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Abstract 
In this paper, we propose a novel 2.5D haptic rendering 
algorithm for a background scene. The 2.5D haptic ren-
dering is basically same as the full 3D haptic rendering 
except that it doesn’t provide the haptic feedback against 
the reverse face or hidden surface. It is likely that haptic 
rendering for the reverse side of the background scene is 
hardly required. In the proposed algorithm, collision 
detection and response are performed by using depth 
values provided by a graphic rendering hardware. The 
collision is detected by comparing the haptic interaction 
point with the associated depth value of the background 
scene. In the collision response, a localized occupancy 
map instance (LOMI) is used to determine the rendering 
force. The LOMI is a small-size temporal occupancy 
map and updated at every haptic rendering rate by refer-
ring the depth values around the ideal haptic interaction 
point. The proposed algorithm provides kinesthetic feels 
as long as the background scene is rendered by graphic 
rendering hardware and thus any type of object data is 
available. It also supports dynamically changing back-
ground scene without any additional efforts. Moreover, 
it uses small amount of physical memory and computa-
tion load and is not affected by the complexity of the 
background scene. 
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1. Introduction 
Haptic rendering is a process to provide a user with tac-
tual sensory information of environments. This allows 
exploration and interactive manipulation of virtual ob-
jects through a haptic interface. Environments may in-
clude real, virtual, augmented or multimedia contents 
and interactions may be accompanied by visual and/or 
auditory modalities. The kinesthetic or tactile feedback 
provides very effective interaction tool with the contents, 
assists to have the full recognition of the environments, 
and enhances a sense of immersion in the implementa-
tions. 

Most of the previous works in the haptic rendering algo-
rithm have focused on the full force feedback with well-
established object data. The geometric haptic rendering 

algorithms [1-6] use the surface data representation and 
the volumetric haptic rendering algorithms [7-9] use the 
volumetric data representation. Implicit object data [10, 
11] is also used.  

Early haptic rendering algorithms using penalty methods 
focused on simple object shapes such as spheres, cubes 
and planes since it is easy to determine the direction and 
penetration depth. The penalty method was extended to a 
method applicable to the more complex objects that can 
be subdivided into the internal volume. Each sub-volume 
is correlated with a surface toward which reflection force 
is exerted [1]. However, the penalty method has some 
drawbacks: lack of locality, force discontinuity, and ap-
parent penetration through thin objects.  

Later, more sophisticated haptic rendering algorithms 
had been proposed using the constraint-based methods in 
order to overcome limitations of the penalty method [2]. 
These methods used a god-object that is constrained by 
the surfaces of the objects. The god-object method was 
extended to the virtual proxy [3, 4] that is represented by 
an object substituting for the physical finger or probe in 
virtual environments. This method reduced tasks in the 
haptic servo loop for minimizing error between probe 
and proxy position.  

In the haptic rendering algorithms, that use surface-
based representation, pre-computation for a hierarchical 
data structure is required to perform appropriate colli-
sion detection and collision response computation. 
Moreover, haptic rendering speed depends on the num-
ber of polygons. A volume-based data representation can 
provide much faster and more informative rendering 
than the surface-based representation. It needs, however, 
also pre-computation generating voxel data (voxeliza-
tion) and requires a large physical memory depending on 
the environment size. 

Environments may contain diverse and enormous num-
ber of objects depending on each development purpose. 
However, it is not quite likely that all the objects require 
full haptic feedback. A picture frame on a wall or a cur-
tain at a window in a virtual environment, for example, 
the force display or manipulation for its back-face is 
hardly demanded for general implementations. The ob-
jects can be classified into object models and back-



   

ground scene by the required assignment and their im-
portance level. The object models are targeted objects 
which a user focuses on and tries to touch, feel, and ma-
nipulate, and thus full haptic feedback should be pro-
vided through their 3D object data with surface-based or 
volume-based representation. On the contrary, the back-
ground scene is less important set of objects which im-
prove realism of the application and aid to perceive cir-
cumstantial states of surroundings and vicinities in the 
environment. In general, the background scene occupies 
very wide portion of the environment and contains huge 
number of objects. Figure 1 shows an example of the 
background scene. The full haptic feedback of the back-
ground scene requires excessive amounts of offline 
processing, on-line computation, and physical memory. 
However, it looks ineffective considering its role and 
significance. It is highly likely that haptic rendering for 
the reverse side of the background scene is hardly re-
quired. Thus, it seems that 2.5D haptic feedback is suffi-
cient for common applications. The 2.5D haptic feed-
back is same with the full 3D haptic feedback except that 
it doesn’t provide the tactual feels on the reverse or hid-
den surfaces.  

In addition, background scene may be represented by 
2.5D data achieved by a z-cam or stereo camera in order 
to enhance the realism or simplify the modeling process. 
The 2.5D data is the most commonly recognized data 
structure where a z value (normally depth or elevation) 
is recorded as an attribute for each data point (x, y). 
These z values can be used in a perspective plot to create 
the 3D appearance or to cull the hidden surfaces. In 
these applications, the full haptic feedback is impossible 
only with the raw 2.5D object data. 

In this paper, we propose a novel 2.5D haptic rendering 
algorithm for the background scene. In the proposed 
algorithm, collision detection and response are per-
formed by using depth values in a graphic rendering 
hardware. The collision is detected by comparing the 
haptic interaction point with the associated depth value. 
In the collision response, a localized occupancy map 
instance (LOMI) is used to determine the rendering 

force. The LOMI is a temporal small-size occupancy 
map and updated at every haptic rendering rate by refer-
ring the depth values around the ideal haptic interaction 
point.  

The proposed algorithm provides kinesthetic feels once 
the background scene is rendered by graphic rendering 
hardware since the only graphic rendering contexts are 
referred for the collision detection and response. Thus 
any type of object data is available such as surface-based 
and volume-based 3D representation as well as 2.5D 
data. It also supports dynamically changing background 
scene, that is usually found in the multimedia contents, 
without any additional efforts since it does not use any 
pre-computed data hierarchy such as bounding boxes or 
voxmap. Moreover, it requires small amount of physical 
memory and computation load and is not affected by the 
complexity of the background scene. Thus, we can as-
sign much computation resources to the haptic rendering 
for object models. 

2. Collision Detection 
In the proposed haptic rendering algorithm, collision 
detection is performed by using depth buffer values as-
signed at each pixel in rendering contexts of a graphic 
hardware. Each pixel has not only RGB but also depth 
information that is usually used to cull the hidden sur-
faces and to create the 3D appearance in a perspective 
plot. The full 3D haptic rendering requires depth infor-
mation from six sides. In contrast, the 2.5D haptic ren-
dering for the background scene requires the depth val-
ues from only one side since it discards the reverse faces 
or the hidden surfaces. Thus, the required depth values 
are achieved by the pixel information without any addi-
tional graphic rendering function. 

Once the background scene is rendered by the graphic 
hardware, the location of its front face along the z direc-
tion can be achieved by the depth information. If a hap-
tic interaction point (HIP) is located beyond the front 
face of the background scene, then the collision is de-
tected. Thus, the collision detection algorithm performs 
the following procedure.  

 
Fig. 1. An example of background scene. 

1) Calculate the HIP position by a haptic interface in the 
object coordinates.  
2) Find the pixel corresponding to the x-y coordinate of 
the HIP.  
3) Get the depth value assigned at the pixel.  
4) Convert the depth value to object coordinates. It gives 
the position of the background scene along z at the given 
x and y position.  
5) Compare the converted depth value and z value of the 
HIP.  

Figure 2 shows the collision detection algorithm using 
graphic hardware in detail. Once the background scene 
is rendered, the depth values are stored by OpenGL 
function glReadPixels with GL_DEPTH_COMPONENT 



   

type-command, which reads the frame buffer on the 
graphic hardware. Then, we find the pixel corresponding 
to the HIP. The pixel is described in window coordinates 
and the HIP is described in object coordinates. OpenGL 
provides a mapping function gluProject which trans-
forms the specified the object coordinates into window 
coordinates using current modelview and projection ma-
trices and current viewport. The transformation matrices 
and viewport can be obtained by the function glGet-
Doublev and glGetIntegerv respectively.  

The depth values are normalized values such that the 
minimum depth value maps to 0.0 and the maximum 
value maps to 1.0. The near clip plane is mapped to 0.0 
and the far clip plane is mapped to 1.0 in default. The 
normalized depth value is converted to the object coor-
dinates. The relationship between the depth value and 
the distance in the object coordinates is linear in an or-
thographic projection but not in a perspective projection. 
In the case of a perspective projection, the amount of the 
nonlinearity is proportional to the ratio of far to near. 
The nonlinearity increases the resolution of the depth 
value when they are close to the near clip plane. Let d  
be the normalized depth value and nearZ  and farZ  be the 
position of the near and the far clipping plane respec-
tively, then the converted depth value ( Z ) in the object 
coordinates is calculated by 

( )
far near

far far near

Z Z
Z c

Z d Z Z
= −

− −
                       (1) 

where  is the position of the eye or the virtual camera. 
When the z value of the HIP is less than the converted 
depth value, the collision between the HIP and the back-

ground scene is detected. The corresponding code is: 

c

-----------  graphic rendering loops  ---------- 
glPushAttrib(GL_DEPTH_BUFFER_BIT); 
// background scene rendering 
BackgroundScene.Render(); 
 
// get transformation matrices 
glGetDoublev(GL_MODELVIEW_MATRIX, ModelViewMatix); 
glGetDoublev(GL_PROJECTION_MATRIX, ProjectionMatix); 
glGetIntegerv(GL_VIEWPORT, Viewport); 
 
// get the depth information from corresponding pixel 
glReadPixels(pHIP.x, pHIP.y, w, h,  
     GL_DEPTH_COMPONENT, GL_FLOAT, BSd); 
glPopAttrib(); 

------------------------------------------------ 
 
 

-----------  haptic rendering loops  ----------- 
// get the pixel position corresponding to Haptic In-
teraction Point 
gluProject(HIP.x, HIP.y, HIP.z, ModelViewMatix,  
ProjectionMatix, Viewport, &pHIP.x, &pHIP.y, &pHIP.z); 
 
// convert the depth information to object coordinates 
BSz=(Cpos-(Znear*Zfar)/(Zfar-BSd*(Zfar-Znear)));  
 
// collision detection 
if(HIP.z > BSz)  
 IsCollide=false; 
else  
 IsCollide=true; 

------------------------------------------------ 
 

Note that the collision detection algorithm is proposed 
for the 2.5D haptic rendering and thus it does not detect 
the collision between the HIP and the reverse face or the 
hidden surface of the background scene. 

3. Collision Response 
Once the collision is detected, appropriate forces are 
generated as a collision response. The previous haptic 
rendering algorithms such as penalty methods or con-
straint-based methods require object data such as surface 
equation parameters or surface normal vectors. In other 
words, they require full 3D description of the object 
data. In the case of the 2.5D background scene acquired 
by the z-cam or stereo-camera, it requires an enormous 
amount of the off-line processing for converting the 
2.5D data to 3D data. This may introduce difficulties for 
the use of the dynamically changing background scene. 
To avoid the shortcomings the proposed algorithm uses a 
localized occupancy map instance (LOMI) which is de-
rived by the graphic rendering context. The LOMI is 
updated at every haptic rendering rate. Based on the 
LOMI, the position of the ideal haptic interaction point 
(IHIP; also called god-object, proxy point, or surface 
contact point) is determined. Then the direction and the 
magnitude of the rendering force are determined by the 
HIP and the IHIP. The following section goes into de-
tails. 

Fig. 2. The collision detection algorithm using graphic 
hardware. (a) Once the background scene is rendered 
by graphic hardware, read the depth value corres-
ponding to the HIP. (b) When the HIP is located be-
yond the front face of the background scene, the colli-
sion is detected. (c) The front face position along z 
direction is achieved by the converted depth value ( Z ) 
in the object coordinates. 

In general, an occupancy map (also called voxmap) is 
used to the haptic rendering algorithm for the voxel-
based data representation. The occupancy map is a vox-
elized (or discretized) rectangular 3D grid which is com-
posed of memory cells. Each memory cell is assigned to 
each voxel and contains type or address of the assigned 
voxel. In the proposed algorithm, we create a localized 
occupancy map instance (LOMI) which is a temporal 



   

small-size occupancy map and centered on the IHIP. It 
follows the IHIP and is updated at every haptic render-
ing rate. The LOMI is composed of memory cells con-
taining voxel type which is classified into free space, 
surface, and interior. Figure 3 shows the LOMI in detail.  

In order to update the LOMI, we perform a voxelization 
procedure similar to the depth buffer based voxelization 
algorithm [12] which uses depth values associated to the 
whole objects by six virtual cameras. However, the 
LOMI is created by the depth values from one side and 
thus it does not require any additional graphic rendering 
function. Moreover, it does not require much computa-
tion time since it is performed at the localized region 
around the IHIP instead of the whole objects. Therefore, 
it can be updated at every haptic rendering rate in real-
time. 

The proposed LOMI is created and updated by following 
procedures;  

1) Decide the LOMI size which is the number of voxels 
and allocate physical memory for the LOMI. 
2) Initialize the LOMI. It makes all the values in the as-
signed physical memory be zero. 
3) Find the pixel corresponding to the IHIP using 
gluUnproject.  
4) Get the depth values of the rectangular region. The 
center of the rectangle is the IHIP and the dimension is 
the LOMI size. Note that we don’t need to execute 
glReadPixels since we already read the depth values 
for the collision detection. 
5) Determine the voxel types through the depth values. 
The voxels inside the object are assigned as the interior 
voxel.  

Note that step2 to step5 are performed with the updated 
IHIP at every haptic rendering rate. 

4. Implementation 
The proposed algorithm discussed in this paper is im-
plemented by 6DOF PHANToM device. The haptic and 

the graphic rendering rate are 1 KHz and 60 Hz respec-
tively. In this implementation, the size of LOMI is 5 and 
thus the LOMI is composed of 5x5x5 voxels. It enables 
to use very small physical memory and computation load 
regardless of the background scene complexity. Since 
the proposed algorithm refers to the only graphic render-
ing contexts, any object data is available for the haptic 
rendering without any pre-computation. Thus, the im-
plementation is performed with following three types of 
objects. 

4.1 Primitive objects 
First, we apply it to primitive objects supported by the 
OpenGL, which are glutSolidCube and glutSolidSphere. 
In CSG applications, complex models are constructed by 
combining primitive objects. Once the Cube and Sphere 
is graphically rendered, then a user can touch them with-
out any additional efforts. In figure 4, the small sphere 
on the big sphere indicates the IHIP and the red line ex-
presses the rendered force by the haptic device. The gen-
erated force is normal to its contact surface.  

4.2 Background Scene with 3D Representation 
Second, we apply it to the background scene with 3D 
objects. In figure 5, the background scene is composed 
of triangular meshes. The haptic rendering does not refer 
to the object data. Only graphic rendering uses them. 
The small sphere on the bed indicates the IHIP and the 
red line expresses the rendered force by the haptic de-
vice. The proposed algorithm provides kinesthetic feels 
on visible surfaces. 

4.3 Background Scene with 2.5D Representation 
Finally, we apply it to the background scene with 2.5D 
data. In figure 7, the background scene is composed of 
RGB data and depth data which are shown in figure 6. 
The small sphere on the floor and the wall indicates the 
IHIP and the red line expresses the rendered force by the 
haptic device. In augmented reality applications, 2.5D 
data is commonly used. Thus, we can expect the pro-
posed algorithm can be used in AR environment to pro-
vide haptic feedback without any additional computa-
tion. 

 
Fig. 3. The localized occupancy map instance which is voxelized data structure. (a) The LOMI is small-size occupancy 
map centered at the IHIP. (b) The LOMI uses 2-bit voxel types. 



   

5. Conclusion and Future Work 

 
Fig. 4. Haptic rendering with primitive objects. The 
objects is created by OpenGL commands such as glut-
SolidCube and glutSolidSphere. 

 
Fig. 5. Haptic rendering with background scene com-
posed of 3D objects. The objects are represented by 
triangular mesh structure. Only graphic rendering 
refers to the object data. 

This paper introduces a novel 2.5D haptic rendering al-
gorithm for the background scene. In this, a collision is 
detected by the graphic hardware and thus very fast col-
lision detection with no computational intensity is possi-
ble. It also uses very small memory by grace of the con-
straint-based haptic rendering algorithm with very small-
size localized occupancy map instance. Thus, we can 
assign much computation power and memory to the hap-
tic rendering for object models.  

Besides, any type of object data is available such as sur-
face-based and volume-based 3D representation as well 
as 2.5D object data since the only graphic rendering con-
texts are referred for the collision detection and the force 
generation. Once the background scene is rendered by 
graphic device, therefore, we can touch it.  

In addition, it does not use any pre-computed hierarchy 
of object data such as bounding boxes or voxmap. Thus, 
we can reduce time and effort assigned to the off-line 
processing and moreover we can achieve excellent abil-
ity for the haptic rendering of the static as well as dy-
namically changing background scene which is usually 
found in the multimedia contents. In future, we will use 
it for the 3D broadcast application. 
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Fig. 6. 2.5D data sets. (a) color map, (b) depth map 

 
Fig. 7. Haptic rendering with background scene com-
posed of 2.5D data sets. 
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