
 

Real-time Method for Animating Elastic Objects’ 
Behaviors Including Collisions 

Takafumi WATANABE*1   Jun OHYA*1 
 Jun KURUMISAWA*2,*3   Yukio TOKUNAGA*4 

 
*1 Graduate School of Global Information and Telecommunication Studies, Waseda University 

1-3-10 Nishi-Waseda, Shinjuku-ku, Tokyo 169-0051, Japan 
*2 Faculty of Policy Informatics, Chiba University of Commerce  

1-3-1 Konodai, Ichikawa-shi Chiba 272-8512 Japan 
*3 Global Information and Telecommunication Institute, Waseda University 

1-3-10 Nishi-Waseda, Shinjuku-ku, Tokyo 169-0051, Japan 
*4 Faculty of Engineering, Shibaura Institute of Technology 

307 Oazafukasaku, Minuma-ku, Saitama 337-8570, Japan 
t_watanabe@ruri.waseda.jp 

 
 

Abstract 
We present a new real-time method that can animate a 
moving elastic object that could collide with other 
objects in a virtual environment. For simulating physical 
motions of elastic objects, we exploit a Boundary 
Element Method (BEM), which can achieve efficient 
computations and desired deformation as opposed to 
spring models and a Finite Element Method. In case that 
real-time processes are required for the BEM, only the 
physical simulation cannot achieve animations; 
therefore, this paper proposes a 2D model that is 
combined with the BEM. Since it is difficult to animate 
3D elastic objects in real-time, we propose a method that 
approximates the 3D motions based on the 2D model. 
The effectiveness of the proposed method is 
demonstrated by the experiments in which the dynamical 
behaviors of a jelly are reproduced in a virtual 
environment in real-time. 
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1. Introduction 
We study a reproduction method of behaviors of non-
rigid objects in virtual environment. To conduct such a 
research project, it is essential to achieve a real-time 
method for animating non-rigid objects' dynamical 
behaviors. The physical simulation is one of the most 
important technologies needed for generating such 
animations automatically. As detailed in the following, 
physical simulations are classified into off-line type 
(non-real-time) physical simulations and real-time 
physical simulations. 

Off-line type physical simulations are used for 
applications such as creating digital cinemas. The off-

line type physical simulations often use super computers 
for processing huge amount of computation so that the 
accuracy and visual sensation of the animation results 
can be pursued. Sometimes, each frame of a digital 
cinema is manually created by utilizing the animation 
result computed. 

The real-time physical simulations are frequently used 
for interactive applications such as video games and 
training simulators. In these areas, the non-rigid object is 
a challenging target for physical simulations. In general, 
physical simulations for non-rigid objects tend to be 
inefficient for computations if the accuracy and visual 
sensation of the animation result are pursued. Video 
games and other interactive systems, however, are 
required to respond to the user's input in real-time; 
thereby, the physical simulation is also required to be 
performed in real-time For this reason, it is very difficult 
to solve the above-mentioned dilemma of the physical 
simulation. 

The non-rigid object that is being researched includes 
elastic objects, clothes [3] and human faces [4]. This 
paper studies elastic objects. Elastic objects are studied 
in surgery simulations, in which human internal organs 
are modeled as elastic objects. One of the main research 
topics in surgery simulations is to simulate the 
dynamical deformations of internal organs using elastic 
object models. Thus, technologies that animate elastic 
objects that do not change their positions can be seen, 
but the technology that can animate elastic objects that 
change their positions and are deformed has not yet been 
developed. This paper studies a real-time method that 
can animate the elastic objects that move and are 
deformed due to kinematic effects such as collisions. 
More specifically, the model that can be applied to the 
situation in which an elastic object falls down from some 
height to a flat plane and bounces is addressed. 
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As another issue for animating elastic objects, how to 
give physical parameters to elastic objects is a problem 
to be solved. In case of rigid bodies, only a few 
parameters such as mass and moment of inertia need to 
be controlled. On the other hand, elastic objects in 
general need many physical parameters. Many physical 
parameters make it difficult to simulate desired 
deformations of elastic objects. Ideally, the number of 
physical parameters should be small so as to facilitate 
analyzing the relationship between each physical 
parameter value and deformation results. As detailed in 
Section 2, a boundary element method (BEM) is used as 
the simulation method that satisfy the above-mentioned 
conditions. 

This paper is organized as follows. Section 2 compares 
possible methods that can be applied to animating elastic 
objects and claims that the BEM is the best choice for 
the purpose of this paper. In section 3, the fast 
computation method for a BEM is described. In section 
4 and section 5, based on the above methods, we 
propose a 2D animation model and a 3D animation 
model for real-time computation, respectively. In section 
6, the effectiveness of the proposed method is specified 
by the experiments in which the dynamical behaviors of 
a jelly are reproduced in real-time. Section 7 concludes 
this paper. 

2. Technologies Relevant to Elastic Simulations 
Methods for simulating the deformations of elastic 
objects include spring models, a finite element method 
(FEM), and a boundary element method (BEM). 

Spring models approximate the shape of the object by a 
wire frame model whose vertices are connected by 
springs. Spring models are featured by their efficient 
computations and adaptability to different applications. 
On the other hand, since the spring model is a bottom-up 
approach in which the entire deformations of an elastic 
object is obtained from computing the kinematic 
relationship between each spring and the connected 
vertices, different values for physical parameters such as 
the mass of each vertex and the stiffness of each spring 
cause different deformations of the elastic object; in 
other words, generally speaking, it is very difficult to 
predict the resultant deformations. Furthermore, the 
spring model tends to lead to undesirable vibrations in 
animating elastic objects' behaviors. One of the 
application areas of the spring model is surgery 
simulations, because surgery simulations require the 
function that cuts the elastic objects that model human 
internal organs. There is a spring model based approach 
that can deal with elastic objects' positional changes 
[2][7]. This approach aims at achieving the real-time 
computation and desired deformations by studying how 
to position the vertices in the elastic object. 

The finite element method (FEM) is one of numerical 
analysis methods and is widely used in different 

engineering areas such as the fracture mechanics [5], 
because the FEM can basically achieve desired 
deformations. The FEM discretizes the object by 
partitioning not only its surface but also the inside of the 
object into polygons. Although only the surface of an 
elastic object should be displayed, the FEM computes 
the vertices inside the object also. This results in 
computational inefficiencies; that is, it can be said that 
the FEM is not appropriate for real-time applications. 

The boundary element method (BEM) is a numerical 
analysis method used in engineering areas. The BEM is 
similar to the FEM, but the BEM can overcome the 
computational inefficiency problem of the FEM as 
described in the following. Since the BEM discretizes 
only the surface of an elastic object (does not discretize 
inside the object), the computation efficiency is much 
higher than the FEM. In fact, a fast algorithm that can be 
applied to linear elastic objects was developed [1]. Using 
this algorithm, it is possible to achieve real-time 
simulations for linear elastic objects. Another advantage 
of the BEM is that the BEM is a top-down approach in 
which the deformation of an elastic object is simulated 
by solving a boundary integral equation. That's why the 
BEM can achieve predicted deformations simply by 
giving the physical parameter values to the elastic object 
model based on the principle of physics. 

As described in the subsequent sections, this paper 
utilizes the BEM for animating the dynamical behaviors 
of elastic objects. 

3. Boundary Element Method 
This section outlines the BEM and D. L. James et al.,'s 
fast BEM algorithm [1]. Then, the BEM based method 
proposed in this paper is explained. 

3.1 Boundary Integral Equation 

The BEM solves the following boundary integral 
equation, where i  and j  deno independent coordinate 
axes respectively. 

 

 

 

 

Equation (1) is used for obtaining the displacement at 
the pint P  on the boundary (surface) S  of the elastic 
object (Fig. 1), where Q  is another point on the 
boundary, jiC  is a constant that is determined by the 

shape and material of the boundary, and jiT  and jiU  

are kernel functions based on Navier equation. The 
second term of the right side of Eq. (1) represents the 
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internal body force, where ( )pb ji  is a body force 

function, and q  is a point on the surface or inside of the 
object. 

 

 

 

 

 

 

 

 

Kernel functions jiT  and jiU  are represented by the 

following equations if the elastic object is 2-dimensional 
linear elastostatic. 

 

 

 

 

where jiU  and jiT  are the displacement and traction 

for the j  direction at the point Q  when a unit force for 
the i  direction is applied to the point P  in the infinite 
plate, respectively. In Eq. (2), ν  is Poisson's ratio, 
distance between the points P  and Q , and ir  and jr  

are the partial derivatives of r  for the i  and j  
directions, respectively. By discretizing Eq. (1), the 
following equation is obtained. 

 

 

where U  and T  are the matrices that contain the 
displacements and tractions, respectively, H  and G  are 
coefficient matrices, and B  is the internal body force 
matrix. By shifting unknowns for the displacements and 
tractions to the left side of the equation, and shifting 
knowns to the right side, Eq.(3) is converted to Eq. (4). 
Note that our problem for obtaining the deformation of 
the elastic object is to solve the simultaneous equations 
indicated in Eq. (4). 

 

 

where all the components of X  are unknowns, all the 
components of Ζ  are knowns, and A  is the coefficient 
matrix obtained from the above-mentioned shift 
operations. 

3.2 Fast Algorism 

The fast BEM algorithm proposed by D. L. James et al. 
[1] can be used in case that no internal body force is 
applied to the elastic object. Since this paper deals with 
the case in which elastic objects change their positions, 
the values of the unknowns (displacements and 
tractions) could be changed at each time instant. In this 
case, Eqs (3) and (4) need to be reconstructed, and the 
simultaneous equations in Eq. (4) needs to be solved 
again. This yields much computation. D. L. James et al,'s 
method can avoid this problem. 

In Eq. (4), suppose that A  is changed to A′  according to 
the changes in the boundary conditions. δA  be the 
difference between A and A'. Then, we have the 
following equation.  

 

 

where there are δA 's columns in which all the 
components are zero. Then, let 

CδA  be the matrix that is 
obtained from removing the all zero columns from δA . 
By using the n  by s  matrix 

CE  whose components are 
either 1 or 0, Eq. (5) is rewritten as follows. 

 

 

Next, the following equation is considered, where 
SA  is 

an n  by n  square matrix. 

 

 

where R  and S  are n  by s  matrices. The inverse 
matrix of 

SA  is represented by the following equation 
according to the Sherman-Morrison-Woodbury (SMW) 
formula. 

 

 

where I  is the ss × identity matrix. By substituting Eq. 
(6) into Eqs. (4) and (8), the following equation is 
obtained. 
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Figure 1. Boundary integral equation 
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By solving Eq. (9), the displacements and tractions of 
the elastic object can be obtained. Note that this 
computation is very efficient, because Eq.(9) requires 
only the computation of the inverse of the s by s 
matrices and some matrix multiplications. 

3.3 Inertia force 

The method described in Section 3.2 assumes that no 
internal body force is applied to the elastic object. 
Simulating the inertial force as the internal body force is 
essential to our method proposed in this paper. The 
inertia force varies according to time; therefore, the 
matrix B  in Eq. (3) needs to be reconstructed at each 
time instant. This reconstruction results in inefficient 
computations. A real-time method that can avoid this 
problem needs to be established. 

When the inertial force is applied to the elastic object, 
the second term of the right side of Eq. (1) is written as 

 

 

 

If the inertia force varies, the values of 
ib  change. Thus, 

Eq. (10) can be rewritten as follows. 
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From these equations, Eq. (4) is rewritten as 

 

 

Note that Eq. (13) can be applied to Eq. (9) so that the 
BEM with the inertia force can be computed efficiently. 

4. 2D Animation 
As can be seen in Eqs. (1) and (2), the BEM based 
elastic simulation does not include a temporal term. This 
fact causes the following two problems. (i) Temporal 
simulations of elastic objects cannot be performed. In 
other words, animating elastic objects cannot be 

achieved only by the BEM based elastic simulation. (ii) 
The BEM based elastic simulation can deal with only 
static objects. This means that the simulation can be 
performed only when the internal and external forces are 
balanced. 

4.1 2D Animation Model 

In order to solve the first problem (i), a rigid body 
simulation is combined with the elastic simulation; that 
is, the rigid body simulation computes the change in the 
object's position so as to make it possible to animate the 
object's behaviors. For example, in the case that an 
elastic object is thrown at a wall, only the rigid body 
simulation is performed till the elastic object collides 
with the wall. At the time that the elastic object collides 
with the wall, the deformation is simulated by the 
elasticity simulation, and the position is changed by a 
rigid body simulation simultaneously. If the elastic 
object bounces off the wall, the elastic simulation is 
stopped. By repeating the above-mentioned processes, 
animating the elastic object's behaviors is completed. In 
order to solve the second problem (ii), the resultant of 
the forces applied to the elastic object must be set to 
zero. In the above-mentioned example, in which the 
object collides with the wall, this problem occurs on the 
collision. The only external force in this example is the 
reaction caused by the wall. Thus, if F  is defined as the 
reaction force, the equation of motion can be represented 
by 

 

 

 

where m  and x  are the mass and the barycentric 
coordinate of the elastic object, respectively. Since the 
resultant is not zero in this condition, the elasticity 
simulation cannot perform the deformation. In order to 
perform the elasticity simulation, the force F ′  that 
satisfies the following equation is needed. 

 

 

Equation (15) is converted to the following 
representation. 

 

 

 

Equation (16) corresponds to the situation in which the 
resultant is equal to zero (Fig. 2). By comparing Eq. (15) 
with Eq. (16), the inertia force is appropriate for F ′ . 
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Here the strength of the inertia force must be discussed. 
The inertia force is the acceleration generated by F .  

F is the force that is generated by the wall that pushes 
back the elastic object. The force that pushes back 
depends on the volume V , which corresponds to the 
elastic object's volume that would pierce through the 
wall if the object were not deformed due to the collision 
(Fig. 3). We assume that the force is proportional to V . 

 

where the constant of proportion can change the stiffness 
of the elastic object. 

 

 

 

 

 

 

 

 

 

4.2 Physical Parameters 

The elasticity simulation that uses our 2D animation 
model has two physical parameters: Poisson's ratio and 
Young's modulus. 

Young’s modulus of an elastic object is the constant of 
proportion that expresses the ratio between a 
displacement and the traction generated by the 
displacement. A large value of the Young's modulus 
gives a solid object that bounces much, while a small 
value gives a soft object that bounces little. 

Poisson's ratio is the ratio of the transversal contraction 
to the longitudinal extension. A large value of Poisson's 
ratio (at maximum, 0.5) gives a rubber-like 
incompressible object, while a small value gives a 
sponge-like compressible object. As shown in Fig. 4, 
different values for the physical parameters give 
different deformations of elastic objects. 

 

 

 

 

 

 

 

 

4.3 Simulation Result 

Figure 5 shows an animation created by our 2D 
animation model, where an elastic circle falls from some 
height to a flat floor. Using the Celeron 2.0GHz + Open 
GL, the computation speed is faster than 60 frames per 
second. 

 

 

 

 

 

 

 

 

 

 

5. 3D Animation Model 
One of the most serious problems for animating elastic 
objects in 3D is computation inefficiency. The amount 
of computation is proportional to the number of vertices 
composing the elastic object. In general, the number of 
vertices in 3D objects is larger than that for 2D objects; 
thereby, the computation cost for 3D objects is much 
larger than 2D objects. In this paper, we propose a 
method that approximates the 3D deformation by the 2D 
model. 

5.1 Approximate Model 

In our approximation model, a 3D elastic object is 
represented by a set of 2D planes. More specifically, by 
applying our 2D animation model to each of cross 
sections of a 3D object, the animation result can be as 
good as the result obtained from the 3D animation 
model. However, if the number of the cross sections is 
large, the computation gets inefficient. Therefore, this 
paper assumes that the number of the cross sections is 
two. In this case, the shape of 3D objects is limited to 
simple shapes such as spheres and cylinders, but the 
computation cost is very small. 

Figure 6 shows the two cross sections of the cylindrical 
object. The procedure consists of the following three 

VF ∝ (17) 

Figure 4: Left figure is before an elastic object 
collides with a floor, and Poisson’ ratio 0.5 (middle) 
and 0.01 (right) after collision with a floor. 

Figure 5: Animation of a 2D elastic object. 

Figure 2: forces at the time that an elastic object 
collided with a wall. 

Figure 3:  Volume V . This elastic object is not 
deformed. 



 

steps.  

① Compute the mean coordinates of the contact 
(collision) area at the time the elastic object 
collides.  

② Determine the first cross section that passes the 
mean contact (collision) point and the centroid of 
the elastic object. 

③ Determine the second cross section that is 
perpendicular to the first cross section. 

 

 

 

 

 

 

 

 

 

 

5.2 Approximation Method 

After the displacements in the cross sections are 
computed, the 3D deformation of the elastic object is 
approximated based on the computed displacements 
(Fig. 7). Each vertex of the 3D elastic object is projected 
to the x′  - y′  coordinate system in the 2D cross section 
as the point A in Fig. 7. Then, from the displacements 
obtained in the cross section, the displacements for the 
x′  and y′ ' directions in the 3D object are computed. 

To reduce the computation cost, only two vertices for 
one direction are used for approximating the 
displacement. As shown in Fig. 7, the two vertices are 
the point B and C, which are the points at which the 
boundary of the cross section and the line that passes the 
point A and is parallel to the x' axis. By giving weights 
to the displacements at B and C, the displacements of the 
3D object is approximated. Suppose that 

1r  and 
2r  are 

the distance between A and B and the distance between 
A and C, respectively. If the displacements for the x′  
direction at B and C are 

1u  and 
2u , respectively, the 3D 

displacement 
xu ′
 for the x′  direction is given by 

 

 

 

 

Note that in Eq. (18), if α  is smaller than 1, the 
displacement is small, while if α  is large, the 
displacement is large. It can be said that α  should be 

between 1 and 2 (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Simulation results 

Figure 9 shows an animation that an elastic ellipsoid 
falls some height to a flat floor. The elasticity, which are 
specified by only three physical parameters: Young’s 
modulus, Poisson’s ratio, and internal friction, can 
reproduce desired deformation of the elastic object. 
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Figure 8: 3D deformations are changed depending on a 
value of  α (α = 0.1, 1.5, 10). 

Figure 7: the displacements on the 2D planes 
approximate the 3D deformation.  

Figure 6: The 2D planes can be selected two types. We 
select the plane that has more collision points. 

Figure 9: This animation is that an elastic ellipsoid 
falls to a flat floor. 



 

6. Reproduction of Actual Behaviors of a Jelly 
Dynamical behaviors of a jelly is video-taped and 
reproduced using the 3D animation model. The 
simulation in section 5 animates simple behaviors of 3D 
elastic objects such as a soft ball. On the other hand, it is 
very difficult to reproduce behaviors of the jelly because 
of complicated motions such as vibrations. 

At the time that a jelly falls to a flat floor and touches the 
floor, the external and internal forces to a jelly are only 
two forces from gravity and the floor. Normally, the 
only force from the floor is the reaction to the object. 
However, only the reaction is not enough to reproduce 
jelly’s behaviors. Therefore, in our model, by assuming 
that the forces are the reaction and a force sticking to the 
floor, behaviors of a jelly can be reproduced. 

Soft objects such as a jelly may be deformed with a large 
amount; thereby, the soft objects could pierce through 
the floor (Fig.10). To deal with this issue, the object's 
volume that pierces through the floor is assumed to stay 
within the collision plane (floor); the simulation is 
performed once more for the object that is forced to stay 
within the floor. This method correctly simulates a 
jelly’s deformation. 

 

 

 

 

 

 

 

 

 

The upper row of Fig.11 and Fig.12 show a scene in 
which a jelly object falls to a flat floor. The lower row of 
Fig.11 and Fig.12 show the animation created by our 
method. By using the Celeron 2.0 GHz (OpenGL), the 
computation speed is over 60 frames per second. 

7. Conclusion 
This paper proposes a real-time animation model for 
elastic objects. The proposed model is based on the 
boundary element method (BEM) so that elastic objects' 
dynamical behaviors including collisions can be 
animated. The proposed 2D model combines the BEM 
based elastic simulation with a rigid body simulation so 
that real-time animations can be achieved. In the 
proposed 3D approximation model, our 2D model is 
applied to two cross sections of a 3D elastic objects so 
that real-time 3D animations are realized. By giving 
different values for the physical parameters used in the 
BEM, different dynamical behaviors can be animated. 

Remaining issues include a 3D model that does not 

utilize approximations. More complicated shaped elastic 
objects should be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Left figure is an elastic object is not 
deformed, and the first elasticity simulation  (middle) 
and once more (right). 

Figure 11: The upper row shows behaviors of jelly, 
and the lower row shows the animation by our 
model. 

Figure 12: This figure shows the animation in 
different initial condition from Fig.11. 
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