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ABSTRACT

Currently, content for stereoscopic and auto-stereoscopic displays
is mainly generated from videos or from synthetic data. Very few
examples of applications for 3D displays mixing these both ap-
proaches are available because processing time and multi-view ren-
dering are important constraints. In this paper, we present a capture
system based on a depth camera and a color camera that is suitable
for augmented reality on 3D display. The key-point of our approach
is to be able to generate in real time an exact 3D model of a scene
thanks to a time of flight camera. This mesh is then used to compute
interactions between the real scene and virtual objects. Moreover,
several images from new viewpoints are produced from that result
and are displayed on a auto-stereoscopic display in real time.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—; I.4.8 [Image processing and computer
vision]: Scene Analysis—

1 INTRODUCTION

Integrating virtual elements in a real environment can be a com-
plex problem especially when the result have to be displayed on a
stereoscopic display. Mainly, real time is difficult to maintain since
the computational time to generate the two input images required
by the 3D display is too high. This becomes more problematic with
an auto-stereoscopic screen that needs from 5 to 65 input images.
Moreover, this latest family of displays can also require the use of
many capture devices, which can be expensive and difficult to man-
age. In that sense, some image based rendering or depth image
based rendering solutions have been proposed [5, 14, 18, 23], but
produce results with an average quality or can’t reach real-time.

Knowing the depth of a given environment in real-time is a very
useful information especially for the purpose of multi-view render-
ing. A standard depth camera is then suitable in such situation,
but doesn’t provides the corresponding color image. In a previous
work, Bartczack et al.[1] proposed a system based on a time-of-
flight camera, a color camera and a fish-eye camera. They generate
a mesh from the depth values transmitted by the depth camera and
use the result to resolve the mismatches between the viewpoints of
the color camera and depth camera. The role of the fish-eye camera
is to initially capture and generate a static mesh of the background
in order to reduce the occlusions. Authors use the final result for
a mixed reality application by adding static virtual objects in the
scene.

Our capture system is also based on such kind of depth camera.
The color information is captured thanks to another high resolution
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Figure 1: A color camera is added in the system since our depth
camera cannot capture the color information.

camera located next to the depth camera. Then, the system gener-
ates a 3D model of a given scene in real time that helps to resolve
the mismatches between the both cameras’ viewpoints. Moreover,
the mesh is also used to compute interactions between the real scene
and virtual objects and to generate the multiple views required by
an auto-stereoscopic display.

This paper is structured as follows. We start by giving an
overview of the depth and color cameras based system that takes
advantage of a 3D-mesh to correct the mismatches between the two
viewpoints. Then, we present our method to generate the multi-
ple views of the captured scene in order to be displayed on a 3D
display. In the next section, we describe our approach to compute
interactions between the real scene and virtual objects by using our
capture system.

2 THE DEPTH CAMERA

2.1 Description
The depth map corresponding to a given environment can be ob-
tained by using different techniques. Several previous works in-
troduced depth map generated from one or several color cameras.
Depth estimation based on a single camera is often considered as
non-accurate and requiring higher computation costs. Those algo-
rithms take advantage of depth cues such as shading, linear per-
spective, defocus, texture [10, 6, 8]. Such approaches are suitable
for pre-processing a video in order to convert it into a stereoscopic
one. In that case, the result is often enhanced thanks to a manual
operation.

With two or more cameras, the accuracy of the result and compu-
tational time depends on the algorithm used. Preferred approaches
are based on the computation of a disparity map between two
views [16] or the study of the motion thanks to an optical flow
method [11] for example.

The recent depth cameras are a compromise between the num-
ber of required devices and the accuracy of the result. The main
technology used for depth cameras is named Time-Of-Flight or
TOF [9]. It is made of an illumination unit (LEDs) and a capture
unit (CCD/CMOS sensor). A light pulse (IR) is emitted, reflected
by the objects located in the scene and come back toward the sen-
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sor of the camera. The time corresponding to the travel of the light
is precisely computed and used to evaluate the depth value of each
pixel. The Swiss Ranger SR4000 [15] time-of-flight camera can
generate a depth map in real-time, and can also provide a gray-
scale amplitude image, a confidence map and the spatial coordinate
associated with a depth value for each pixel of the sensor.

However, the color information is not generated by most of the
depth camera systems based on the TOF technology.

2.2 Adding color information
The color information is obtained by adding a color camera besides
the depth camera as depicted in Fig. 1. The viewpoint of both cam-
eras is different, so the depth image has to be transformed to match
the color camera’s viewpoint. This is composed of two steps : a
calibration stage and a mapping stage.

The Swiss Ranger depth camera provides a spatial coordinate
for each depth value. In our approach, we take advantage of these
data to generate a mesh of the captured scene. If those data are not
generated by the depth camera, they can be obtained if each depth
values is multiplied with intrinsic parameters of the depth camera.
Then, we project the color image onto that mesh and render it from
color camera’s viewpoint to obtain the corresponding depth infor-
mation. We chose to achieve the rendering from the color camera’s
viewpoint because the resolution of the depth camera is low and
we also want to maintain the quality of the color image that has an
important role in scene perception [21]. Our mesh based approach
can easily take advantage of the graphic card (GPU) and rendering
process of multiple views can then be achieved in real-time.

2.2.1 Calibration
The goal of the calibration stage is to get the position estimation
of the color camera (extrinsic parameters) according to the depth
camera’s parameters. We assume that depth and color cameras are
fixed together, so the calibration stage should have to be evaluated
just once.

The pose estimation of depth and color cameras has to be eval-
uated in the same coordinate system in order to be able to project
the color image onto the mesh generated from the depth map. As
explain in the previous sub-section, the depth camera provides the
corresponding 3D coordinates for each pixel of the depth image.
This set of points is defined in a coordinate system wherein the
depth camera’s position is at the origin. Following this statement,
the depth camera is also set as the origin of our capture system.
Then, the calibration stage only requires to estimate the extrinsic
parameters of the color camera.

Using a set of 2D/3D correspondences is a common way to esti-
mate the pose of a camera with OpenCV for example (Fig. 2). First,
2D correspondences are found between the depth (using the gray-
scale amplitude image) and the color image thanks to a chessboard
pattern or by clicking several pixels. Second, since a 3D coordi-
nate is defined for each pixel of the images generated by the depth
camera, a list of 2D/3D correspondences between the color image
and the 3D space is created. The confidence map provided by the
depth camera is used to remove the correspondences that may have
inaccurate 3D coordinate.

2.2.2 Mapping
In order to compute the depth map corresponding to the viewpoint
of the color camera, our objective is to take advantage of a mesh
generated from the 3D coordinates provided by the depth camera.
The mesh can also be generated from the depth by using intrinsic
parameters of the depth camera. In that case, a unit vector is com-
puted for each pixel of the depth image and scaled according to the
corresponding metric depth value to get the 3D coordinate .

The relation among the depth camera, the color camera and the
mesh is depicted in Fig. 3. A computer graphics based approach

Figure 2: Four images are used for the calibration. (A) the depth
map, (B) the corresponding gray scale image, (C) the confidentiality
map and (D) the color Image.

Figure 3: Our approach uses a 3D mesh to generate the depth map
corresponding to the color cameras viewpoint.

significantly reduces the processing time in comparison to a stan-
dard Depth Image Based Rendering (DIBR) approach.

The intrinsic and extrinsic parameters, computed during the cal-
ibration stage, are used to set up the position of the viewpoint for
the rendering stage. The mesh, made of triangles and defined in the
coordinate system of the depth camera, is then observed from the
viewpoint of the color camera. The mesh is finally rendered with
that setup.

The rendering process will also automatically generate a depth
map but the computed z-values are not linear due to the OpenGL
non-linear transformation. A GPU-based program is then used to
convert this depth map into a metric depth information. This op-
eration requires to get the position of the vertices in the camera
coordinate system (MODELVIEW transformation) and to quantify
it between 0. and 1.0 according to a given maximal depth value.

A solution to map the color image on the mesh is to apply a pro-
jective texture technique [4] that generates automatically a texture
coordinate for each vertex of the mesh. This method requires to
define a projective texture matrix as follows:

Mtexture =
[0.5 0 0 0

0 0.5 0 0
0 0 1 0

0.5 0.5 0 1

]
×Mpro jection×Mmodelview (1)

Where Mpro jection and Mmodelview are matrices defined accord-
ing to the converted intrinsic and extrinsic parameters of the color
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Figure 4: Comparison between the edges color image and its cor-
responding depth-map. Errors are mainly located in occlusions and
close areas. Especially, the screen on the left part is not visible from
the depth camera, so depth information doesnt match in this area.

camera. The texture coordinates are obtained by multiplying each
vertex of the mesh by this matrix using the GPU for example. Then,
the color information will be correctly mapped on the mesh, even if
the viewpoint is modified.

2.2.3 Results
In our approach, occlusions are reduced because we are using only
one mesh in which all the points are connected with triangles. So,
occlusions are replaced by an automatic interpolation between two
different depths. However, occlusions also exist in different parts of
the border of the image, but contrary to the previous case, the mesh
is not defined for those areas. Our solution is to extrude the borders
of the mesh based on the depth of the points located on the borders
of the mesh. However, the extrusion, presented in the bottom left
of Fig. 4 (right part of the mesh), will generate unstable flat areas in
the depth map because depth information located on the border of
the image are less accurate.

A matching between the color image and the edges extracted
from the depth map is presented in Fig. 4 and shows that errors
are mainly located in the previously described flat areas, in areas
close from the depth camera, on specular objects and on occlusion
areas. With our approach, the depth map corresponding to the color
camera’s viewpoint is generated in real time. The rendering is real-
time (35 frames per second) and only limited by the frame-rate of
the cameras.

3 INPUT FORMAT FOR AUTO-STEREOSCOPIC DISPLAYS

Auto-stereoscopic displays are all based on the same principle: they
receive several input images captured from slightly different view-
points and display them thanks to a special filter that will spread
images over the field of view. So, if the user is well located in front
of the display, each eye can see a single specific image.

Each auto-stereoscopic screen has its own format for input im-
ages, but we can categorize two main families: the 2D plus depth
format and the sub-pixel alignment Format.

3.1 2D-plus-Depth Format
The 2D plus Depth Format, introduced by Fehn [5], consists of a
color image associated with its corresponding depth map. Both in-
formation are combined to generate new images from slightly dif-
ferent viewpoints. Occlusions are resolved by interpolating existing
values or by using methods like in-painting. The main advantage of

Figure 5: Input image based on the 2D plus depth format used by the
Philips auto-stereoscopic screen.

this format is to reduce the bandwidth because only two images are
transmitted.

The 2D-plus-Depth input format was selected by Philips [17] to
integrate the auto-stereoscopic displays. Users have to provide a
color image with its corresponding depth map, but can also add an
image of the background and a mask of the foreground in order
to reduce occlusion problems. Hardware integrated in the screen
generates the new nine required views.

Our approach can easily generate the color image with its corre-
sponding depth map in real time. Depth information is easily and
quickly mixed with the color image map by using the GPU to fit
the requirement of the 2D plus depth format. An example of input
image is presented in Fig. 5.

3.2 Sub-pixel Alignment Format
Another kind of input requires to provide directly all the views to
the screen. All these images have to be regrouped into a single big
image to be displayed on the screen. However, the organization of
the images cannot be reduced to a simple interleaving or juxtapo-
sition because it will increase the horizontal resolution of the final
image while the vertical one will remain the same. This limitation is
commonly resolved by proposing a particular sub-pixel alignment
of the different images into a single one [20].

So, we first need to generate the new views by using our mesh
based approach. a 3D mesh reduces significantly the complexity of
the multi-view rendering because we can use the principle of stereo-
scopic rendering algorithm in the same way than computer graph-
ics. It consists of a translation of the viewpoint along a specific
axis according to the eye separation distance and the view direction.
This axis is extracted from the first column vector of the OpenGL
MODELVIEW matrix, which corresponds to the right vector of the
color camera’s system coordinate. An example of result obtained
with our approach and using a sub-pixel alignment is presented in
Figure 6.

However, multi-view rendering is often considered as a slow pro-
cess since each view requires a specific rendering pass. Computa-
tional time can be very high, especially when the geometry is made
of thousands of triangles (25000 in our case). A method introduced
by de Sorbier et al. [3] can be used to speed-up the process thanks
to a GPU-based multi-view rendering algorithm.

4 INTERACTIONS WITH VIRTUAL OBJECTS

In previous sections, we explained that the result was based on of
a mesh generated from the depth information. The benefit of this
approach is to speed-up and simplify the multi-view rendering for
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Figure 6: Input image based on a sub-pixel alignment used by the
Tridelity auto-stereoscopic screen. This image is the result of a com-
bination of five different views.

auto-stereoscopic displays. In this section, we present an applica-
tion of our capture system for augmenting a real scene with virtual
objects that also takes advantage of the mesh. In particular, it be-
comes possible to easily interact with the virtual objects.

4.1 Interactions
Generic approaches to augment a real scene with virtual ele-
ments [7] use the geometric context extracted form captured im-
ages. Specific objects are tracked over the time making possible
to evaluate their position and orientation. The knowledge of such
characteristics are very important in order to correctly associate vir-
tual elements with those objects. However, it often increases the
computation cost and is not always suitable for on-line applications.

A survey introduced by Kolb et al. [12] describes several appli-
cations using time-of-flight cameras dedicated to user interaction
and user tacking. The depth map is analyzed to estimate position
of different parts of the user’s body. This approach is used with
interactive screens for which no specific device are required to ma-
nipulate virtual content.

Bartczak et al. [1] presented an application of time-of-flight cam-
era for mixed-reality. They integrate virtual objects in real scene by
taking also advantage of a mesh generated from depth information
but did not propose any kind of interaction. In that approach, the
position of virtual objects is manually set, so there are not taking
advantage of the geometry to automatically setup the position of
the virtual objects.

The mesh generated from the depth camera has two benefits.
First, occlusions between the real scene and virtual objects are eas-
ily resolved thanks to the depth test applied during the OpenGL
rendering stage. Second, physical interactions between virtual and
real objects are computed in real-time thanks to the mesh we are
using to simulate the real environment. So, our approach is then
completely similar to a standard computer graphics application.

In computer graphics, a common approach to generate interac-
tions is to integrate a physics engine. We decided to use such tech-
nique into our system. Our mesh is dynamic, meaning it is updated
for every new frame, but most of existing libraries require a static
mesh to speed up the computation of collisions or insure the stabil-
ity of the computation. Bullet [2] is the only open-source library
suitable for that purpose. It computes a bounding box for each in-
dependent object and evaluates collisions between each boxes. If a
collision is detected, the physical engine computes more precisely
a possible collision among the triangles of the meshes. The physics
engine also provides tools to compute the reactions of objects after
a collision and then to produce a realistic behave.

Figure 7: Our application proposes an interaction with a virtual ball
in real-time.

Figure 8: The virtual lighting of the mesh generated by the depth
camera gives a poor quality result because a the instability of the
mesh.

However, the mesh created by the depth camera is updated every
frame and looks slightly unstable because of the accuracy of the
capture device (few centimeters). This means that a surface that
should be flat will appear with wavelets evolving in the time. So,
an object that should lay on a surface will have shake because of the
instability of the mesh. A solution could be to detect and replace
flat surfaces with a new mesh.

4.2 Virtual lighting
An important point for augmenting a real scene with virtual objects
is lighting. The goal is to illuminate the virtual objects according
to the position of the real light source or to the position of a new
virtual light source.

This approach requires to provide a normal for each point of the
mesh in order to obtain a smoother lighting. We first define the nor-
mal of each vertex to zero. Then, we compute a normal for each
triangle and add it to the three vertices belonging to the triangle.
Finally, after computing the normals for each vertex, they are nor-
malized. Lighting is computed with standard OpenGL methods but
the instability of the mesh described in the previous sub-section re-
duces significantly the quality of the result as depicted in Fig. 8.

Another effect of lighting is shadow casting. A previous
work [19] already introduced the use of shadows in mixed reality
by using a depth camera, but uses a static light map that does not
evolve in time and concerns only virtual objects. In our approach,
we are using dynamic objects so we need to compute shadows for
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Figure 9: On the left image: the augmented scene without shadows.
On the right image: real objects cast shadows on virtual objects and
vice-versa.

every frame. Moreover, we use the mesh generated from the real
scene to cast shadows on virtual objects.

We use the algorithm of shadow mapping [22], which doesn’t
rely on the complexity of the geometry complexity and is suitable
for real-time applications. The basic concept of the shadow map-
ping method is to compare depth of a same point from the viewpoint
and from the light source position. If the depth value is different,
then it means that an occlusions exists and that the color of the point
corresponding to that depth value should be altered to simulate the
shadow. An example of result is presented in Figure 9.

4.3 Results
We experimented our algorithm on a bi-Xeon 2,5Ghz running
Linux. The graphic card is a nVIDIA GeForce GTX 285 with 1Go
memory. We used a resolution of 800×600 for the rendering stage.

With physical interactions and shadow casting, we obtain an av-
erage frame-rate of 45 frames per second. The frame-rate decreases
to 35 frames per second when we add the multiple view rendering
(5 views) for auto-stereoscopic displays.

5 CONCLUSION

We have presented a depth-camera based capture system that is
used to create an augmented reality application. A 3D mesh is
generated in real-time and is transformed to match the viewpoint
of the color camera. Then, the mesh is used to create interactions
between virtual objects with the real environment in real time. Fi-
nally, several images are rendered from different novel viewpoints
in real time and used on auto-stereoscopic displays. Depth cameras
still remain expensive, but coming devices like [13] could change
this problem.

We explained that interactions between virtual elements and the
real scene suffer of the instability of the mesh. So, for example,
a virtual object that should lay on a flat surface will have small
unexpected movements, or virtual relighting of the real scene will
be of poor quality. In future works, we expect to improve the result
with flat surfaces detection that can be replaced in the mesh.

The result of multiple view rendering and interactions can also
be improved by reducing the occlusion problems of our approach.
For example, we plan to add one more depth camera and/or another
color camera or to segment the mesh into several layers.
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