
Late Breaking Results: Enabling interoperability between 3D formats
through a generic architecture

Rozenn Bouville Berthelot∗
Orange Labs and IRISA, Rennes, France

Jérôme Royan†

Orange Labs France
Thierry Duval‡

IRISA, Rennes, France
Bruno Arnaldi§

IRISA, Rennes, France

Figure 1: Our architecture allows the loading of any 3D graphics format simultaneously in any available rendering engine. The scene graph
adapter is an interface that adapts a scene graph (SG) of a given format into a renderer scene graph and which also allows the rendering part to
request this scene graph.

ABSTRACT

The ever growing number of 3D formats and rendering engines in-
evitably leads to compatibility problems, which makes difficult the
use of any 3D format into a rendering engine and nearly impossi-
ble the interoperability between them. We thus propose a generic
architecture able to decode and mix 3D formats whatever the ren-
dering engine used by Virtual Reality platforms. This architecture
is based on a scene graph adapter which relies on two APIs to han-
dle each 3D format, wrap each rendering engine and allow them
to communicate. Thanks to this flexible architecture, format and
renderer wrappers are both reusable.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; D.2.12 [SoftwareEngineer-
ing]: Interoperability—Data mapping; D.2.13 [SoftwareEngineer-
ing]: Reusable Software—Reusable libraires

1 INTRODUCTION

Interoperability in computer science has always been a challenging
problem. In this paper we will focus on the problem of 3D con-
tent interoperability. As stressed by Polys in [4], interoperability
is a "crucial requirement for success" of Virtual Reality (VR) sys-
tems. Creating 3D content is indeed expensive and time-consuming
and slows the widespread of VR. However there exist more than 50
3D graphics formats (including proprietary formats) and although
some of them are more or less abandoned, new ones continue to ap-
pear such as XML3D [5] which has been released this year. These
formats are of different types and we propose to classify them as:
a) 3D modeller formats (3ds Max, Maya, ...) b) 3D renderer for-
mats (Ogre mesh, Unity, ...) c) exchange formats (Autodesk’s fbx,
Collada, ...) d) scene description formats (VRML, X3D, ...).

In the following we will focus on the problem of generating a
3D scene composed of several 3D contents defined in different 3D

∗e-mail: rozenn.bouville@orange-ftgroup.com
†e-mail:jerome.royan@orange-ftgroup.com
‡e-mail:thierry.duval@irisa.fr
§e-mail:bruno.arnaldi@irisa.fr

formats. Our goal is to propose an architecture that can perform this
task without transcoding these contents whatever their formats and
the targeted viewer (for example loading Collada and X3D objects
in the same viewer directly).
As it is noticed in [2], there exists so far no other solution to this
problem than to resort to format conversion. Each rendering en-
gine supports a limited amount of input formats. Contents that are
not supported must be converted but this process often leads to a
loss of functionalities. Actually the reason why new formats are
still emerging is to bring new features that do not exist in other
formats, which means that content degradation must be avoided as
much as possible. Mixing several 3D formats allows functional-
ity mixing e.g. loading a Collada object with physics properties in
an X3D scene to examine it using X3D’s navigation and interac-
tion functionalities. The possibility to mix 3D formats also allows
a more efficient collaborative work. Research teams can share their
resources without being hampered by compatibility problems.
On the other hand we observe that there are many similarities in 3D
formats. Most of them are based on a scene graph data structure.
They also use similar ways to model objects and to organise data
in the scene graph (similar shapes description with a separation be-
tween geometry and appearance, similar modeling transformation,
similar grouping node, similar primitive shapes, ...). Likewise we
observe that most rendering engines also use scene graph represen-
tations even if it is aimed at different usages and even if they have
different functionalities.
These observations lead us to the conclusion that it must be possible
to describe a generic scene graph interface allowing cooperation be-
tween a given 3D format scene graph and the renderer scene graph.

2 THE GENERIC ARCHITECTURE WE PROPOSE

We propose a scene graph adapter interface to be used in a flexible
architecture that allows simultaneous rendering of multiple 3D for-
mats with any rendering engine. This architecture is to be used in
an application that will not be described in this paper. As shown in
figure 1, our architecture is composed of 4 components: a) format
decoders, b) format wrappers, c) the renderer wrapper, d) the ren-
dering engine.
The format decoders parse input files of a given format and also
manage scene graph updates as well as format specific processes.
They are specific to each 3D format and can integrate any useful

20th International Conference on Artificial Reality and Telexistence
(ICAT2010), 1-3 December 2010, Adelaide, Australia
ISBN: 978-4-904490-03-7 C3450 ©2010 VRSJ

232



Figure 2: The 2 modes for accessing scene graphs information: a
pull mode and a push mode.

format tools. Each one keeps an internal representation of the scene
graph, we call this representation "format scene graph".
The rendering engine can be any rendering engine available
(Ogre3D, Unity, Open Scene Graph, ...). It keeps its own scene
graph that we call "renderer scene graph".
Wrappers part is to convert a format scene graph to a renderer scene
graph using the scene graph adapter. To achieve this, the scene
graph adapter provides 2 APIs: a format adapter API and a ren-
derer format API. The format wrappers and the renderer wrapper
must also achieve 2 differents tasks: an adapter task and an adaptee
task. We use those terms with reference to the adapter pattern GoF
139 [1] which concept is close to our architecture. The adapter task
consists in calling methods of the scene graph adapter. The adaptee
task consists in implementing methods of the scene graph adapter
using an external API. More precisely, during the format scene
graph evaluation process, the format wrapper adapter calls meth-
ods from the renderer adapter API. The implementation of those
methods is then delegated to the renderer wrapper adaptee using the
rendering engine API. On the rendering side of the architecture, the
renderer wrapper adapter relays request from the rendering engine
using methods of the format adapter API and those methods are
implemented in the format wrapper adaptee. The format wrappers
and the renderer wrapper interchange scene graph nodes informa-
tion from an adapter to an adaptee.
This architecture is highly flexible since: (a) we can import any 3D
format providing that we have developed the appropriate format
wrapper, (b) we can use any rendering engine providing that we
have developed the appropriate renderer wrapper, (c) format wrap-
pers and renderer wrappers can be reused and combined at will.
The design of the scene graph adapter is based on the observed
similarities in 3D formats and 3D rendering scene graph. The ba-
sic components of a scene graph were first described in [6]. Several
authors have proposed a generalized scene graph structure (as in [3]
for example) with a view to improving the rendering process. We
have used these previous works to design our interface; it provides
methods to add, remove, update and interrogate nodes. Therefore
our interface also provides methods to manage an index for each
node.

Since almost all 3D graphics formats share the possibility to
modify the scene (e.g. switch node, scripts or level of detail), the
scene graph adapter provides 2 exchange modes as illustrated in 2: a
push mode and a pull mode. In push mode, the whole format scene
graph is sent to the renderer wrapper which decodes it on-the-fly.
For example, if the format scene graph has a level of detail (LOD)
node, the complete LOD information is sent to the rendering engine
which manages LOD selection. In pull mode, upon request from
the renderer, a subgraph of the format scene graph is sent to the
renderer wrapper. Through that mode, LODs information are kept
by the format scene graph and the rendering engine is only aware
of the LOD that is currently rendered. On a change of level, the
rendering engine requests the appropriate node of the scene graph
format.
Through this architecture we can for example render an X3D file in
Ogre 3D (see figure 3). We first chose an X3D parser to use it in the

Figure 3: An implementation example with X3D as an input format
and Ogre3D as the rendering engine. This use case requires the
implementation of 2 elements: the X3D wrapper and the Ogre3D
wrapper.

X3D decoder (e.g. CyberX3D1). Then we implemented the X3D
wrapper that meets the given format scene graph specifications and
uses the call methods from the renderer adapter API. Finally we im-
plemented the Ogre3D wrapper using Ogre3D API. We can extend
our implementation with other formats by developing other format
wrappers while keeping the rendering part of our application. We
can also change the rendering engine by developing a new renderer
wrapper that complies with the scene graph adapter interface and
reuse the format wrappers.

3 CONCLUSION

We have proposed a generic architecture that allows combining dif-
ferent 3D objects described in different 3D formats in a unique ren-
dering window. Moreover we do not depend on a given rendering
engine. Our architecture is highly flexible as it fits to any 3D format
and any rendering engine based on scene graphs. It can be extended
at will to meet the requirements of future 3D formats and rendering
engines. Our approach has several benefits:

1) it supports every 3D formats and their functionalities without
any rendering restrictions,

2) it works with any rendering engine without any format re-
strictions,

3) it makes it possible to reuse and mix these components as
required by the application.
Up to now we have worked on the proof of concept of this architec-
ture. We have achieved a first implementation dealing with X3D
and Collada and using the Ogre3D rendering engine. Then we
plan to improve our architecture by allowing 3D objects that are
described in different formats to interact together. We also consider
extending our concept with a physics engine and a collaborative
engine in order to apply our architecture to virtual worlds.

REFERENCES

[1] Gamma E., Helm R., Johnson R., and Vlissides J. Design patterns:
Elements of reusable Object-Oriented Software.

[2] S. Havemann and D. W. Fellner. Seven research challenges of gen-
eralized 3d documents. Computer Graphics and Applications, IEEE,
27(3):70–76, 2007.

[3] J. D. Hinrichs. A generalized scene graph. Vision, modeling, and vi-
sualization 2000: proceedings: November 22-24, 2000, Saarbrücken,
Germany, page 247, 2000.

[4] N. F. Polys, D. Brutzman, A. Steed, and J. Behr. Future standards for
immersive vr: Report on the ieee virtual reality 2007 workshop. IEEE
Comput. Graph. Appl., 28(2):94–99, 2008.

[5] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek.
XML3D: interactive 3D graphics for the web. In Proceedings of the
15th International Conference on Web 3D Technology, pages 175–184.
ACM, 2010.

[6] P. Strauss and R. Carey. An object-oriented 3D graphics toolkit. ACM
SIGGRAPH Computer Graphics, 26(2):341–349, 1992.

1http://www.cybergarage.org/twiki/bin/view/Main/CyberX3DForCC

233




