

Collage of Patterns
SK Semwal D Carroll

Department of Computer Science, University of Colorado, Colorado Springs, USA, 80933
semwal@cs.uccs.edu | thatsashame@pcisys.net

Abstract
The work reported in this paper is in the area of camera
based Augmented Reality. The paper extends
ARToolKits’s usage for applications where the one
camera can see multiple patterns at the same instant of
time. The placement of these patterns can then be
changed to convey different information. Thus, several
messages can be created by simply changing the
relationship among the patterns. As the same set of
patterns are used to create a large amount of information,
hence the term collage-of-patterns. This collage-of-
patterns can convey precise information over highly
distributed wearable systems. As the message is directly
related to the patterns used and their spatial relationship
with each other in the collage, the intent could be only
be deciphered by the sender and recipient which
provides extra security which is always a concern. A
larger number of messages can be created with small
number of patterns. In future, the same collage-of-
patterns can be mapped to several native languages, this
creating a means for sharing information among
diversified different language. The paper describes the
motivation behind our research, discusses our
implementation showing feasibility of our idea,
discussed the main results, and identifying future
research directions.
.

Key words: ARToolKit, multiple patterns for indexing

1. Introduction
Our goal is to be able to provide consistent and precise
information using set of patterns using the ARToolKit.
The main idea of the proposal is to use existing patterns
to create a collage-of-patterns which can convey
different messages based upon the placement and
relationship of these patterns. This collage-of-patterns
needs to be recognized by one camera mounted on a
wearable system which can be deployed with the
participants. Thus wearable systems can either at the
same place in close-proximity or can be separated by
miles. The goal is to be able to convey a variety of
messages using the collage, and a simple (cheaper) and
robust system. In this paper, we show that such an
experiment is possible using the ARToolKit [1]. In our
experiments, we have found that the ARToolKit can
provide robust results by recognizing several
arrangements of simple patterns arrangements which are
automatically detected [1]. Details of ARToolKit and

wellknown MagicBook experiments are described in [1].
Several papers and associated results for ARToolKit and
its comparison to other systems have been described
elsewhere, e.g. [1]. This paper instead would focus on
using ARToolKit for our application. We have been
able to make the toolkit work with both the SGI and PC
based systems. Using the camera on a PC or SGI
system, the toolkit programs can robustly recognize
simple patterns, such as black/shaded rectangles or
circles on white paper even at acute angles. We have
extended this capability so that many different patterns
can be simultaneously recognized by the ARToolKit.
The shape of these patterns can be of varying sizes and
still be recognized by the system for example camera can
zoom in/out yet still work robustly. We also found that
the performance of the system is affected as the light
changes and with the quality of the camera used for
experiments. We added more ambient light (table lamps
projected on the walls of our laboratory room) and
ARToolKit worked well with simple Sony handheld
cameras.

As we tested ARToolkit further, we found out that the
ARToolKit can detect the same pattern or marker for
long periods of time even if the pattern is moved around.
The pattern is quickly recognized as it enters the field of
view of the camera either due to pan/ zoom, or removal
of the obstructing object. Rather than simply recognizing
patterns individually, we wanted to recognize a group of
patterns. Further, when many of these patterns are
present in a frame, their relative positions to one another
are taken into account, resulting in many more
combinations that can be used for various applications.

Ultimately, we are interested in annotating actual three
dimensional terrain by simple arrangement of some
landmark objects (patterns) so that an Augmented
Reality system such as above would be able to recognize
these arrangements automatically and deliver a precise
message. The context of the message would be
dependent upon the arrangement of patterns. Obvious
extension to this idea if to be able to deliver same
message in multiple languages based upon what the
Augmented Reality systems can see. We have not
implemented this idea, this is similar to Kanji character
providing same meaning in both Chinese and Japanese
languages. Thus obvious use of our research would be
to share information among personnel from different
countries. Our experiments provide a large number of
possibilities by using only a few patterns in the

ARToolKit. A simple pattern recognition application
would likely recognize one or more predefined non-
complex patterns and act on them when recognized. For
example, one might overlay a 3D object at the estimated
position of the pattern, and when the pattern moves, the
object on the display moves as well. In our program,
rather than simply recognizing patterns individually, a
group of patterns can be recognized as a single entity.
Further, when many of these patterns are present in a
frame, their relative positions to one another are taken
into account, meaning many more combinations that can
be used for various applications.

As mentioned earlier, our implementation is built upon
the ARToolKit to handle simple pattern recognition.
ARToolKit provides recognition of black and white
patterns with a simple 2D object in a square patter with a
black border. An ARToolKit program is used to train it
to know when that pattern shows up in a frame grabbed
from the camera. When a pattern is found to be in the
frame, the toolkit calculates its position and orientation.
These pieces of information are then used to calculate
one pattern's relative position and orientation when
compared to others.

We demonstrated a possible use of these techniques in
our implementation. A series of patterns are presented
to the camera, oriented and positioned in different ways.
In the console window, at various points in time when
the user wants to, words are presented based on which
patterns are present and their relations to the other
patterns.

2. Patterns Relations
We are given a pattern's center and its general direction
(in the form of a rotation matrix) from ARToolKit when
a pattern is recognized. This matrix can be used to
create a local coordinate system for the pattern. By
projecting the centers of all other markers in the scene
onto the axes of the first pattern, (via dot products) we
can determine how the other patterns are related to the
first one. The signs of the projections determine
whether the other patterns are to the right or to the left,
or above or below.

If more than one pattern is present in a frame, one
pattern's relation to another is defined by one of eight
possible relations:

Directly above
Directly below
Directly to the right
Directly to the left
Above and to the right
Above and to the left
Below and to the right
Below and to the left

A pattern is directly right/left/above/below another when
the other pattern's center is within the bounds (no further
than one half pattern width from the center) of the
pattern. This means one pattern can be slightly higher
than another, yet still be considered directly right to the
first pattern rather than to the right and above. If it's
beyond the bounds of the first pattern, then it will not be
considered as directly in that direction.

Note that if one pattern relates to another second pattern
in one way, (say, the second is above and to the left of
the first) this does not mean that the relation of the first
pattern to the second is the opposite. (i.e., below and to
the right) This is because the second pattern may be
facing in a different direction than the first, and when
related to the first pattern, only the center (not the
direction) of the second pattern is taken into account.
Take two people in a room, one standing on the floor,
the other standing on the ceiling (bear with us here!),
The person on the floor says that the person on the
ceiling is above them, while the person on the ceiling
also says that the person on the floor is above them,
since that person's up is different from the person on the
floor's up. In the same way, two patterns may have the
same relation from each pattern's perspective.

3. Relation Patterns permutation count
Since each pair of patterns can create up to eight
different relations between them, we can estimate how
many possible combinations exist given the number of
patterns that the system wants to handle with just two
patterns. Having two patterns creates eight different
possible combinations if their local rotations remain
fixed. If the second is allowed to revolve, there are eight
combinations possible for each of the eight positions
relative to the first, making 64 possibilities. To
illustrate, take two patterns. You can easily revolve a
second pattern around the first into the eight positions.
Next, you can also revolve, at each of these positions,
the second pattern. Since this pattern has its own local
coordinate system, even though neither pattern changes
positions, the first pattern will appear to change
positions when compared to the second. Thus we have
at least 64 combinations with only two patterns used.
We can then swap the two patterns to create more
possibilities.

Adding a third complicates things even more. To
simplify, we can combine the second and third patterns
into a single unit, pretending that these two patterns are
actually one. This leaves us with the two pattern case
above, with 64 cases. Now, consider this two pattern
subunit, consisting of the second and third patterns.
Again, since there are two patterns, we have 64 cases. It
is possible to have each of these cases with each of the
cases between the first pattern and the pattern “subunit.”
Thus, we now have 642 different cases with only three
patterns.

One case remains here: The first pattern to the third
pattern, which wasn't taken into account previously. This
complicates matters, as it appears dependencies crop up
compared to the cases already handled, notably, the first
to second and second to third. For example, align all
three horizontally. If you try to move the third up or
down, you change the relation with the second as well as
the first. However, if you put the second above and to
the right of the first, and then place the third below and
to the right of the second, you have more freedom to
move the third relative to the first. In short, finding such
relationships is a difficult process that is dependent upon
how the patterns are placed and their room for
movement, as well as the pattern's width. However, it
should be pointed out that with only three patterns we
are able to create a large number of combinations, thus
resulting in a large vocabulary for messages.
In the final analysis, a lower bound can be found to
estimate the number of possible combinations. This is a
power of 64, namely, 64n-1, where n (greater than one) is
the number of patterns that are used. Some of these
combinations can lead to up to three more possibilities
depending upon where and how they are stationed.
Another way to create 64n-1 combinations is to use two
patterns in a 3x3 block resulting in 64 combination, and
use several such 3x3 blocks to create 64n-1 combinations.

Moreover, some possibilities are hard to use, especially
if there are many patterns in a frame. Using the third
dimension is possible, which would create 26 areas
instead of just 8. However, we have found that using it
with 3D is cumbersome and not intuitive. For most
applications, one would work on a flat surface and
manipulate the patterns that way. Also, when using
ARToolKit, if one pattern occludes another even
partially, the occluded pattern is no longer recognized.
So, using it in such a manner would not advisable,
though it would be easy to implement, as the application
is provided the information necessary and it is just a
simple extension of what was already done.

4. Attaching Words to Relational Pattern
Structure
Let's say we want the word “Guttywwig” to appear
whenever pattern A is above and to the right of pattern B
and whenever pattern B is directly below pattern C. We
have two conditions that need to be fulfilled in order to
be able to show that word. Furthermore, each condition
consists of two markers and a relation. (directly
above/below, above and to the left, etc.) We can also
attach any number of other conditions (say, pattern A
has to be to the right and above pattern D, etc.) that need
to be satisfied. Thus, a relational pattern would have to
be able to have any number of conditions, and each
condition would need a pair of patterns and a relation.

The coded structure of a relational pattern is done in
much of the same way. One relational pattern consists
of any number of pattern pairs (with a relation) that all
have to be satisfied so that the entire pattern can be
considered present. Each relational pattern has a linked
list of each of these relational pattern pairs. When the
program receives a frame, it finds out which patterns are
present on it. Then, with the patterns it knows are in the
frame, it calculates the relative positions of each pattern
when compared to all other patterns. This information is
stored in a table. Last, it goes through the list of
relational patterns, seeing which conditional pattern
pairs are satisfied. If even one in a relational pattern is
not satisfied, the relational pattern is marked as out and
processing continues onto the next one, meaning no
processing is done for any of the other pairs.

4. Results
As a first example, we arranged four different patterns
on a surface (Figure 1). When the user presses the space
bar, the current frame is examined, analyzing the
different relationships between the four patterns. If
certain relationships are found to be in the frame, various
words are printed to standard output. In the first figure,
the four patterns appear with their local axes drawn over
them.

Figure 1: Four patterns create associated word From left
to right, the numbers corresponding to each pattern in
the figure are 0, 1, 3, 2

The relationships are specified by the programmer in
code similar to this statement:

if(!(lp.addPositionMarker(0, 1, MRK_HIGHER,
"Lamp") &&
 lp.addPositionMarker(1, 2, MRK_SAME_VERT,
"Saggy") &&
 lp.addPositionMarker(2, 3, MRK_RIGHT, "Corporeal")
&&

 lp.addPositionMarker(0, 1, MRK_LOWER, "Wet") &&
 lp.addPositionMarker(1, 2, MRK_SAME_HORIZ,
"Messerschmidt") &&
 lp.addPositionMarker(2, 3, MRK_LEFT, "Lincoln")))

The first call to addPositionMarker tells it to print
“Lamp” when pattern 0 is higher than pattern 1, the
second tells it to print “Saggy” when pattern 1 is about
the same level vertically with pattern 2, and so on. The
first figure specifies the first three calls in the above
statement, meaning the words “Lamp Saggy Corporeal”
appear.

After moving the patterns around a bit, we can get a
second example (Figure 2):

Figure 2: Produces “Wet Messerschmidt Lincoln.

This one produces the words “Wet Messerschmidt
Lincoln.” Other combinations can be easily created as
well.

5. Conclusion
Instead of just using each pattern as one unit, we can
combine two or more patterns and place them at
different positions relative to each other, each
relationship representing something different. For
example, pattern A can be above pattern B, and this
represents one thing. Pattern A can also be below B, to
the right of B, to the left of B... etc. With two patterns,
we have just created many more possibilities than just
using each pattern as a single unit.

In our example application, four patterns are arranged in
various positions and orientations on a surface. The user
then requests that the patterns and their relationships to
each be analyzed. If certain relationships are found, it
prints out a word. Rearranging the patterns will produce
different words and outcomes.

What makes this a powerful tool is that only three
patterns can be used to represent 642 different things.
Both augmented reality and pattern recognition are

costly both computation-wise as well as being intense in
memory. Having a different pattern for each different
scenario means comparing each frame to each pattern,
clearly not a quick procedure. Here, we gather quick
and useful information of a frame through the utility
ARToolKit, using only a handful of patterns. Then, it
analyzes the relative positions of each pattern compared
to the other patterns, and does something specified by
the programmer when certain relationships are found.
This can be handled in a timely manner, since few
patterns are kept in memory to be compared to each
camera frame, making this ideal for real-time
applications. Being able to generate a large number of
combinations in a small space has several applications in
virtual environments specifically in navigation and
wayfinding [2]. Our research is directly applicable to a)
in accessing large database; b) changing the context and
meaning of a situation with subtle positional changes of
patterns; and c) physical and network security
applications.

6. References
1. I Poupyrev, DS Tan, M Billinghurst, H Kato, H
Regenbrecht, N Tetsutani, Developing a generic
Augmented Reality Interface. Pp 44-50, IEEE Computer
March 2002

2. Rudolph P. Darken and Terry Allard. Spatial
Orientation and Wayfinding in Large-Scale Virtual
Spaces: An Introduction. Presence Teleoperators and
Virtual Environments, 7(2), pp. 101-107 (1999).

7. Acknowledgements
We wanted to thank Dr. Bill Ayen and NISSC for
supporting the seed grant. Dave Lohman was critical
assistance in dealing with SGI issues of our project. We
also gratefully acknowledge SGI’s Richard Grossen;
Shane Kopeland of James River Technical; Gwen Pech
and Jim Bryant at the BP Center of Visualization for a
variety of help on this project. Special thanks are due to
Dr. Terry Boult in providing several cameras for our
impmenetations.

This research is partially funded from the research
sponsored by the Air Force Research Laboratory, under
agreement number F49620-03-1-0207. The US
government is authorized to reproduce and distribute
reprints for government purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the author and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory of the U.S.
Government

