
Towards the Automatic Construction of 3D User
Interfaces

Mark Green

School of Creative Media
City University of Hong Kong

smmark@cityu.edu.hk

Abstract

One of the main problems facing the development of 3D
user interfaces is the wide range of hardware
configurations that must be supported. In addition,
many programmers lack experience in developing 3D
user interfaces and are often forced to develop most of
the interaction techniques and software structure from
scratch. This is very different from the situation in 2D
user interfaces where there is a standard hardware
configuration and a wealth of software support for user
interface development. This paper describes Grappl, a
software tool that automatically constructs 3D user
interfaces that adapt to a wide range of hardware
configurations. This tool simplifies the development of
small to medium size 3D applications and allows the
programmer to concentrate on the application instead of
the user interface.

Keywords: 3D User Interfaces

1. Introduction

Virtual Reality is not a new technology, but there are
relatively few applications using this technology
compared to the standard 2D desktop. In the past, the
lack of low cost 3D hardware has been used as the main
excuse for this situation. But, it is now possible to have
good 3D graphics and at least adequate 3D input on
regular desktop computers. The problem now is the lack
of software to support the development of 3D user
interfaces. Unlike 2D user interfaces, there is no
standard library of interaction techniques and design
tools for 3D user interface development. Thus,
programmers are forced to develop their own interaction
techniques and software architectures for the user
interface, in addition to dealing with application design.

This problem is complicated by the fact that a wide
range of hardware configurations are used for 3D
applications. Interaction techniques and user interface
structures that work well for one input device may be
totally unusable with another. Thus, 3D applications are
either forced to support and wide range of hardware
configurations or severely limit their potential audience.

This paper presents a prototype system, called Grappl
that automatically produces user interfaces for a range of
small to medium size 3D applications. At run-time

Grappl selects an appropriate set of interaction
techniques based on the available hardware devices.
Thus, the user interface can automatically adapt to
different device configurations without programmer or
user input. Since Grappl automatically constructs the
user interface programmers can concentrate on
application development rather than the user interface.

2. Problem Statement

The development of 3D user interfaces has been
hampered by the wide variety of input and output
devices that are used in 3D applications. This forces
developers to produce user interfaces that are either
tuned to a particular device configuration, or generic
user interfaces that attempt to support a wide range of
device configurations. Most developers have taken the
first approach, since it produces better user interfaces,
but this can severely limit the number of places where
the application can be used. Taking the more generic
approach allows the application to run at more locations,
but the user interface may be unusable at some of these
locations due to the devices that they use. At the present
time there is no middle ground that allows developers to
produce applications that run at many locations and at
the same time have a reasonable level of usability.

The nature of this problem can be illustrated by
examining of the types of input and output devices
currently used in 3D applications. For position and
orientation information that are two main classes of
input devices. Absolute devices, such as the Polhemus
and Intersense trackers, produce absolute position and
orientation values. On the other hand, relative devices,
such as 3D joysticks and pucks, measure the relative
motion of a controller. The range of absolute devices is
limited; therefore techniques must be developed to
interact with objects that are outside this range. This
isn’t a problem with relative devices, since their position
values aren’t limited. Due to this difference interaction
techniques that work well with absolute devices may be
unusable with relative devices and vice versa.
Applications that use absolute device tend to use some
form of pointing to indirectly manipulate objects, while
applications using relative devices use a cursor to
directly manipulate objects.

Similar problem occur with output devices. In the case
of head-mounted displays, the user’s view is typically

blocked so the environment surrounding them is not
visible, thus they are restricted to using the devices that
are currently held in their hands. In the case of desk top
and projection based displays this isn’t a problem. Due
to the reduced resolution of head-mounted displays,
information that is legible on desk top and project
displays may be illegible on head-mounted displays.
Thus, an application using a head-mounted display may
arrange information differently and use different
techniques to display the information.

There needs to be some way of supporting a wide range
of device configurations and providing support for
programmers that don’t have 3D user interface design
skills. Our approach to solving this problem, as outlined
in the following sections, is to automatically generate the
user interface given the application requirements and the
current device configuration.

3. Background

A considerable amount of work has been done on
software tools for 2D user interfaces. The most relevant
topics for this work are User Interface Management
Systems (UIMS) and model based tools. There has been
considerably less work done on 3D user interfaces with
the most relevant topic being 3D interaction techniques.

A considerable amount of work has been done on
software tools for the design and implementation of 2D
user interfaces. A good survey and analysis of this work
can be found in [4, 8]. Two of the main contributions of
this work are libraries of standard interaction techniques
and interface builders that provide graphical interfaces
for selecting interaction techniques and designing screen
layouts. A small number of standard interaction
technique libraries are used to construct most
commercial 2D user interfaces. The use of standard
libraries gives applications a standard look and feel, plus
facilitates the learning of new applications. On the
down side, the standard look and feel tends to stifle
creativity and sometimes results in user interfaces that
are less than optimal.

User Interface Management Systems (UIMS) have not
been as successful as the previous techniques. The goal
of a UIMS is to manage the user interface for an
application in the same way that a database manages its
data. This naturally leads to the notion of the automatic
design of user interfaces, where developers provide a
high level description of the user interface and the UIMS
automatically provides its implementation [9]. This was
further extended to model-based interface development
[11] where the user interface designer provides a
description of the information required by the
application and the tasks the user will perform with the
user interface, and the UIMS automatically designs and
constructs the user interface.

Since this approach wasn’t widely accepted, it is worth
examining its short comings. One of the main problems

was the perceived value for effort in using these
systems. Developers had to learn new languages and
then build a description of their user interface. In many
cases these descriptions were non-trivial and required
some time to develop. For small programs it was much
easier to use an interface builder. Developers must be
convinced that they will save time by using the tool,
otherwise it won’t be used. A related problem is this
time required to learn the tool.

There has been previous work on interaction technique
toolkits for 3D user interfaces [1, 12] and tools for
constructing them [6, 10]. Some of the VR software
packages also include a set of interaction technique that
can be used by application programmers [2, 7]. Many of
these interaction technique libraries make assumptions
about the hardware configurations that they use. For
example, some of them assume a desktop configuration
[1], while others assume that the absolute devices, such
as trackers are used. Our aim is to support a wide range
of device configurations, therefore we have developed
own interaction technique library [5]. Most of the
previous work has concentrated on individual interaction
techniques and hasn’t provided support for the
construction of complete user interfaces. The approach
presented here addresses the problem of developing user
interfaces for multiple hardware configurations, which
the previous work has not dealt with.

4. The Grappl Approach

Grappl automatically designs and constructs the user
interface for an application given the device
configuration encountered at run time. In order to do
this Grappl must be able to determine the set of available
input and output devices, the available interaction
techniques and the user interface requirements for the
application. Since the user interface is constructed at
run time the design process must be reasonably efficient.

Each application must provide a description of its user
interface requirements. This includes the information
that must be provided by the user and the application
functionality that is exposed to the user. To support this
Grappl provides a simple API that allows programmers
to specify user interface requirements in a succinct way.
Programmers are familiar with APIs, so this approach is
both familiar and easy to learn. The API allows the
programmer to specify the operations supported by the
application, the information to be provided by the user
and how these operations are invoked. From the
programmer’s perspective this information is specified
in terms of the application procedures that are available
to the user interface and the parameters to these
procedures. The parameter types are one of the main
inputs to the interaction technique selection process.

The programmer can also specify the interaction style to
be used with each procedure. The current version of
Grappl supports three interaction styles. The first is
standard command based interaction where the user

enters a command and its parameters and this
information is passed on to the application. In this case
the commands are placed on a menu that the user can
select from. The second style is mode based interaction.
In each mode only a subset of the application’s
interaction techniques are active and their values are
passed to the application on each user interaction. An
example of this is a mode where the user can position
and orient one of the application objects. Each time the
position or orientation of the object is changed the
application is immediately informed and the object is
immediately updated. The third style is based on
continuous interaction where the user can always
interact with the interaction technique and the results of
the interaction are immediately sent to the application.
An example of this style of interaction is object
selection, which can always be available to the user. All
three interaction styles can be used in the same
application.

Grappl must also manage the output generated by the
application. A C++ based scene graph is used for this
purpose. Each application object is represented by its
own scene graph. This scene graph is registered with
Grappl when it is created, and Grappl is informed each
time it is modified. Grappl can perform a number of
operations on the application scene graphs. At the same
time that Grappl is allocating space for interaction
techniques, it can also allocate space to application
objects. The programmer has control over whether
Grappl will automatically allocate space for an
application object. The list of application objects
maintained by Grappl is also used as the basis for object
selection operations.

When the application starts, Grappl first determines the
set of input and output devices that are available to the
application. It then selects an appropriate representation
for each input device. Once an interaction technique has
been selected for the input device an application
property is set to indicate whether relative or absolute
devices are being used.

Next Grappl constructs a list of interaction technique
requests based on the information provided by the
programmer. If at least one of the application operations
has the command interaction style a request for a
command menu is added to the list. Similarly, if an
absolute device is used and the size of the application’s
3D space is larger than the device’s range a request for a
navigation interaction technique is added to the list.
Once the request list has been constructed it is processed
one entry at a time to select an interaction technique that
will meet the request. If an operation has several
parameters of a similar type they are grouped together so
they will be adjacent to each other in the final user
interface.

The final stage in interface design is assigning a portion
of the application’s 3D space to each of the interaction
techniques and application objects. The programmer

can use one of the API procedures to specify the size of
the application space (a default value is used if one isn’t
specified). The specification of the display device also
contains information used in the layout process,
including the size of the display area and the prime area
of user focus. This process starts by ranking the objects
in order of their importance. In the case of application
objects, the programmer can specify the object’s
importance when it’s created. If an importance isn’t
specified for an object its size is used to compute its
importance, with larger objects having a greater
importance.

5. Prototype and Examples

The prototype version of Grappl can generate user
interfaces for both desktop and projection based
displays, and for both relative (joysticks and pucks) and
absolute (most 3D trackers) input devices. The same
executable can run on all hardware configurations, with
a set of system level files used to specify the device
configuration. Thus, neither the programmer nor the
user needs to worry about whether the application will
run with the available hardware resources.

Figure 1. Grappl constructed interface for
financial application

Two example applications developed using Grappl are
briefly described in this section. These examples are
relatively small and are mainly used to illustrate some of
Grappl’s important features. The first example, shown
in figure 1, is a financial visualization application that
computes a 3D surface showing option value as a
function of time and the underlying stock price. The
Grappl constructed user interface allows the user to
construct a new option and vary the interest rate and
volatility of the underlying stock. The user interface
also allows the user to move the surface and change the
view angle. The user can create several options and
adjust their parameters. Since the user can easily move
the surfaces around, it’s easy to compare the different
options.

Grappl constructs a small menu for this application
consisting of commands for creating options and
invoking the examination mode. Two graphical
potentiometers are selected for changing the values of
the interest rate and volatility parameters. The computed
surface is examined by first selecting the surface
(position the 3D cursor within the surface display and
pressing a button) and then moving the cursor to change
its position and orientation. The 3D interaction
techniques used for these manipulations are not visible
in this figure since they have no visual appearance.
These interaction techniques are automatically
positioned by Grappl. The complete specification of the
user interface requires less than 20 lines of C++ code.
The user interface produced by Grappl for this
application is quite usable and close to what an expert
designer would produce.

The second example, shown in figure 2 is a purely 3D
user interface that doesn’t use any 2D interaction
techniques. This application reads a file containing a
character model and allows the user to select parts of the
model and reposition them through rotation. The user
interface specification contains two operations; selecting
a part of the model and entering a rotation. The rotation
occurs continuously as the user interacts with the input
device. Grappl automatically selects a sub-object
selection technique and rotation technique and then
constructs the user interface. This example shows how
Grappl can be used to construct purely 3D user
interfaces without any 2D components.

Figure 2. Character model manipulation user
interface constructed by Grappl

6. Conclusions and Future Work

The current version of Grappl works best with
applications that have a relatively small number of
commands (less than a dozen) and concentrate on
parameter or object manipulation. For these applications
Grappl produces a workable user interface and allows

the programmer to concentrate on application issues. It
is also fairly easy to modify user interfaces produced
using Grappl. At the present time we are working on
producing a richer set of interaction techniques, better
layout algorithms and more sophisticated techniques for
selecting interaction techniques and structuring the user
interface. These additions will allow Grappl to handle a
wider range of user interfaces.

Acknowledgements

The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China [Project No.
CityU 1159/01E].

References

1. Barrilleaux J., 3D User Interfaces with JAVA 3D,

Manning Publications, 2001.
2. Bierbaum A., C. Just, P. Hartling, K. Meinert, A.

Baker, C. Cruz-Neira, VR Juggler: A Virtual
Platform for Virtual Reality Application
Development, IEEE Virtual Reality 2001, 2001.

3. Bowman D., Kruijff E., LaViola J., Poupyrev I., 3D User
Interfaces: Theory and Practice, Addison-Wesley, 2005.

4. Green M., A Survey of Three Dialogue Models,
ACM Transactions on Graphics, vol.5, no.3, p.244-
275, 1986.

5. Green M., J. Lo, The Grappl 3D Interaction
Technique Library, VRST’2004 Proceedings, 2004.

6. Jacob, R., Deligiannidis, L., Morrison, A Software
Model and Specification Language for Non-WIMP
User Interfaces. Transactions on Computer-Human
Interaction, 1999. 6(1): pp. 1-46.

7. Kelso J., L. Arsenault, S. Satterfield, R. Kriz,
DIVERSE: A Framework for Building Extensible
and Reconfigurable Device Independent Virtual
Environments, IEEE Virtual Reality 2002, 2002.

8. Myers B., S. Hudson, R. Pausch, Past, Present and
Future of User Interface Software Tools, ACM
Trans. On Computer-Human Interaction, vol.7,
no.1, p.3-28, 2000.

9. Singh G., M. Green, Automating the Lexical and
Syntactic Design of Graphical User Interfaces: The
UofA* UIMS, ACM Transaction on Graphics,
vol.10, no.3, p.213-254, 1991.

10. Stevens, M., Zeleznik, R., Hughes, J., An
architecture for an extensible 3D interface toolkit.
Proceedings of UIST'94. 1994. ACM. pp. 59-67.

11. Szekely P., Retrospective and Challenges for
Model-Based Interface Development, Design,
Specification and Verification of Interactive
Systems’96, p.1-27, 1996.

12. Zeleznik, R.C., Herndon, K.P., Robbins, D.C.,
Huang, N., Meyer, T., et al., An interactive 3D
toolkit for constructing 3D widgets. Proceedings of
SIGGRAPH'93. 1993. ACM. New York, NY, USA.
pp. 81-4.

