Towardsthe Automatic Construction of 3D User
| nterfaces

Mark Green
School of Creative Media
City University of Hong Kong
smmark@cityu.edu.hk

Abstract Grappl selects an appropriate set of interaction
techniqgues based on the available hardware devices.

One of the main problems facing the developme»f Thus, the user interface can automatically adapt to

user interfaces is the wide range of hardware different device configurations without programmeer

configurations that must be supported. In addjtion user input. Since Grappl automatically construbts

many programmers lack experience in developing 3D user interface programmers can concentrate on

user interfaces and are often forced to developt wios ~ application development rather than the user iaterf

the interaction techniques and software structooenf

scratch. This is very different from the situation2D 2. Problem Statement

user interfaces where there is a standard hardware .

configuration and a wealth of software support deer The development of 3D user interfaces has been

interface development. This paper describes Grappl nampered by the wide variety of input and output

software tool that automatically constructs 3D user devices that are used in 3D applications. Thisefr

interfaces that adapt to a wide range of hardware developers to p_roduce user mterfaces_ that are:arenh

configurations. This tool simplifies the develophef tuned to a particular device configuration, or gene

small to medium size 3D applications and allows the USer interfaces that attempt to support a wide eaofg

programmer to concentrate on the application inistga ~ device configurations. Most developers have tatken
the user interface. first approach, since it produces better user fates,

but this can severely limit the number of placesmgh
the application can be used. Taking the more gener
approach allows the application to run at moretioos,
but the user interface may be unusable at somkesgt
locations due to the devices that they use. Apthsent
Virtual Reality is not a new technology, but theme time there is no r_niddle ground that allows de_veﬂsme
relatively few applications using this technology produce applications that run at many locations and

compared to the standard 2D desktop. In the past, the same time have a reasonable level of usability.
lack of low cost 3D hardware has been used as #ie m
excuse for this situation. But, it is now possitiéhave
good 3D graphics and at least adequate 3D input on
regular desktop computers. The problem now idatle

of software to support the development of 3D user
interfaces. Unlike 2D user interfaces, there is no
standard library of interaction techniques and gtesi
tools for 3D wuser interface development. Thus,
programmers are forced to develop their own intemac
techniques and software architectures for the user
interface, in addition to dealing with applicatidesign.

Keywords: 3D User Interfaces

1. Introduction

The nature of this problem can be illustrated by
examining of the types of input and output devices
currently used in 3D applications. For positiond an
orientation information that are two main classés o
input devices. Absolute devices, such as the Palke
and Intersense trackers, produce absolute positich
orientation values. On the other hand, relateeaks,
such as 3D joysticks and pucks, measure the relativ
motion of a controller. The range of absolute desiis
limited; therefore techniques must be developed to
interact with objects that are outside this ranghis
isn’t a problem with relative devices, since th@isition
values aren’t limited. Due to this difference naietion
techniques that work well with absolute devices rnay
unusable with relative devices and vice versa.
Applications that use absolute device tend to wsees
form of pointing to indirectly manipulate objectshile
applications using relative devices use a cursor to
directly manipulate objects.

This problem is complicated by the fact that a wide
range of hardware configurations are used for 3D
applications. Interaction techniques and user fater
structures that work well for one input device mzgy
totally unusable with another. Thus, 3D applicagiare
either forced to support and wide range of hardware
configurations or severely limit their potentialdéence.

This paper presents a prototype system, called gGrap
that automatically produces user interfaces farge of
small to medium size 3D applications. At run-time

Similar problem occur with output devices. In tase
of head-mounted displays, the user's view is typica

blocked so the environment surrounding them is not
visible, thus they are restricted to using the cevithat
are currently held in their hands. In the casdesk top
and projection based displays this isn’t a probl®ue

to the reduced resolution of head-mounted displays,
information that is legible on desk top and project
displays may be illegible on head-mounted displays.
Thus, an application using a head-mounted display m
arrange information differently and use different
techniques to display the information.

There needs to be some way of supporting a widgeran
of device configurations and providing support for
programmers that don’'t have 3D user interface desig
skills. Our approach to solving this problem, aetlined

in the following sections, is to automatically geate the
user interface given the application requirementstae
current device configuration.

3. Background

A considerable amount of work has been done on
software tools for 2D user interfaces. The mokstvant
topics for this work are User Interface Management
Systems (UIMS) and model based tools. There has be
considerably less work done on 3D user interfadéis w
the most relevant topic being 3D interaction teqhes.

A considerable amount of work has been done on
software tools for the design and implementatior2[f
user interfaces. A good survey and analysis sfifurk

can be found in [4, 8]. Two of the main contrilomis of
this work are libraries of standard interactiorhteques
and interface builders that provide graphical ifaisss

for selecting interaction techniques and desigsitrgen
layouts. A small number of standard interaction
technique libraries are wused to construct most
commercial 2D user interfaces.
libraries gives applications a standard look ared, fglus
facilitates the learning of new applications. Oret
down side, the standard look and feel tends tdestif
creativity and sometimes results in user interfates
are less than optimal.

User Interface Management Systems (UIMS) have not
been as successful as the previous techniques.gddie

of a UIMS is to manage the user interface for an
application in the same way that a database marntges
data. This naturally leads to the notion of theomatic
design of user interfaces, where developers proside
high level description of the user interface arelthMS
automatically provides its implementation [9]. Fhias
further extended to model-based interface developme
[11] where the user interface designer provides a
description of the information required by the
application and the tasks the user will performhvitie
user interface, and the UIMS automatically designg
constructs the user interface.

Since this approach wasn't widely accepted, it @t
examining its short comings. One of the main proisle

The use of standardapplication.

was the perceived value for effort in using these
systems. Developers had to learn new languages and
then build a description of their user interfade.many
cases these descriptions were non-trivial and redui
some time to develop. For small programs it washmu
easier to use an interface builder. Developers ines
convinced that they will save time by using thel,too
otherwise it won't be used. A related problemhist
time required to learn the tool.

There has been previous work on interaction teckeiq
toolkits for 3D user interfaces [1, 12] and tootw f
constructing them [6, 10]. Some of the VR software
packages also include a set of interaction teclentgat
can be used by application programmers [2, 7]. Mzny
these interaction technique libraries make asswmgpti
about the hardware configurations that they user F
example, some of them assume a desktop configaratio
[1], while others assume that the absolute devisash

as trackers are used. Our aim is to support a weidge

of device configurations, therefore we have dewetop
own interaction technique library [5]. Most of the
previous work has concentrated on individual irdéoa
techniques and hasn’'t provided support for
construction of complete user interfaces. The @t
presented here addresses the problem of develaperg
interfaces for multiple hardware configurations,iath
the previous work has not dealt with.

the

4. The Grappl Approach

Grappl automatically designs and constructs the use
interface for an application given the device
configuration encountered at run time. In ordedo
this Grappl must be able to determine the set afahle
input and output devices, the available interaction
techniques and the user interface requirementghfor
Since the user interface is constdicit
run time the design process must be reasonabbyesfi

Each application must provide a description oftiser
interface requirements. This includes the infoiamat
that must be provided by the user and the appbicati
functionality that is exposed to the user. Topaurpthis
Grappl provides a simple API that allows progransner
to specify user interface requirements in a sutciay.
Programmers are familiar with APIs, so this apphoisc
both familiar and easy to learn. The API allows th
programmer to specify the operations supportedhiey t
application, the information to be provided by tier
and how these operations are invoked. From the
programmer’s perspective this information is spedif

in terms of the application procedures that arélable

to the user interface and the parameters to these
procedures. The parameter types are one of the mai
inputs to the interaction technique selection pssce

The programmer can also specify the interactiole sty
be used with each procedure. The current versfon o
Grappl supports three interaction styles. Thet fiss
standard command based interaction where the user

enters a command and
information is passed on to the application. lis tase

the commands are placed on a menu that the user caspecified).

select from. The second style is mode based oitera

In each mode only a subset of the application’s
interaction techniques are active and their valaes
passed to the application on each user interaction.
example of this is a mode where the user can paositi
and orient one of the application objects. Eaotetthe
position or orientation of the object is change@ th
application is immediately informed and the objéesct
immediately updated. The third style is based on
continuous interaction where the user can always
interact with the interaction technique and theiltesof

the interaction are immediately sent to the appboa

An example of this style of interaction is object
selection, which can always be available to the.usd

its parameters and thiscan use one of the API procedures to specify the Gl

the application space (a default value is usedéf isn’t
The specification of the display devalso
contains information used in the layout process,
including the size of the display area and the erarea

of user focus. This process starts by ranking theats

in order of their importance. In the case of aggilon
objects, the programmer can specify the object’s
importance when it's created. If an importancetisn
specified for an object its size is used to comptge
importance, with larger objects having a greater
importance.

5. Prototype and Examples

The prototype version of Grappl can generate user
interfaces for both desktop and projection based

three interaction styles can be used in the samedisplays, and for both relative (joysticks and ®)cknd

application.

absolute (most 3D trackers) input devices. Theesam
executable can run on all hardware configuratiovit)

Grappl must also manage the output generated by thea set of system level files used to specify theiadev

application. A C++ based scene graph is usedhisr t
purpose. Each application object is representedsby
own scene graph. This scene graph is registertd wi
Grappl when it is created, and Grappl is informadhe
time it is modified. Grappl can perform a numbér o
operations on the application scene graphs. Asdnee
time that Grappl is allocating space for interattio
techniques, it can also allocate space to appicati
objects. The programmer has control over whether
Grappl will automatically allocate space for an
application object. The list of application objects
maintained by Grappl is also used as the basisHjarct
selection operations.

When the application starts, Grappl first determitiee
set of input and output devices that are availablthe
application. It then selects an appropriate regdion

for each input device. Once an interaction techaminas
been selected for the input device an application
property is set to indicate whether relative orailite
devices are being used.

Next Grappl constructs a list of interaction tecfus
requests based on the information provided by the
programmer. If at least one of the applicationrafens

has the command interaction style a request for a
command menu is added to the list. Similarly, nf a
absolute device is used and the size of the apiplica

3D space is larger than the device’s range a rédorea
navigation interaction technique is added to ttet li
Once the request list has been constructed ibisepsed
one entry at a time to select an interaction tepaithat
will meet the request. If an operation has several
parameters of a similar type they are grouped legeto
they will be adjacent to each other in the finaerus
interface.

The final stage in interface design is assigninmpidion
of the application’s 3D space to each of the imtEwa
techniques and application objects. The programmer

configuration. Thus, neither the programmer nag th
user needs to worry about whether the applicatidh w
run with the available hardware resources.

W option

new call uun

new put
examine
quit

V2 = (4.800, 1.000, 1.300) Q = (0.000,0.000, 1.000, 0.000)

mwﬁ 57.60Hz |

Figure 1. Grappl constructed interface for
financial application

Two example applications developed using Grappl are
briefly described in this section. These exampaes
relatively small and are mainly used to illustrstene of
Grappl's important features. The first exampleyvai

in figure 1, is a financial visualization applicati that
computes a 3D surface showing option value as a
function of time and the underlying stock price.heT
Grappl constructed user interface allows the user t
construct a new option and vary the interest rate a
volatility of the underlying stock. The user irfeare
also allows the user to move the surface and chtrege
view angle. The user can create several optioms an
adjust their parameters. Since the user can easile

the surfaces around, it's easy to compare therdiite
options.

Grappl constructs a small menu for this application the programmer to concentrate on application issuies
consisting of commands for creating options and is also fairly easy to modify user interfaces prastl
invoking the examination mode. Two graphical using Grappl. At the present time we are workimg o
potentiometers are selected for changing the vaibfies producing a richer set of interaction techniquestteln

the interest rate and volatility parameters. Tomputed layout algorithms and more sophisticated technidaes
surface is examined by first selecting the surface selecting interaction techniques and structurireguker
(position the 3D cursor within the surface dispbnyd interface. These additions will allow Grappl tadke a

pressing a button) and then moving the cursor &mgh wider range of user interfaces.

its position and orientation. The 3D interaction

techniques used for these manipulations are ndtleis Acknowledgements

in this figure since they have no visual appearance

These interaction techniques are automatically The work described in this paper was fully suppbiig
positioned by Grappl. The complete specificatibthe a grant from the Research Grants Council of thegHon
user interface requires less than 20 lines of Cedec ~ Kong Special Administrative Region, China [Projict
The user interface produced by Grappl for this CityU 1159/01E].

application is quite usable and close to what goedx

designer would produce. Refer ences

The second example, shown in figure 2 is a purly 3 1. Barrilleaux J., 3D User Interfaces with JAVA 3D,
user interface that doesn’t use any 2D interaction Manning Publications, 2001.
techniques. This application reads a file contajna 2. Bierbaum A., C. Just, P. Hartling, K. Meinert, A.

character model and allows the user to select pattse Baker, C. Cruz-Neira, VR Juggler: A Virtual
model and reposition them through rotation. Therus Platform for Virtual Reality Application
interface specification contains two operationsectng Development, IEEE Virtual Reality 2001, 2001.

a part of the model and entering a rotation. Tdtation 3. Bowman D., Kruiff E., LaViola J., Poupyrev I., 3Dser
occurs continuously as the user interacts withiripet Interfaces: Theory and Practice, Addison-Wesle(520

device. Grappl automatically selects a sub-object 4. Green M., A Survey of Three Dialogue Models,
selection technique and rotation technique and then ACM Transactions on Graphics, vol.5, no.3, p.244-

constructs the user interface. This example shuowvs 275, 1986. _
Grappl can be used to construct purely 3D user 5. Green M., J. Lo, The Grappl 3D Interaction
interfaces without any 2D components. Technique Library, VRST'2004 Proceedings, 2004.

6. Jacob, R., Deligiannidis, L., Morrison, A Software
Model and Specification Language for Non-WIMP
User InterfacesTransactions on Computer-Human
Interaction, 1999. 6(1): pp. 1-46.

7. Kelso J., L. Arsenault, S. Satterfield, R. Kriz,
DIVERSE: A Framework for Building Extensible
and Reconfigurable Device Independent Virtual
Environments, IEEE Virtual Reality 2002, 2002.

8. Myers B., S. Hudson, R. Pausch, Past, Present and
Future of User Interface Software Tools, ACM
Trans. On Computer-Human Interaction, vol.7,
no.1, p.3-28, 2000.

9. Singh G., M. Green, Automating the Lexical and
Syntactic Design of Graphical User Interfaces: The
UofA* UIMS, ACM Transaction on Graphics,
vol.10, no.3, p.213-254, 1991.

10. Stevens, M., Zeleznik, R., Hughes, J., An
architecture for an extensible 3D interface toolkit
Proceedings of UIST'94. 1994. ACM. pp. 59-67.

11. Szekely P., Retrospective and Challenges for
Model-Based Interface Development, Design,
Specification and Verification of Interactive
Systems’96, p.1-27, 1996.

12. Zeleznik, R.C., Herndon, K.P., Robbins, D.C.,

2 = (2500, 0.000, 0.000) Q = (0,000, 0.000, 1.000, 0.000) Updates: 177.04 Hz

Figure 2. Character model manipulation user
interface constructed by Grappl

6. Conclusions and Future Work

The current version of Grappl works best with Huang, N., Meyer, T.gt al., An interactive 3D
applications that have a relatively small number of toolkit for constructing 3D widgets. Proceedings of
commands (less than a dozen) and concentrate on SIGGRAPH93.1993. ACM. New York, NY, USA.
parameter or object manipulation. For these agiitins pp. 81-4.

Grappl produces a workable user interface and allow

