, 2007.

95

