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Abstract 

In this paper, the modeling of efficiency in collaborative 
task carried out by two users on the Distributed Virtual 
Environment (DVE) is studied. The degradation of task 
performance, which is caused by the lag attributes such 
as the amount of lag, update interval and the fluctuation 
of lag, is modeled from a viewpoint of the range of 
integral calculation for conditional entropy. The subject 
experiments using two kinds of simple collaborative tasks 
for the purpose of the performance degradation and loss 
of information is carried out. As a result, the authors 
have found out that the amount of lag and update 
interval are the most and equally important factors for 
describing of task performance. 
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1. Introduction 

In recent years, there have been many reports of studies 
into virtual spaces that are shared across networks. 
These are known as Distributed Virtual Environments 
(DVEs) [1]-[10]. In the real-time systems seen in these 
references, the effects of communication lag can not be 
ignored. We also have confirmed this problem in 
references [11]-[13]. To make a system that is comfortable 
to use, these effects must be estimated beforehand. 

In this paper we report on our experiments with a 
theoretical model of the performance (working time, work 
efficiency, etc.) degradation of collaborative tasks in a 
DVE where lag is present. Specifically, in a generalized 
task model, we have formulated a model of performance 
degradation due to the effects of latency based on 
parameters such as the amount of lag and the data 

reception interval (referred to as the update interval 
below). The model discussed here is expected to provide 
useful guidelines for the design of communication 
systems in the construction of DVEs. 

2. Modeling performance degradation 

2.1 Task model 

A number of reports have already been made relating to 
the effects of network lag in real-time systems. For 
example, in references [1], [2] and [3] it has been 
confirmed that increased lag has an adverse effect on 
work. Also, in references [4] and [5] it has been confirmed 
that work is affected by the size and variation of update 
intervals. It has thus become clear that the efficiency of 
work is closely related to the amount of lag and the 
update interval. However, there have so far been no 
reports on the establishment of models that deal with 
these factors comprehensively. In this paper we will 
therefore try to consider them theoretically. 

 As the simplest example of a DVE, we will consider a 
model in which two users are present on a network. In 
this type of DVE, data is transmitted and received only 
between two users; user A on one terminal, and user B 
on the other terminal. Here, it is assumed that a 
collaborative task is performed in real time via objects 
manipulated by the users (referred to below as avatars). 
During this task, user A’s terminal displays the attributes 
of the local avatar A that can be directly manipulated by 
user A, along with the attributes of the remote avatar B 
which is manipulated by user B. The two avatars are 
similarly displayed on user B’s terminal. In this context , 
attributes refer to an avatar’s physical properties 
(position, etc.) in a virtual space. The virtual space is 
assumed to be a space having physical attributes, and 
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the avatar attributes are assumed to vary in a timewise 
and spatially continuous fashion due to the interactive 
operations of each user. The communication between the 
terminals is assumed to be asynchronous, with the most 
recent knowable information displayed on each terminal. 
The collaborative task to be modeled is assumed to be 
various types of teaching system as described in 
references [1] and [6]. Specifically, operation of each user 
is determined by the attributes of the remote avatar on a 
screen. In this paper, this sort of task is called a type of 
mutual control below, in the sense that operation of a 
local avatar is controlled by the remote avatar in vice 
versa. Moreover, it is assumed that lag factors relating to 
the manipulation and display of local avatars on local 
terminals can be negligible. Thus, in this issue, a problem 
of accuracy of user’s manipulation, is not taken into 
account and the accuracy of remote avatar’s attributes 
on the continuous time axis is analyzed. Examples of this 
includes the goodness of interactivity in the teaching 
system as described in references [1] and [6]. 

2.2 Loss of information and maximum radius  

2.2.1 Loss of information and uncertainty 

To perform a collaborative task smoothly under the 
assumptions in the previous section, the users have to 
accurately predict/estimate the remote avatar’s 
simultaneous attributes, because the performance of this 
type of task is determined by the spatial accuracy of the 
attributes of the current remote avatar.  The simultaneous 
attributes of the avatar would be available to the local 
terminal if there was no lag-i.e., the attributes of avatar A 
on terminal A and the attributes of avatar B on terminal B. 
Unless, the latest attributes are referred to as the latest 
one of the avatar that each terminal received. To make an 
accurate prediction/estimation, it is necessary to reduce 
the “uncertainty” relating to the remote avatar’s latest 
attribute. Specifically, it is desirable that (a) there should 
be little difference between the attributes of the remote 
avatar as displayed on the local terminal’s screen and the 
simultaneous attributes of the remote avatar (this is 
referred to as spatial uncertainty below), (b) the lag time 
between the transmission and display of attributes 
should be small (referred to as temporal uncertainty 
below), and (c) the update interval of the remote avatar's 
attribute should be small (referred to as temporal 
smoothness below). 

In this paper we attempt a comprehensive treatment of 
these three types of factors from the viewpoint of the 
loss of information relating to the difference between 
simultaneous attributes of the remote avatar and latest 
attributes of it. We will start by introducing a coordinate 
system X relating to the attributes of the avatars in the 
DVE. In this coordinate system X, the vector 
representing the attributes of avatar A at time t is 
expressed as A(t). Next we introduce a coordinate system 
Y in which a time axis is added to coordinate system X 

(Fig.1). Here, the time at which the ith set of data is 
received at terminal B is represented as ti, and the lag 
incurred by the data received at ti is represented as δ(ti). 
In coordinate system Y, the coordinates of the remote 
avatar A observed at terminal B are expressed as (A(ti-
d(ti)), ti-δ(ti)), while the simultaneous coordinates of the 
remote avatar A at time ti are expressed as (A(ti), ti). In 
this paper it is assumed that the timings of the two 
terminals are matched. Accordingly, each user can work 
out the time stamp of the remote avatar’s attribute 
information received at the local terminal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, we consider the loss of information that occurs 
due to lag. We use the notation P(a1) to represent the 
probability of an event a1 occurring at the present time ti 
when the simultaneous attributes of the remote avatar are 
A(ti). The notation P(a1|a2) denotes the probability of 
event a1 occurring under conditions where the event a2 
occurred at time (ti-δ (ti)) when the simultaneous 
attributes of the remote avatar were A(ti-δ(ti)). At this 
time, the conditional entropy I(a1|a2) is expressed as 
follows, where A1 and A2 are the sets of events a1 and a2 
respectively, and P(a2) can be regarded as a constant: 
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This conditional entropy I(a1|a2) becomes larger with 
increasing the spatial uncertainty |A(ti)-A(ti-δ(ti))| (the 
norm of the vector A(ti)-A(ti-δ (ti)) and temporal 
uncertainty δ (ti). In other words, the temporal and 
spatial uncertainty relating to the attribute information of 
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Fig.1 States of avatar A on coordinate system Y. 
The solid circles indicate the simultaneous avatar A, 

and the dashed circles represent the remote 
representation of avatar A displayed by terminal B. 



 

the remote avatar is thought to be governed by the 
distance between (A(ti),ti) and (A(ti)-A(ti-δ(ti)),ti-δ(ti)) 
in coordinate system Y. Therefore, if the distance 
between these two points is denoted by c and is 
expressed as a function of time by c(t), then c(t) can be 
expressed as follows: 

( ) ( )( ) 2/122 )()())(()()()( ttttAtAttc δβδα +−−=  (2) 

Where, α(t) and β(t) are coefficients relating to the 
spatial and temporal uncertainty respectively, and are 
determined according to the nature of the task. 
Specifically, α(t) is a coefficient matrix (diagonal matrix) 
expressing the spatial precision of the required attributes. 
β (t) is a (scalar) coefficient which represents the 
required temporal precis ion. Since the term A(t) is 
unknown at time t, it is impossible to determine the value 
of c(t) in Equation (2). We will therefore investigate the 
maximum and average values of this uncertainty. 

2.2.2 Maximum value of uncertainty 

We will first consider the maximum value that c(t) can 
take. If vmax is a vector expressing the maximum change in 
the remote avatar's attribute vector per unit time, then 
cmax(t)-the maximum value of c(t) occurring due to the 
change of avatar attributes-can be determined as follows: 
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Raising Equation (3) to k th power yields r(t): 

ktctr )()( max=      (4) 

Where, k  is the number of dimension of an attribute 
vector. Based on Equation (4), we will consider the 
maximum value Hmax(a1|a2) of the amount of conditional 
self-information: 
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In Equation (1), as cmax(t) increases, the minimum value of 
P(a1|a2) is thought to decrease. Therefore, Hmax(a1|a2) 
increases in monotonously proportion to the magnitude 
of r(t). 

2.2.3 Average value of uncertainty 

Next we will consider the average value of the conditional 
self-information-i.e., the conditional entropy. For the sake 
of simplicity, we will evaluate Equation (1) for the case 
where k=1. 

When the lag δ(t) at time t is equal to a small time period 
Δ , unless prior information is available, the remote 
avatar's attributes A(t) can be assumed to describe a 
random walk following the discrete uniform distribution 
U(A(t-δ(t))-ε, A(t-δ(t))+ε). Here, ε is taken to be 
the largest amount of change of the attribute that the 

user can bring about in the small time period Δ.  Under 
this assumption, when the amount of lag is δ(t)=nΔ, 
the attributes A(t) are thought to depend on the 
distribution calculated by the convolution of n uniform 
distributions, where n is a natural number. If this 
probability distribution is denoted by fn(x), then the 
maximum value of fn(x) occurs when x=A(t-δ(t)), and x 
decreases as it gets further away from A(t-δ(t)). On the 
other hand, the probability distribution fn+1(x) of the 
remote avatar's simultaneous values A(t) when δ
(t)=(n+1)Δ  is determined as the convolution of fn(x) 
with the uniform distribution: 

),(1 εε +−∗=+ xxUff nn
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By comparing these two conditional entropy formulae: 
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it is clear that In<In+1. In these equations, Fn and Fn+1 
respectively represent the set of points on c(t-nΔ ) 
centered on A(t-nΔ), and the set of points on c(t-(n+1)
Δ) centered on A(t-(n+1)Δ). 

2.2.4 Maximum radius cumulative function 

It therefore follows that the maximum value Hmax(a1|a2) of 
the amount of conditional self-information and the 
conditional entropy I(a1|a2) both increase as the lag 
increases. Here, r(t) is related to the maximum value of 
the amount of information obtained when the remote 
avatar’s attributes are ascertained under conditions 
where information is lost. For example, when the 
attributes are taken to be coordinate values in a 2D 
model, the size (area) of the region of possible attributes 
for the remote avatar is given by a circle of radius cmax(t). 
And the distribution of fn and In is shown in Fig.2 and 
Fig.3 when k=1. 
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Fig.2 The Distribution of fn in a 1D model. The 

horizontal axis is the changes of the attribute of A(t) 
from A(t-δ(t)), and the vertical axis is the probability 

of the existence about the A(t) when δ(t)=nΔ. 
 



 

 

 

 

 

 

 

 

 

 

This term r(t) is thus called the maximum radius function, 
in the sense that it is a function expressing the integral 
limit (referred to as the maximum radius below) when 
calculating the maximum loss of the information 
quantities at time t in the task. The cumulus of this 
maximum radius function r(t) over the entire task is called 
the maximum radius cumulative function. If t0 is the time 
at which the task begins and tn is the time at which it 
ends, then this maximum radius cumulative function, 
denoted by R(t0,tn) is expressed as follows: 
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Meanwhile, the limitations of communication capacity in 
current network environments result in constraints on the 
transmission intervals of the local avatar’s attribute 
information [7]. This makes it impossible to present the 
attribute information of the remote avatar in timewise and 
spatially continuously. Thus-in addition to r(t) which 
increases according to the magnitude of the lag-it is also 
necessary to consider the amount of increase in this 
radius, which continues to grow until the next 
information is received from the remote side. If R(ti,ti+1) is 
the cumulus of the radius from time ti to time ti+1, 
Equation (9) can be expressed as follows: 
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If the time interval from time ti until the next data is 
received is represented by u(ti)=ti+1-ti, then Equation(10) 
can be calculated as follows, where Δ is the interval from 
time ti to time ti+1, and α and β are constants. 
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This formula models the way in which the maximum 
radius increases with the age of the most recent 
information held by the terminal. Images for k=1 and k=2 

are shown in Fig.4 and 5 respectively. In these figures, 
the area of the hatched regions is equivalent to R(ti,ti+1). 
As simple examples of this phenomenon, the models for 
k=1 and k=2 are described below. 
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Here, δ , u , α and β  indicate the average values of the 

amount of delay δ , the update interval u, and the 
coefficients α  and β . Also, sδ  and su represent the 
standard deviations of δ  and u. The following 
assumptions have been made here in order to simplify the 
model: 

Assumption 1: There is no correlation between any of 
the each parameters δ, u, α and β. 

Assumption 2: The transmission interval is more or 
less constant, and its magnitude is roughly equal to u .  
Therefore 

δssu ≈ . 

 

 

 

 

 

 

 

 

 

 

 

 (When k=2) 
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Here, skw(δ) represents the degree of skew in δ. Also 
2

max || vα  and 2β  represent the mean-square values of  

|| maxvα  and β. 
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Fig.3 The value of In in a  1D model. The horizontal 

axis is the values of n when δ(t)=nΔ, and the 
vertical axis is the values of the conditional entropy In. 
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Fig.4 Growth of the maximum radius when k=1. The 
solid circle indicates the data arrival. The area of the 

hatched regions is equivalent to R(ti, ti+1). 



 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Discussion 

According to Equation (12) and (13), we assume sδ 
should be smaller than u  and found that the update 
interval mainly contributes to the cumulus of maximum 
radius in the most case. Specifically, when k=1 the 
formula for the cumulus of maximum radius includes 
terms that vary with the square of the magnitude of this 
parameter. And when k=2 it includes term that vary with 
the cube of their magnitude. Meanwhile, with regard to 
the amount of lag, contributions are also made by higher-
order statistical quantities such as the fluctuation and 
skew of this parameter in addition to its magnitude. 

On the other hand, if the amount of lag is greater enough 
than the update interval, we consider that the amount of 
lag and its fluctuation make greater contribution to it 
more than the update interval. 

About the maximum radius, we consider that the update 
interval and the amount of lag make contribution to it. 

We assume that the total sum of δ  and u  is constant, 
and that the total of elapsed time is constant, we prefer 
that the case the lag should be smaller even if the update 
interval get larger. 

In most mutual control type of task situations, it is 
considered that the maximum radius can be expressed by 
Equation (11), in which case it is  possible to infer a rough 
task performance model by making suitable estimations 
for the coefficients α and  β. 

3. Experiment 

3.1 Design of the experiments 

In this paper, the following subject experiments for the 

purpose of studying the relationship between the 
degradation of the task performance and the loss of 
information is carried out. For the purpose of its study, 
two kind of simple collaborative tasks which are played in 
1 or 2-dimensional space has been employed. As the 
experimental environment in this paper, DVE has two 
terminals on LAN is constructed. On the display in both 
terminals, both avatars are displayed, and they are 
colored by different color for examinees to enable to 
distinguish between local avatar and remote avatar. Both 
avatars are drawn on a task space as a small circle. A task 
in this experiment is required to consider the following 5 
factors: 

a) easy for the examinees to understand 

b) easy to be influenced by lag 

c) real time task 

d) short elapsed time 

e) collaborative task 

Then, following type task is employed. Contents of a task 
given to examinees in this experiments was the tracking 
type task that one guides the other in a cooperative 
manner. In this task, an examinee of a pair, plays the role 
of a guide, and the other of a pair plays the role of a 
follower. An examinee of a guide is required to tell a 
follower the accurate tracking points presented from the 
system to only a guide in real time. And the examinee of a 
follower is required to follow the instruction from a guide. 
In the experiments, following two kinds of task have been 
employed. One is the task in 1-dimensional space 
(referred to below as 1D task), and the other is the task in 
2-dimensional space (referred to below as 2D task ).  

Also in this paper, a problem of accuracy of user’s 
manipulation is not taken into account. Therefore an 
avatar of a guide is manipulated automatically by the 
system in the experiments and it can follow the tracking 
point accurately.  

The experimental measurement is the distance between 
two avatars in the task. This situation assuming that the 
coefficient of the spatial uncertainty is always constant 
in the task, and the coefficient of the temporal 
uncertainty is always zero. 

3.2 System design 

The system architecture for the experiments is shown in 
Fig.6. And the system parameters are: 

A) The moving range of an avatar is 600 pixels. 

B) The maximum velocity of an avatar is 80pixel / sec. 

C) The refresh rate of the local avatar's state is always 
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Fig.5 Growth of the maximum radius when k=2. The 
solid circle indicates the data arrival. The area of the 

hatched regions is equivalent to R(ti, ti+1). 



 

20 fps. 

D) The radius of an avatar is 20 pixels. 

E) Analog type joystick is employed as a control device 

F) Elapsed time of a task is 30 sec 

Each parameter was defined empirically considering 
above 5 factors a) through e). The refresh rate of the local 
avatar’s state was depended on the limitation of 
joystick’s temporal resolution. 

The tracking points are made by the Equation (14). 
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Where t is the time from task starting, x(t) and y(t) are 
the x and y coordinates of the tracking point at time t (if 
in the 1D task, y coordinate is always constant), and an 
and bn is given randomly in the range from 0 to 1 so that 
the total of move distance becomes 850～950 in 1D task 
and 1350～1450 in 2D task. 

 

 

 

 

 

 

 

 

3.3 Task condition and lag models 

Following 30 cases are examined in each task, and the 
difference between each case is analyzed. Constant lag, 
and Pareto distribution f(x)=ak ax-(a+1) that is studied and 
proposed to apply as network lag model in references 
[14], were employed as lag models. In the Pareto 
distribution lag model, 2 levels of the fluctuations of lag 
(standard deviation) are employed. Specifically, the 
fluctuations are 25% or 50% in the average amount of lag. 
3 levels of the update intervals, 3 levels of lag and 2 
levels of the fluctuations of lag are employed. Hereafter, 
the case when constant lag is used, is referred to as Case 
A-δ-u. Where, δ and u mean the average amount of lag 
and the update interval respectively. The case when 
Pareto distribution type lag (25% fluctuation) is used, is 
referred to as Case B-δ-u, and the case when Pareto 
distribution type lag (50% fluctuation) is used, is referred 

to as Case C-δ-u. 

3.4 Result 

The experiment has been carried out in 9 examinees. Their 
ages ranged from 22 to 28. This experiment has been 
carried out after 3 or 4 times practices without lag. The 
order of the conditions is random for every examinee. The 
information given to the examinees beforehand was 
contents of a task and control method of an avatar. 
Existence of lags, model of lags, detailed information 
about task space and the manner of manipulation of a 
guide’s avatar being automatic was not given. 

The experimental results are shown in Table 1～6, and 
Fig.7 and 8. For stability of trial, after 10 seconds had 
past since task start, it started to measure the distance. 
Each table and each figure shows the average value in all 
examinees of the average distance between the two 
avatars. 

Table 1. Experiments result (1D task, unit is [pixel]) 
update interval [msec] 

Case A 
50 200 1000 

0 11.0 16.8 34.8 
0.5 24.3 29.3 44.8 
1 37.8 40.4 60.7 

lag 
[sec] 

2 56.4 58.6 69.6 

 

Table 2. Experiments result (1D task, unit is [pixel]) 
update interval [msec] 

Case B 
50 200 1000 

0.5 12.0 17.0 32.0 
1 27.1 30.6 46.2 

average 
lag 

[sec] 2 44.5 48.3 66.4 

 

Table 3. Experiments result (1D task, unit is [pixel]) 
update interval [msec] 

Case C 
50 200 1000 

0.5 9.6 15.3 33.2 
1 34.7 43.2 55.0 

average 
lag 

[sec] 2 53.4 63.0 80.0 

 

Table 4. Experiments result (2D task, unit is [pixel]) 
update interval [msec] 

Case A 
50 200 1000 

0 21.9 27.9 57.6 
0.5 40.0 48.0 72.0 
1 56.4 70.3 84.9 

lag 
[sec] 

2 98.7 94.5 114.3 

 

Table 5. Experiments result (2D task, unit is [pixel]) 
update interval [msec] 

Case B 
50 200 1000 

0.5 20.3 25.4 56.2 
1 43.7 52.3 78.3 

average 
lag 

[sec] 2 70.6 78.7 103.4 
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Fig.6 System architecture for the experiments 



 

Table 6. Experiments result (2D task, unit is [pixel]) 
update interval [msec] 

Case C 
50 200 1000 

0.5 17.4 27.4 56.1 
1 53.5 64.5 89.7 

average 
lag 

[sec] 2 80.7 96.7 117.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Discussion 

According to the result, with the lag increase, the 
tendencies of mostly linear increase of the average 
distance were seen in most cases. T-tests (p<0.05) about 
the difference of the average distance by the increase of 
the amount of lag were carried out. As a result, in Case A, 

there were significant differences except for the change 
from CaseA-1-1 to Case A-2-1. On the other hand, in 
Case B and C, there were significant differences except 
for the cases when the lag varies from 0[sec] to 0.5[sec]. 

Also with the update interval increase, the tendencies of 
mostly linear increase of the average distance were seen 
in most cases. T-tests (p<0.05) about the difference of the 
average distance by the increase of the update interval 
were carried out. As a result, there were significant 
differences in the cases when the update interval 
changed from 0.2[sec] to 1[sec] (except for the case 
between Case A-2-0.2 and Case A-2-1 in 1D task). On the 
other hand, there were not significant differences in the 
case when the update interval varies from 0.05[sec] to 
0.2[sec]. It is thought that this difference in these tasks 
does not affect the task performance. 

On the other hand, with the fluctuation increase, the 
tendencies of decrease of the average distance were seen 
in some cases. It seems that he influence by reductions 
of the amount of lag and its fluctuation was greater than 
the influence by the increase of the update interval when 
each terminal represent the received last information in 
these tasks. It is also related to the fact that the 
fluctuation has not selected independently of the other 
lag parameters. Moreover, it is thought as one of the 
reasons that the some increase of the update interval did 
not become bad influence for the subject since it was 
easier to predict the tracking point from the system than 
random work. 

The performance degradation in these tasks is compared 
with the theoretical calculation result from Equation (2). 
Theoretical calculation of c(t) was seen in Fig.9, when 
the random walk model was assumed as the tracking 
point. Andα=1 is assumed. Comparing Fig.7 with Fig.9, 
the shape of both graphs seems similar. This result might 
confirm the validity of the theoretical study. In Fig.8, the 
shape is less similar to Fig.9 than that the 1D task in 
Fig.7. The dissimilarity may come from the fact that the 
motion in 2D task is more difficult.  

The fluctuation of lag is not studied enough in these 
experiments because the fluctuation becomes less than 
the update interval or the amount of lag. The evaluation 
on it is a future work. 

4. Conclusion 

In this paper we have modeled the performance 
degradation of collaborative tasks in a DVE based on 
parameters relating to lag. Next, we have tried to study 
the relationship between the degradation of the task 
performance and the information loss through the subject 
experiments. As the experimental results, we have 
confirmed the validities of theoretical model in the simp le 
collaborative tasks employed in this paper. We have 
thereby taken the first steps toward an information 
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Fig.7 Comparison of the task performance 

degradation (1D task, Case A) 
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Fig.8 Comparison of the task performance 

degradation (2D task, Case A) 
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Fig.9 Theoretical model of average c(t) 



 

theoretical analysis of the mutual control type of task 
space. And, proposed models are applicable to the field 
in real time system that has uncertainty about the 
information presentation, because the attributes in the 
model can be applied to the information from a man-
machine system referred in [10]. 

In the future we plan to investigate and evaluate the 
validity of the model in the other type of task considering 
the fluctuation of lag, and design an adaptive prediction 
filter based on methods for inferring α and β in the task 
model and minimizing the maximum radius. 
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