

 An Immersive Programming System: Ougi
Noritaka OSAWA†*, Kikuo ASAI†*, Motofumi SUZUKI†, Yuji Y. SUGIMOTO† and

Fumihiko SAITO‡

†National Institute of Multimedia Education, JAPAN
*The Graduate University for Advanced Studies, JAPAN

‡Solidray Co. Ltd, JAPAN
{osawa,asai,motofumi,yuji}@nime.ac.jp saito@solidray.co.jp

Abstract

The Ougi immersive programming system employs
abstract data visualization and manipulations utilizing
virtual reality technologies. Its multimodal interfaces
allow one to edit a program, to control its execution and
to debug the program by direct manipulation and hand
gestures in an immersive virtual environment. Ougi uses
both textual and graphical representations and supports a
subset of the Java programming language as the target
language. Its graphical jigsaw-puzzle-like representation
shows grammatical constraints visually. Ougi enables us
to edit nested hierarchical structures and to perform
layout of graph structures using direct manipulation.
Ougi lets beginners focus on learning the essence of
programming without requiring familiarity with the
keyboard and commands of a conventional text editor.

Key words: immersive programming system, jigsaw-
puzzle-like representation, nested-board representation,
Java, Java3D

1. Introduction
It usually takes beginners a long time to make and debug
a program. This is partly because they need to
understand the new concepts, syntax, and semantics of a
programming language. Moreover beginners often spend
a lot of time editing a program and correcting typos and
misspellings, according to our observation, when a text
programming language is used because many novice
programmers are not used to touch typing (especially
those in non-western countries) or the operations of a
text editor or conventional programming environment
system such as Emacs or integrated development
environments (IDE). We think that this situation
adversely affects their programming efficiency as well as
their understanding of programming concepts.
Multimodal interactions in immersive virtual
environments can ameliorate this situation since the
interactions can be better modeled after reality than a
keyboard interface or GUI.

We think that three-dimensional space should be used in
order to fully utilize the body’s freedom of movement.
To view objects in 3D, a 2D display is insufficient

because it cannot give one an adequate sense of depth in
2D. Therefore a stereoscopic view is necessary to help
one to touch, grasp, and move virtual objects in an
immersive virtual environment.

We have developed a prototype system for immersive
programming called Ougi∗, whose work-in-progress
status was partly reported in [12]. Ougi allows one to
edit and manipulate programs through direct
manipulation and hand gestures in an immersive
environment. It naturally employs 3D visualization. The
current implementation supports a subset of the Java
programming language [4] as the target language.

The main goals of the Ougi system are full utilization of
the range of motion of one's body and the enhancement
of a person's understanding of programming. Although
the target users are both beginners and expert
programmers, the current system is focused on beginners.
Therefore, this paper explains the features and functions
designed with beginners in mind. The utilization of body
motion has a possibility to enhance the study of
programming of beginners who cannot learn the essence
of programming from a conventional programming
environments or only textbooks. This paper also reports
comments from students who used the system for a short
period.

This paper is organized as follows. Related work is
discussed in Section 2. Section 3 briefly explains Ougi
system. Section 4 and Section 5 describe visualization
and interactions in Ougi. After that, we show
screenshots in several views of Ougi, and explain
functions and features of Ougi in Section 6. Section 7
explains the implementation of the prototype system and
Section 8 discusses the prototype system. A summary is
given in Section 9.

∗ <http://www.nime.ac.jp/~osawa/research/ougi/>
Ougi is a Japanese word that has two different meanings.
One is “folding fan”, which is a symbol of expansion
and prosperity in Japan. The other is “secret”. It is our
hope that this system can help people to learn the secrets
of programming.

December 4-6, Tokyo, JAPAN

ICAT 2002

2. Related Work
There has been considerable research on visual 3D
programming and algorithm animation [2][5][7][14][15],
or visual object-oriented languages [3]. However, an
object-oriented programming system for immersive
environments has not been implemented. Ougi supports
object-oriented programming through one’s body motion
in an immersive environment.

 Moreover, interactive multimodal interfaces for
programming (or abstract and discrete information
structures) in immersive environments have not been
fully studied. Direct manipulation such as a grab-move-
release (or get-and-put) operation is basic in 3D, but
simply replacing the drag-and-drop operation in a GUI
with a grab-move-release operation in 3D is insufficient.
The design of 3D interactive interfaces is not a trivial
problem because the degrees of freedom in a 3D space
larger than on a 2D plane.

3. Ougi
As stated above, Ougi is an immersive programming
system. It utilizes 3D visualization and multimodal
interfaces. Specifically, a user wears 3D glasses that
give him or her a stereoscopic view of the virtual
environment and a sensor glove with a position tracker
for detecting motions of his hand and fingers in the
virtual environment. The user can ‘write’ a program by
moving his body or hands. Figure 1 shows a snapshot of
a user programming in the system. Ougi is also called “a
system for a dancing programmer” because as the
programmer uses the system, the programmer appears to
be dancing in the virtual environment.

Figure 1: A snapshot of Ougi

4. Visualization
In general, the layout of a program in Ougi is
automatically computed on the basis of layout rules such
as force-directed layout and flow layout. In addition to

automatic layout, we can move elements of a program
manually.

4.1. Nested Structures
It is reasonable to represent language elements by nested
structures according to the programming language’s
syntax. That representation is based on nested boards.
Although translucent nested-box representations such as
[7] were proposed and are interesting, those
representations are not suitable for direct manipulation
because it is difficult to select an inner box. When a user
wants to choose an inner box, the user’s hand intersects
with outer boxes and thus the selection is ambiguous. In
[7], direct manipulation of structures is neither discussed
in an immersive environment nor in a desktop
environment.

Therefore we used nested-board representation shown as
in Figure 2. Nested-board representation is better than
nested-box representation for direct manipulation in an
immersive environment since the inner structure in the
nested-board representation can be accessed without
intersecting with the outer structures. Unfortunately,
even if we use the nested-board representation, it is
sometimes difficult to manipulate directly an inner
element using a hand because the hand often touches or
collides with unintended elements other than the
intended inner element. A simple way to avoid this
collision is to increase both the size of boards and the
space between elements. This can solve the problem but
the number of elements in a fixed space is limited and
thus this is not desirable.

We therefore developed handle representation for direct
manipulation of nested structures as shown in Figure 10.
Each region has a handle shaped like a cylinder. Direct
manipulation of the handle is used to move and copy the
region. The nested structures and handles are not always
shown in the Ougi system since they may limit the
visibility within a structure or otherwise become visual
clutter. When the virtual hand intersects with the regions
of program elements, the handles of the regions appear.

Figure 2: Nested boards

4.2. Jigsaw-puzzle-like Visualization
Although conventional visual programming uses visual
objects to represent values, variables, or elements of a
language, we do not think that the conventional
visualization effectively visualizes information about
classes, types, or signatures of methods. Ougi represents
them by using 3D jigsaw-puzzle-like representation or
3D glyphs, which are based on 2D glyphs [9][11], in
order to show grammatical constraints visually. In this
paper, a glyph is a shape representing a relationship.

In the previous work[11], we demonstrated that all
classes of the Java 2 Standard Edition (J2SE) could be
given unique glyphs that satisfy the class inheritance
relationships. Since J2SE has more than 1500 classes,
jigsaw-puzzle-like visualization must be practical.

We also conducted experiments to determine the user’s
accuracy and speed to determine the inheritance
relationship between two classes[11]. The experiments
show that one can recognize inheritance relationships
faster when the proposed glyphs are used rather than
when an ordinary textual representation is used.

In jigsaw-puzzle-like visualization, a constraint is
represented by an inclusion of shapes. For example, if a
convex shape is included in a concave shape, they satisfy
a constraint. “Jigsaw-puzzle-like” does not mean an
exact match of shapes like an actual jigsaw puzzle.

As an example of jigsaw-puzzle-like visualization, let us
explain representations of a type constraint in an
assignment in the following. Unconstrained assignments
are shown in Figure 3. An assignment has placeholders
which are empty. The placeholders can include any type
variable or value.

If a variable is put in the left-hand side of an assignment,
the shape of the placeholder at the right-hand side is
changed to the shape which can include a type of the
left-hand side. A variable has a concave shape on the
front side of its shape and a convex shape on the
backside of it. The front side can hold a value of a type
which is a subtype of the variable. The backside can be
put in the concave placeholder which has a super-type of
the variable. Figure 4 shows an example of constraint
representation when the left-hand side of an assignment
is specified.

If a value is set in the right-hand side of the assignment
and the left-hand side is not specified, the wire frame
shape of the right-hand side is displayed in the left-hand
side. A variable at the left-hand side should not hide the
wire frame shape in order to satisfy the type constraints
in the assignment.

Figure 3: Unconstraint Assignments

Figure 4: An example of constraint representation
when the left-hand side of an assignment is specified

4.3. Textual and Graphical Visualization
Although Ougi is an immersive and multimodal
programming system, it does not eliminate textual
representations but utilizes both textual and graphical
representations. The textual representations are retained
as useful because we have all learned written languages
for many years and understood the meanings of many
words.

Hence we are not sufficiently trained in understanding
the meanings of graphical symbols such as icons. It is
difficult to understand abstract concepts only from
graphical symbols because we do not have standard
symbols for abstract concepts.

Furthermore, since most people are familiar with
mathematical formulae, the usual mathematical
expressions are also used in the system.

5. Interactions
We need to both manipulate program elements and
navigate in an immersive program space in order to
make a program and to debug it. To do that, we use
direct manipulation and hand gestures, which are useful
for such manipulation and navigation.

5.1. Direct Manipulation
In immersive virtual 3D space, direct manipulation by
hand is intuitive because direct manipulation in a 3D
environment is similar to that in real life. We do not
need a mouse or a keyboard to pick up and move a

virtual object, only our hands. In manipulating program
elements in a 3-D space, the following operations are
possible. Snapshots of direct manipulation are shown in
Figure 5.

• Touching an element: A touch of a
forefinger on an element selects it. When an
element is selected, an action specific to the
touched element is performed.

• Copying an element: One can copy an element by
pinching it between his thumb and forefinger and
moving it.

• Moving an element: One can arrange an element
by pinching it between his thumb and middle finger
and moving it.

(a) touch (b) copy (c) move

Figure 5: Examples of direct manipulation

5.2. Hand Gestures
Although direct manipulation is intuitive in immersive
virtual space, it is impossible to control invisible
functions using direct manipulation. Therefore, in
addition to direct manipulation, we need something
magical to control programs in virtual space. To do so,
the current prototype system uses hand gestures and
virtual 3D widgets such as buttons. Hand gestures and
operations on virtual 3D widgets can control a program.
Figure 6 shows snapshots of hand gestures.

• Moving in a virtual space: One can move the
virtual space by clenching one’s fist and moving it.
Rotation is not performed by this gesture.

• Resetting the position: One can move to the
starting position by touching one’s thumb with
one’s little finger.

• Menu panel control: One can switch a menu panel
display on and off by bending both one’s middle
and ring fingers.

• Undoing operations: One can undo operations by
bending both one's ring and little fingers. Multiple
undo operations are possible. The number of undo
operations is limited only by the amount of memory
available.

• Redoing operations: One can redo undone
operations by bending both one's forefinger and
middle finger.

(a) moving in virtual space (b) reset

(c) menu control (d) undo (e) redo

Figure 6: Examples of hand gestures

6. Functions and Features
This section explains the functions and features of Ougi
system and shows some screenshots.

6.1. Class Hierarchy
A class hierarchy is represented by a 3D graph. A class
can be moved by direct manipulation using the hand.
One can pick up a class with one’s thumb and index
finger, and then move the class. One can place the
classes where one wants. Figure 7 shows a screenshot of
a manual layout of a class.

The layout can also be arranged automatically by a
force-directed technique[5]. Pushing the layout button
on initiates the automatic layout. Figure 8 is a screenshot
when an automatic layout is performed.

Figure 7: Manual layout of a class

Figure 8: Automatic layout of a class hierarchy

6.2. Class
A class touched with the index finger is unfolded. When
a class is unfolded, fields and methods of the class are
shown. Figure 9 shows an example of an unfolded class.
By touching a method in the class, the touched method is
then unfolded. A folded method has only a heading part
of it as shown in Figure 9.

Figure 9: An unfolded class with folded methods

6.3. Method
When the virtual hand intersects with the regions of
program elements, the nested structure and handles of
the regions are shown as in Figure 10. This reveals the
syntax structure of the regions. As explained, a handle is
necessary for ease of operation. If it were not used, the
nested structures would have to be large enough to be
separated from the outer and inner structures, otherwise
it would be difficult to choose a middle structure without
touching neighboring ones.

One can copy an element by pinching its handle between
one’s thumb and index finger. When the element is
pinched, the virtual hand turns yellow in color and the
message of the copy is displayed in front of the hand.
Figure 11 shows a copy operation.

One can also move an element by pinching its handle
between one’s thumb and middle finger (instead of the
index finger). Similar to the copy operation, the virtual
hand is green in color while a move is performed. The
message of the move is also displayed. Figure 11 also
shows a screenshot of a move operation.

Although both textual representation and graphical
nested structures are usually shown in a method, one can
also turn off almost of the graphical representation. A
screenshot of a textual view is shown in Figure 12. This
textual view is similar to a usual Java program.
Therefore one can learn textual programming using Ougi.

Figure 10: Handles

(a) copy (b) move

Figure 11: Copy and move operation using a handle

Figure 12: Textual view of a class (with a flow
representation)

6.4. Debugging Support
Several debugging functions are supported. One can set
a breakpoint in a program. The breakpoint has to be on
an arrow sign between statements. Figure 13 shows a
screenshot when a breakpoint is put on a control flow.

One can execute a program by using a button on a 3D
panel. When an instance is created while the program is
running, the instance can be displayed in the same
virtual space. Figure 14 shows a screenshot when an
instance is created after the program starts. The small
box at the right of the figure is a newly created instance.
As the execution progresses, the live fields or activation
frames of a called method are displayed in the box
(Figure 15 and Figure 16).

When a program is stopped at a breakpoint, the values of
variables on statements adjacent to the breakpoint are
automatically displayed. Although the values of all
variables can be displayed, such a display is often
misleading because the target language is a procedural
language. Therefore we show only values of the
variables on statements adjacent to the stopped point.

One can also inspect the value of a live variable
manually. Figure 17 shows a screenshot of a variable
inspection. When you touch a variable on the activation
frame with your index finger, the value of the variable is
shown. Touching the variable again turns off the display
of the value.

When a method is called recursively, multiple activation
frames can be displayed as shown in Figure 18.
Variables on activation frames have their own values.
One can investigate the changes on activation frames by
navigating the program space and touching them.

Figure 13: Setting a breakpoint on a control-flow
arrow between statements

Figure 14: Program execution and a created instance

Figure 15: A class and an instance

Figure 16: An instance with live fields and an
activation frame of a method

Figure 17: Inspection of a variable in an activation
frame

Figure 18: Activation frames when a method is called
recursively

7. Implementation
The prototype system works in a virtual reality
environment called TEELeX (Tele-Existence
Environment for Learning eXploration) [1] at the
National Institute of Multimedia Education in Japan.

A prototype system runs on a PC workstation (Compaq
AP550 with dual 1-GHz processors and an Elsa Synergy
III graphics board supporting dual displays). A Six-DoF
position tracker (Polhemus Fastrak) and sensor gloves
(Virtual Technologies CyberGlove) are used to detect
the position and motion of the user’s body and hands.
The hardware configuration of the prototype system is
given in Figure 19.

PC Workstation

Switching Hub

PC

Compaq AP550
Dual 1GHz Pentium III

Elsa Synergy III
supporting dual displays

CyberGlove
Polhemus Fastrak

for right eyefor left eye

Projectors

100Base-TX Ethernet

Figure 19: Hardware configuration of prototype
system

The prototype system has been developed using the Java
programming language[4], the Java 3D class library[16],
and the it3d library (Interactive Toolkit library for 3D
applications)[13]. It3d is briefly explained in subsection
7.2. The use of Java enhances the portability of the
system, which should work on a wide range of computer
systems.

The basic software structure of the system is target
language-neutral. In other words, it does not depend on
the Java as the target language because the internal
software structure is based on a design pattern of
model/view/controller, and basic view elements are
prepared. A new language can be easily accommodated
by developing the models of the language and their
views which are specific to the language.

7.1. TEELeX
TEELeX is a kind of surround display system. It has a
large cubic screen for immersion. Each face is 3 meters
by 3 meters. Circular polarization is employed to give a
stereoscopic view to users, who only need to wear
lightweight stereo glasses. Two video inputs are used to
give a stereoscopic view on each side. One video input is
for the right eye and the other for the left eye. The
prototype system uses one stereoscopic face.

Figure 20 shows a schematic diagram of TEELeX. A
snapshot when one uses Ougi in TEELeX is given in
Figure 1.

Rear-Projector
for Ceiling

F r o n t - P r o j e c t o r
f o r F l o o r

3 D P o s i t i o n
T r a c k e r

Stereo
Glasses

R e a r - P r o j e c t orRear-Projector

R e a r - P r o j e ctorRear-Projector

Multiple
Surround
Screens

CyberGlove
Polhemus Fastrak

Figure 20: Schematic diagram of TEELeX

7.2. It3d
It3d1 is an interactive toolkit library for 3D applications
utilizing artificial reality (AR) technologies[13]. It was
implemented using the Java language and the Java 3D
class library to enhance portability. It3d makes it easy to
construct distributed applications that are portable and
adaptable. It consists of three sub-libraries: an
input/output library for distributed devices, a 3D widget
library for multimodal interfaces, and an interaction
recognition library.

8. Discussion and Future work
Direct manipulation in an immersive 3-D space is more
intuitive than on a 2-D plane since direct manipulation in
3-D is nearer to that in real life than GUI operations in
2-D. We can understand the location of a virtual object
and manipulate it with stereoscopic view in an
immersive space. Handle representation of nested
structures enables us to edit complex hierarchical
structures using direct manipulation.

The visualization and manipulation methods used in
Ougi are not limited to a Java program. We will extend
our immersive editing system to a cooperative editing
system for general structured information such as XML
and UML. We think that high-level editing functions
will support the cooperative design of experts.

Eighteen students used the prototype system for a short
period of time (about 1 hour). Since the number of hand
gestures is small, students could learn direct
manipulation and gestures easily. They said that
programming in an immersive virtual environment is
interesting and they were willing to try using it to make
a program. Thus we believe that Ougi can enhance
motivation to study programming. The students used the
system without a calibration of the sensor glove. Since
the size of a hand depends on a student, the virtual hand
does not match the real hand for some students.
Therefore gestures recognition failed in some occasions

1 it3d can be accessed through
<http://www.nime.ac.jp/it3d> (in Japanese) or
<http://www.nime.ac.jp/it3d/index-e.html> (in English).

for some students. We need sensor glove calibration
before the use of the system although it takes a little time
to perform the sensor glove calibration.

We will conduct formal experiments to evaluate the
effectiveness of our 3D visualization method,
manipulation method and learning of programming
using physical movement in an immersive environment.
We also plan to design and develop a new immersive
programming language that is more suitable for
multimodal interfaces in immersive environments than a
subset of Java.

Furthermore, we are currently implementing multiple-
focus visualization and navigation functions[8] for
Focus+Context views in Ougi by using heat models[10]
to support visualization and manipulation of large-scale
programs for experts. If the functions are implemented,
the system can help a programmer investigate and debug
the large-scale program in an immersive program space.

9. Summary
We have developed a prototype immersive programming
system utilizing multimodal interfaces. It uses both
textual and graphical representations and takes
advantage of the merits of both. Moreover, it features
unique 3D jigsaw-puzzle-like graphical representation
for complex semantic constraints such as inheritance
hierarchy. This feature enables users to understand
grammatical constraints merely by looking at their
shapes. We also developed nested-board representation
with handles for direct manipulation of program
elements in an immersive environment. This
representation can be applied to immersive editing of
structured documents such as XML. Since the
interaction techniques such as direct manipulation, hand
gestures, and handles of regions, which are employed in
the system, are easy to learn, a beginner can start to learn
the essence of programming without time-consuming
study of the operations of a system.

Acknowledgements
The authors would like to thank Mr. Norio Takase and
Mr. Takashi Tohyama for working with us to develop
Ougi.

This research was partially supported by a Grant-in-Aid
for Scientific Research (14380090 and 11358002) in
Japan.

The toolkit library "it3d" was developed with funding by
the Support Program for Young Software Researchers in
2000, which was implemented by the Research Institute
of Software Engineering (RISE) commissioned by
Information-technology Promotion Agency (IPA) in
Japan.

References
[1] Kikuo Asai, Noritaka Osawa, and Yuji Y. Sugimoto,

“Virtual Environment System on Distance Education,” Proc.
of EUROMEDIA '99, pp. 242-246, 1999.

[2] M.H. Brown and M.A. Najork, “Algorithm animation using
3D interactive graphics,” ACM Symp. on User Interface
Software and Technology, pp. 93-100, 1993.

[3] Margaret M. Burnett, Adele Goldberg and Ted G. Lewis,
Visual Object-Oriented Programming: Concepts and
Environments, Manning, 1995.

[4] James Gosling, Bill Joy and Guy Steele, The JavaTM
Language Specification, Addison-Wesley, 1996.

[5] Eades, P. "A Heuristic for Graph Drawing," Congressus
Numerantium, Vol.42, pp.149-160, 1984.

[6] H. Lieberman, “A three-dimensional representation for
program execution,” IEEE Workshop on Visual Languages,
pp. 111-116, 1989.

[7] Marc A. Najork, “Programming in Three Dimensions,”
Journal of Visual Languages and Computing, Vol. 2, No. 7,
pp. 217-242, 1996.

[8] Noritaka Osawa, Kikuo Asai, Yuji Y. Sugimoto, “Immersive
Graph Navigation Using Direct Manipulation and
Gestures,” Symposium on Virtual Reality Software &
Technology 2000 (VRST 2000), pp. 147-152, 2000.

[9] Noritaka Osawa, “Generation and Evaluation of Glyph
Representing Superclass-subclass relationships,” Proc. of
IEEE Symp. on Visual Languages, pp. 81-82, 2000.

[10] Noritaka Osawa, "A Multiple-Focus Graph Browsing
Technique Using Heat Models and Force-Directed Layout,"
5th International Conference on Information Visualisation
(IV2001), pp.277-283, 2001-7.

[11] Noritaka Osawa, "Visualization of Inheritance
Relationships By Using Glyphs", IEICE Trans. on
Information and Systems, IEICE Trans. on Information and
Systems, Vol. E85-D, No.1, pp.275-282, 2002.
<http://search.ieice.org/2002/files/e000d01.htm#e85-d,1,275>

[12] Noritaka Osawa, Kikuo Asai, Yuji Y. Sugimoto, and
Fumihiko Saito, "A Dancing Programmer in an Immersive
Virtual Environment," Symposia on Human-Centric
Computing Languages and Environments (HCC2001),
pp.348-349, 2001.

[13] Noritaka Osawa, Kikuo Asai, and Fumihiko Saito, “An
Interactive Toolkit Library for 3D Applications: it3d,”
Eighth Eurographics Workshop on Virtual Environments
(EGVE2002), pp.149-157, May 2002.

[14] F. Van Reeth and E. Flerackers, “Three-dimensional
graphical programming in CAEL,” IEEE Symp. on Visual
Languages, pp. 389-391, 1993.

[15] J. Stasko and J. Wehrli, “Three-dimensional computation
visualization,” IEEE Symp. on Visual Languages, pp. 100-
107, 1993.

[16] Henry Sowizral, Kevin Rushforth and Michael Deering,
The Java 3D API Specification, Addison Wesley, 1998.

