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ABSTRACT 
 
In this paper, we propose a practical auto-calibration 
algorithm of zooming cameras from the multiple images 
containing a rectangle of unknown size. The proposed 
algorithm need not solve the complex multivariate non-
linear problem, since the equations for calibration are 
formulated as the polynomials in a single variable. In 
addition, the proposed algorithm is able to provide 
reliable results under the significant change of zooming 
where most multi-view/mono-plane (auto-) calibration 
algorithms often fail to produce reliable results. 
Experimental results validate the effectiveness of the 
proposed algorithm. Applications to image-based 
modeling are demonstrated as well. 
 

1. INTRODUCTION 
 
Camera auto-calibration is the process of computing the 
intrinsic parameters of camera directly from multiple 
images without using any a priori Euclidean structure and 
has been widely investigated in computer vision field 
during last decade. To calibrate cameras directly from 
images, most auto-calibration techniques employ some 
kinds of constraints. For example, some knowledge on the 
intrinsic parameters (e.g. skew zero, unit aspect ratio etc.) 
can be used [1], or specific camera motions can be applied 
[2]. Constraints for the observed scene such as metric 
information or coplanarity can be also utilized [3,4,5,6].  

In this paper, we propose a practical method for auto-
calibration of zooming cameras by exploiting the scene 
constraints obtained from the multiple images containing 
a rectangle of unknown size. The motive for considering 
rectangles of unknown size for calibration is quite simple: 
rectangles of unknown size are abundant in practice. 
Specifically, rectangles appear very often especially in 
man-made environments, but the sizes of rectangles in the 
scene cannot be readily inferred from images due to 
perspective distortion.  

To calibrate cameras from a rectangle of unknown 
size, we first parameterize a world-to-image homography 

of the unknown rectangle by the length ratio of the two 
sides of the rectangle, and then apply this parameterized 
homography to the equations which relate the 
homography to IAC (Image of Absolute Conic). This 
approach is inspired from the existing algorithms. For 
example, parameterizing a homography from an arbitrary 
rectangle is inspired from [7] which used the metric 
information on planes as the constraints for a homography. 
Also we should admit that our equations for calibration 
are derived, based on the well-known equations in plane-
based camera calibration [8,9]. Nevertheless, in this paper, 
there are some improvements over the existing methods 
especially in practical aspects. 

First, computation for calibration is very simple and 
robust to noise. In this paper, the equations for calibration 
are derived as the polynomials in a single variable. Hence, 
we can get the closed-form solutions, avoiding the 
initialization difficulty from which most auto-calibration 
algorithms formulated as multivariate non-linear problems 
suffer.  

Second, the proposed method is able to provide 
reliable calibration results under the significant change of 
zooming. Most multi-view/mono-plane based calibration 
algorithms assume that the principal point is fixed while 
zooming since it is in general impossible to get a unique 
solution from a single plane when both the focal and the 
principal point vary over all images. But, the principal 
point of zoom-lens camera can be varied during zooming 
[10]. Furthermore, we have empirically confirmed that 
fixing of the principal point affects the calibration results 
more adversely as the change of zooming become 
considerable. In order to resolve this problem, we propose 
a technique to approximate the solution of the under-
constrained equations without fixing the principal point. 
Experimental results show that the proposed technique 
provides more reliable results than the previous ones 
especially under the significant change of zooming. 

In section 2, our camera model is introduced. In 
section 3, the homography for an unknown rectangle is 
derived. The calibration algorithm is proposed in section 4, 
and experimental results are presented in section 5. 



2. CAMERA MODEL 
 

For modeling cameras, we use the perspective projection. 
The projection from a 3D point 3∈Ρx to its 2D image 
point 2∈Ρp  is represented as follows:  
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where R is 3 3×  orthogonal matrix representing 
camera’s orientation, t  is a 3-vector representing its 
position, and K is a 3 3×  matrix containing the camera 
intrinsic parameters. In K , f is an effective focal length, 
α is an aspect ratio, s is a skew factor, and 0 0( , )u v is the 
coordinate of the principal point. In this paper, we will 
suppose that the skew factor is zero, since it is in general 
very close to zero. 
 

3. HOMOGRAPHY FOR A RECTANGLE OF 
UNKNOWN SIZE 

 
In this section, we derive the world-to-image homography 
for the rectangle whose length ratio between two sides 
isτ . For convenience, let us assume that the X-axis and 
the Y-axis of the world reference coordinate system are 
respectively aligned with two sides of the rectangle. Then, 
image projections 1,2,3,4 ( , )i i ip u v= = of the rectangle’s four 
vertices satisfy: 
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where H is a 3 3× homography for the canonical square 
(size 1), and it can be decomposed as   

 .= ⋅H H S                                  (3) 
In (3), H  is a homography for the rectangle with the 
length ratio τ , and S  is 3 3×  matrix which scales the Y-
axis byτ . Here, S  is written as   
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If we measure the image projections of the 
rectangle’s four vertices, we can compute H from (2), and 
subsequently obtain H  since 1−= ⋅H H S . Via simple 
algebra, we can finally express H as follows. 

-1
1 2 3     ,τ =  H h h h                      (5) 

where 1,2,3i=h denote the 1st, 2nd, and 3rd column of H  
respectively. 

4. CALIBRATION ALGORITHM 
 
In this section, the proposed calibration algorithm is 
presented. We begin this section by describing the basic 
equations for calibration. 
 
4.1. Basic equations 
 
A world-to-image homography H  has a homogeneous 
linear relationship with IAC ( 1T− −∝ω K K ) as follows 
[8,9]:  

1 2 0,T =h ωh         1 1 2 2 ,T T=h ωh h ωh          (6) 

where 1h and 2h  denote the 1st and 2nd column of H . 
Here, incorporating equation (5) into equation (6), we can 
get the basic equations for calibration: 
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4.2. Calibration of a camera with fixed parameters 
 
When all the parameters are fixed, the number of 
unknowns is five: four camera parameters and one length 
ratio of the rectangle. Since two constraints are obtained 
from a single image (see equation (7)), minimal three 
images are required to get a closed-form solution. In this 
minimal case, we can calibrate the camera and recover the 
length ratio by solving simultaneously two quadratic 
polynomial equations in a single variable. For want of 
space, the detailed procedure of deriving the equations is 
left out, but similar procedure will be presented in detail 
in the next subsection. 

If more than three images are available, we can 
recover the camera parameters by computing the linear 
equation system since one linear equation for each image 
is obtained from the first equation in (7). The length ratio 
is subsequently computed by applying the recovered 
parameters to the second equation in (7).  
 
4.3. Calibration of cameras with varying focal lengths 
 
When only the focal length varies, the number of 
unknowns to be solved, for n input images, is n+4: n focal 
lengths, principal point (two), one aspect ratio, and one 
length ratio of the rectangle. Thus, minimal four images 
(2n≥n+4) are required to get a closed-form solution. In 
this minimal case, we can solve the problem by computing 
an 8-order polynomial equation in a single variable. The 
detailed procedure of deriving the equation is as follows. 
A. In the case that only the focal length varies, each IAC 

for four images is written as: 
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B. Using the first equation in (7) obtained from each input 
image, we can express 5iω (i=1,2,3,4) as the linear 
combinations of 1ω , 2ω , 3ω , and 4ω , and then 
incorporating these results into the second equations in (7), 
we can obtain the four equations with the form as 

1 2 3 4( ) ( ) ( ) ( ) 0i i i i i i i ia x b c x d e x f g x hω ω ω ω+ + + + + + + = . 
Here, ia , ib , ic , id , ie , if , ig , and ih  (i =1,2,3,4) are scalar 
values, and x denotes 2τ . 
C. Four equations derived in step B are reduced to an      
8-order polynomial equation in a single variable x. The 
roots of the polynomial are obtained by finding the 
eigenvalues of its companion matrix [11]. 
D. Incorporating the obtained x into the basic equations in 
(7), eight linear equations are provided, and thus we can 
compute ω  by solving the linear equation system. 

If we use five (resp. six) images, we can obtain the 
results by solving simultaneously two (resp. three) 8-order 
polynomial equations in a single variable. In addition, in 
case of using more than six images, we can compute the 
camera parameters linearly by over-parameterization. 
 
4.4. Calibration of cameras with varying focal lengths 
and varying principal points 
 
In the case that both the focal length and the principal 
point undergo a change over all images, the number of 
unknowns to be solved, for n input images, is 3n+2: n 
focal lengths, 2 n principal points, one aspect ratio, and 
one length ratio of a rectangle. This means that the 
number of unknowns is always more than the number of 
constraints (3n+2>2n). Therefore, the problem to be 
solved is under-constrained, that is, we cannot get a 
unique solution. To resolve this under-constrained 
condition, we propose a technique to approximate the 
camera parameters without fixing the principal point, and 
this approximation is made by applying the center line 
constraint proposed in [12]. Emphasizing once again, the 
obtained solution are not a closed-form, but just an 
approximation. However, we have been able to 
experimentally confirm that the proposed technique 
provides more reliable results than the existing methods 
which fix the principal point, especially when the 
considerable change of zooming occurs. 
The center line constraint.  Gurdjos et al. exhibited that 
for a given world-to-image homography, the principal 
point restricts its location to a line segment, and they 
referred to this line segment as the center line [12]. 
Letting  i jH  be the (i,j) element of the world-to-image 
homography H, the center line cl can be written as: 
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Camera calibration algorithm.  To approximate camera 
parameters, we make the following two assumptions: 1) 
the aspect ratio is one. 2) the principal point locates near 
the center of image. From the first assumption, we can 
write the coefficients 1 2, ,l l and 3l  as the form of 

3
i ia x b x+ (i=1,2,3) by incorporating equation (5) into 

equation (8), where ia , ib (i=1,2,3) are scalar values, and x 

denotes 1τ − . Using this result together with the second 
assumption, we can obtain the following inequality: 
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where ( 1c , 2c ) is the center of image, t is the threshold 
distance between the center of image and the center line, 
and p,q, and r are scalar values. Equation (9) reveals that 
we can estimate the rectangles to provide the center lines 
whose distances from the center of image are less than a 
threshold t by computing the doubly quadratic inequality 
in a single variable 1( )x τ −= . Staring with this inequality, 
we calibrate the cameras and estimate the length ratio of 
the rectangle. The detailed calibration algorithm is 
presented in the following. 
A. For n input images, we derive n doubly quadratic 
inequalities from (9), and then we compute the intervals 
of 1( )x τ −=  satisfying the system of these inequalities. 
The obtained interval will be a single one, since the 
interval is the solution of the system of doubly quadratic 
inequalities. 
B. Over the obtained interval 0 1x x x≤ ≤ , we compute the 

minx which minimizes the cost function: 
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Note that the minimization is simple and robust to noise 
since the cost function has only a single variable as well 
as the reliable initial guess ( 0 1x x x≤ ≤ ) is given. 
C. For the minx ,  we determine the center line for each 
image from equation (8), and then we approximate the 
principal point of each image by picking the closest point 
to the center of image on each center line. 
D. Since the principal points are given over all images, the 
focal lengths can be linearly acquired from equation (7). 

 
5. EXPERIMENTS 

 
5.1. Auto-calibration of a fixed camera 



In this experiment we took three images of a calibration 
target using a SONY digital still camera F505 
(7.1mm~35.5mm zoom-lens) without zooming. For a 
comparison, the camera was calibrated with the standard 
Faugeras-Toscani method [13]. The standard method 
utilized all the grid points of the calibration target, while 
the proposed method used only the four corner points on 
the target’s top plane. Table 1. shows the results for the 
focal length, giving a comparison with those of standard 
method. In addition, the recovered length ratio of the 
rectangle was 1.002 (true value is 1). 
 
Focal length Standard Proposed Error 

f1 
f2 
f3 

1601.8 
1593.1 
1595.3 

1630.6 
1626.6 
1555.4 

1.8% 
2.1% 
2.5% 

Table 1. Results of focal lengths without zooming 

We can find out that the obtained results are accurate 
since the maximal error rate of the focal length is 2.5% 
with respect to the results of the standard calibration.  
 
5.2. Auto-calibration of a camera undergoing the 
significant change of zooming 
 
In this experiment we took four images of a calibration 
target at the largely different zooming positions. Figure 1. 
shows four images to be taken. To have ground-truth 
values, the camera was calibrated with the standard 
Faugeras-Toscani method. In addition, for a comparison 
with the existing method, we calibrated the camera using 
the Sturm-Maybank plane-based method [8] where the 
principal point was fixed. Sturm-Maybank method used 
the four corner points on the target’s top plane as ours, but 
the coordinates of the corner points were given a priori. 
The obtained results are summarized in Table 2.  

Compared with the ground-truth values, the proposed 
technique provided the trustworthy results, and the 3D 
reconstruction of the grid points of the target can be done 
with sufficient accuracy. In contrast, the existing method 
produced the unreliable results in some cases, even giving 
the complex values for the focal lengths in the second and 
third images. 
 
5.3. Application to the image-based modeling 
 
Two images of a notebook computer were taken by the 
same camera. For a calibration, we used four corner 
points of the LCD panel. By reconstructing the 3D 
coordinates of six point matches, we were able to obtain 
the partial 3D model of the notebook computer. The two 
input images and the reconstructed 3D model are shown 
in Figure 2. 

 

       
Figure 1: 4 Images of a calibration target 

Focal  
length 

Faugeras-
Toscani 

Sturm-  
Maybank 

Proposed 
method 

f1 
f2 
f3 
f4 

1345.1 
1700.5 
1911.4 
2213.8 

1106.1 
515.4i(complex) 
630.5i(complex) 

1625.1 

1413.7 
1780.5 
1865.1 
2312.6 

Table 2. Results of focal lengths of a camera undergoing 
a significant change of zooming  

           
                   (a)                                       (b) 
Figure 2. 3D reconstruction of the notebook computer   
(a) two input images (b) the reconstructed model 
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