

Hardware Based 2.5D Haptic Rendering Algorithm
using Localized Occupancy Map Instance

Jong-Phil Kim and Jeha Ryu
Human-Machine-Computer Interface Lab., Dept. of Mechatronics,

Gwangju Institute of Science & Technology(GIST), Gwangju, 500-712 Korea
{lowtar, ryu}@gist.ac.kr

Abstract
In this paper, we propose a novel 2.5D haptic rendering
algorithm for a background scene. The 2.5D haptic ren-
dering is basically same as the full 3D haptic rendering
except that it doesn’t provide the haptic feedback against
the reverse face or hidden surface. It is likely that haptic
rendering for the reverse side of the background scene is
hardly required. In the proposed algorithm, collision
detection and response are performed by using depth
values provided by a graphic rendering hardware. The
collision is detected by comparing the haptic interaction
point with the associated depth value of the background
scene. In the collision response, a localized occupancy
map instance (LOMI) is used to determine the rendering
force. The LOMI is a small-size temporal occupancy
map and updated at every haptic rendering rate by refer-
ring the depth values around the ideal haptic interaction
point. The proposed algorithm provides kinesthetic feels
as long as the background scene is rendered by graphic
rendering hardware and thus any type of object data is
available. It also supports dynamically changing back-
ground scene without any additional efforts. Moreover,
it uses small amount of physical memory and computa-
tion load and is not affected by the complexity of the
background scene.

Key words: Haptic Rendering, Virtual Reality

1. Introduction
Haptic rendering is a process to provide a user with tac-
tual sensory information of environments. This allows
exploration and interactive manipulation of virtual ob-
jects through a haptic interface. Environments may in-
clude real, virtual, augmented or multimedia contents
and interactions may be accompanied by visual and/or
auditory modalities. The kinesthetic or tactile feedback
provides very effective interaction tool with the contents,
assists to have the full recognition of the environments,
and enhances a sense of immersion in the implementa-
tions.

Most of the previous works in the haptic rendering algo-
rithm have focused on the full force feedback with well-
established object data. The geometric haptic rendering

algorithms [1-6] use the surface data representation and
the volumetric haptic rendering algorithms [7-9] use the
volumetric data representation. Implicit object data [10,
11] is also used.

Early haptic rendering algorithms using penalty methods
focused on simple object shapes such as spheres, cubes
and planes since it is easy to determine the direction and
penetration depth. The penalty method was extended to a
method applicable to the more complex objects that can
be subdivided into the internal volume. Each sub-volume
is correlated with a surface toward which reflection force
is exerted [1]. However, the penalty method has some
drawbacks: lack of locality, force discontinuity, and ap-
parent penetration through thin objects.

Later, more sophisticated haptic rendering algorithms
had been proposed using the constraint-based methods in
order to overcome limitations of the penalty method [2].
These methods used a god-object that is constrained by
the surfaces of the objects. The god-object method was
extended to the virtual proxy [3, 4] that is represented by
an object substituting for the physical finger or probe in
virtual environments. This method reduced tasks in the
haptic servo loop for minimizing error between probe
and proxy position.

In the haptic rendering algorithms, that use surface-
based representation, pre-computation for a hierarchical
data structure is required to perform appropriate colli-
sion detection and collision response computation.
Moreover, haptic rendering speed depends on the num-
ber of polygons. A volume-based data representation can
provide much faster and more informative rendering
than the surface-based representation. It needs, however,
also pre-computation generating voxel data (voxeliza-
tion) and requires a large physical memory depending on
the environment size.

Environments may contain diverse and enormous num-
ber of objects depending on each development purpose.
However, it is not quite likely that all the objects require
full haptic feedback. A picture frame on a wall or a cur-
tain at a window in a virtual environment, for example,
the force display or manipulation for its back-face is
hardly demanded for general implementations. The ob-
jects can be classified into object models and back-

ground scene by the required assignment and their im-
portance level. The object models are targeted objects
which a user focuses on and tries to touch, feel, and ma-
nipulate, and thus full haptic feedback should be pro-
vided through their 3D object data with surface-based or
volume-based representation. On the contrary, the back-
ground scene is less important set of objects which im-
prove realism of the application and aid to perceive cir-
cumstantial states of surroundings and vicinities in the
environment. In general, the background scene occupies
very wide portion of the environment and contains huge
number of objects. Figure 1 shows an example of the
background scene. The full haptic feedback of the back-
ground scene requires excessive amounts of offline
processing, on-line computation, and physical memory.
However, it looks ineffective considering its role and
significance. It is highly likely that haptic rendering for
the reverse side of the background scene is hardly re-
quired. Thus, it seems that 2.5D haptic feedback is suffi-
cient for common applications. The 2.5D haptic feed-
back is same with the full 3D haptic feedback except that
it doesn’t provide the tactual feels on the reverse or hid-
den surfaces.

In addition, background scene may be represented by
2.5D data achieved by a z-cam or stereo camera in order
to enhance the realism or simplify the modeling process.
The 2.5D data is the most commonly recognized data
structure where a z value (normally depth or elevation)
is recorded as an attribute for each data point (x, y).
These z values can be used in a perspective plot to create
the 3D appearance or to cull the hidden surfaces. In
these applications, the full haptic feedback is impossible
only with the raw 2.5D object data.

In this paper, we propose a novel 2.5D haptic rendering
algorithm for the background scene. In the proposed
algorithm, collision detection and response are per-
formed by using depth values in a graphic rendering
hardware. The collision is detected by comparing the
haptic interaction point with the associated depth value.
In the collision response, a localized occupancy map
instance (LOMI) is used to determine the rendering

force. The LOMI is a temporal small-size occupancy
map and updated at every haptic rendering rate by refer-
ring the depth values around the ideal haptic interaction
point.

The proposed algorithm provides kinesthetic feels once
the background scene is rendered by graphic rendering
hardware since the only graphic rendering contexts are
referred for the collision detection and response. Thus
any type of object data is available such as surface-based
and volume-based 3D representation as well as 2.5D
data. It also supports dynamically changing background
scene, that is usually found in the multimedia contents,
without any additional efforts since it does not use any
pre-computed data hierarchy such as bounding boxes or
voxmap. Moreover, it requires small amount of physical
memory and computation load and is not affected by the
complexity of the background scene. Thus, we can as-
sign much computation resources to the haptic rendering
for object models.

2. Collision Detection
In the proposed haptic rendering algorithm, collision
detection is performed by using depth buffer values as-
signed at each pixel in rendering contexts of a graphic
hardware. Each pixel has not only RGB but also depth
information that is usually used to cull the hidden sur-
faces and to create the 3D appearance in a perspective
plot. The full 3D haptic rendering requires depth infor-
mation from six sides. In contrast, the 2.5D haptic ren-
dering for the background scene requires the depth val-
ues from only one side since it discards the reverse faces
or the hidden surfaces. Thus, the required depth values
are achieved by the pixel information without any addi-
tional graphic rendering function.

Once the background scene is rendered by the graphic
hardware, the location of its front face along the z direc-
tion can be achieved by the depth information. If a hap-
tic interaction point (HIP) is located beyond the front
face of the background scene, then the collision is de-
tected. Thus, the collision detection algorithm performs
the following procedure.

Fig. 1. An example of background scene.

1) Calculate the HIP position by a haptic interface in the
object coordinates.
2) Find the pixel corresponding to the x-y coordinate of
the HIP.
3) Get the depth value assigned at the pixel.
4) Convert the depth value to object coordinates. It gives
the position of the background scene along z at the given
x and y position.
5) Compare the converted depth value and z value of the
HIP.

Figure 2 shows the collision detection algorithm using
graphic hardware in detail. Once the background scene
is rendered, the depth values are stored by OpenGL
function glReadPixels with GL_DEPTH_COMPONENT

type-command, which reads the frame buffer on the
graphic hardware. Then, we find the pixel corresponding
to the HIP. The pixel is described in window coordinates
and the HIP is described in object coordinates. OpenGL
provides a mapping function gluProject which trans-
forms the specified the object coordinates into window
coordinates using current modelview and projection ma-
trices and current viewport. The transformation matrices
and viewport can be obtained by the function glGet-
Doublev and glGetIntegerv respectively.

The depth values are normalized values such that the
minimum depth value maps to 0.0 and the maximum
value maps to 1.0. The near clip plane is mapped to 0.0
and the far clip plane is mapped to 1.0 in default. The
normalized depth value is converted to the object coor-
dinates. The relationship between the depth value and
the distance in the object coordinates is linear in an or-
thographic projection but not in a perspective projection.
In the case of a perspective projection, the amount of the
nonlinearity is proportional to the ratio of far to near.
The nonlinearity increases the resolution of the depth
value when they are close to the near clip plane. Let d
be the normalized depth value and nearZ and farZ be the
position of the near and the far clipping plane respec-
tively, then the converted depth value (Z) in the object
coordinates is calculated by

()
far near

far far near

Z Z
Z c

Z d Z Z
= −

− −
 (1)

where is the position of the eye or the virtual camera.
When the z value of the HIP is less than the converted
depth value, the collision between the HIP and the back-

ground scene is detected. The corresponding code is:

c

----------- graphic rendering loops ----------
glPushAttrib(GL_DEPTH_BUFFER_BIT);
// background scene rendering
BackgroundScene.Render();

// get transformation matrices
glGetDoublev(GL_MODELVIEW_MATRIX, ModelViewMatix);
glGetDoublev(GL_PROJECTION_MATRIX, ProjectionMatix);
glGetIntegerv(GL_VIEWPORT, Viewport);

// get the depth information from corresponding pixel
glReadPixels(pHIP.x, pHIP.y, w, h,
 GL_DEPTH_COMPONENT, GL_FLOAT, BSd);
glPopAttrib();

--

----------- haptic rendering loops -----------
// get the pixel position corresponding to Haptic In-
teraction Point
gluProject(HIP.x, HIP.y, HIP.z, ModelViewMatix,
ProjectionMatix, Viewport, &pHIP.x, &pHIP.y, &pHIP.z);

// convert the depth information to object coordinates
BSz=(Cpos-(Znear*Zfar)/(Zfar-BSd*(Zfar-Znear)));

// collision detection
if(HIP.z > BSz)
 IsCollide=false;
else
 IsCollide=true;

--

Note that the collision detection algorithm is proposed
for the 2.5D haptic rendering and thus it does not detect
the collision between the HIP and the reverse face or the
hidden surface of the background scene.

3. Collision Response
Once the collision is detected, appropriate forces are
generated as a collision response. The previous haptic
rendering algorithms such as penalty methods or con-
straint-based methods require object data such as surface
equation parameters or surface normal vectors. In other
words, they require full 3D description of the object
data. In the case of the 2.5D background scene acquired
by the z-cam or stereo-camera, it requires an enormous
amount of the off-line processing for converting the
2.5D data to 3D data. This may introduce difficulties for
the use of the dynamically changing background scene.
To avoid the shortcomings the proposed algorithm uses a
localized occupancy map instance (LOMI) which is de-
rived by the graphic rendering context. The LOMI is
updated at every haptic rendering rate. Based on the
LOMI, the position of the ideal haptic interaction point
(IHIP; also called god-object, proxy point, or surface
contact point) is determined. Then the direction and the
magnitude of the rendering force are determined by the
HIP and the IHIP. The following section goes into de-
tails.

Fig. 2. The collision detection algorithm using graphic
hardware. (a) Once the background scene is rendered
by graphic hardware, read the depth value corres-
ponding to the HIP. (b) When the HIP is located be-
yond the front face of the background scene, the colli-
sion is detected. (c) The front face position along z
direction is achieved by the converted depth value (Z)
in the object coordinates.

In general, an occupancy map (also called voxmap) is
used to the haptic rendering algorithm for the voxel-
based data representation. The occupancy map is a vox-
elized (or discretized) rectangular 3D grid which is com-
posed of memory cells. Each memory cell is assigned to
each voxel and contains type or address of the assigned
voxel. In the proposed algorithm, we create a localized
occupancy map instance (LOMI) which is a temporal

small-size occupancy map and centered on the IHIP. It
follows the IHIP and is updated at every haptic render-
ing rate. The LOMI is composed of memory cells con-
taining voxel type which is classified into free space,
surface, and interior. Figure 3 shows the LOMI in detail.

In order to update the LOMI, we perform a voxelization
procedure similar to the depth buffer based voxelization
algorithm [12] which uses depth values associated to the
whole objects by six virtual cameras. However, the
LOMI is created by the depth values from one side and
thus it does not require any additional graphic rendering
function. Moreover, it does not require much computa-
tion time since it is performed at the localized region
around the IHIP instead of the whole objects. Therefore,
it can be updated at every haptic rendering rate in real-
time.

The proposed LOMI is created and updated by following
procedures;

1) Decide the LOMI size which is the number of voxels
and allocate physical memory for the LOMI.
2) Initialize the LOMI. It makes all the values in the as-
signed physical memory be zero.
3) Find the pixel corresponding to the IHIP using
gluUnproject.
4) Get the depth values of the rectangular region. The
center of the rectangle is the IHIP and the dimension is
the LOMI size. Note that we don’t need to execute
glReadPixels since we already read the depth values
for the collision detection.
5) Determine the voxel types through the depth values.
The voxels inside the object are assigned as the interior
voxel.

Note that step2 to step5 are performed with the updated
IHIP at every haptic rendering rate.

4. Implementation
The proposed algorithm discussed in this paper is im-
plemented by 6DOF PHANToM device. The haptic and

the graphic rendering rate are 1 KHz and 60 Hz respec-
tively. In this implementation, the size of LOMI is 5 and
thus the LOMI is composed of 5x5x5 voxels. It enables
to use very small physical memory and computation load
regardless of the background scene complexity. Since
the proposed algorithm refers to the only graphic render-
ing contexts, any object data is available for the haptic
rendering without any pre-computation. Thus, the im-
plementation is performed with following three types of
objects.

4.1 Primitive objects
First, we apply it to primitive objects supported by the
OpenGL, which are glutSolidCube and glutSolidSphere.
In CSG applications, complex models are constructed by
combining primitive objects. Once the Cube and Sphere
is graphically rendered, then a user can touch them with-
out any additional efforts. In figure 4, the small sphere
on the big sphere indicates the IHIP and the red line ex-
presses the rendered force by the haptic device. The gen-
erated force is normal to its contact surface.

4.2 Background Scene with 3D Representation
Second, we apply it to the background scene with 3D
objects. In figure 5, the background scene is composed
of triangular meshes. The haptic rendering does not refer
to the object data. Only graphic rendering uses them.
The small sphere on the bed indicates the IHIP and the
red line expresses the rendered force by the haptic de-
vice. The proposed algorithm provides kinesthetic feels
on visible surfaces.

4.3 Background Scene with 2.5D Representation
Finally, we apply it to the background scene with 2.5D
data. In figure 7, the background scene is composed of
RGB data and depth data which are shown in figure 6.
The small sphere on the floor and the wall indicates the
IHIP and the red line expresses the rendered force by the
haptic device. In augmented reality applications, 2.5D
data is commonly used. Thus, we can expect the pro-
posed algorithm can be used in AR environment to pro-
vide haptic feedback without any additional computa-
tion.

Fig. 3. The localized occupancy map instance which is voxelized data structure. (a) The LOMI is small-size occupancy
map centered at the IHIP. (b) The LOMI uses 2-bit voxel types.

5. Conclusion and Future Work

Fig. 4. Haptic rendering with primitive objects. The
objects is created by OpenGL commands such as glut-
SolidCube and glutSolidSphere.

Fig. 5. Haptic rendering with background scene com-
posed of 3D objects. The objects are represented by
triangular mesh structure. Only graphic rendering
refers to the object data.

This paper introduces a novel 2.5D haptic rendering al-
gorithm for the background scene. In this, a collision is
detected by the graphic hardware and thus very fast col-
lision detection with no computational intensity is possi-
ble. It also uses very small memory by grace of the con-
straint-based haptic rendering algorithm with very small-
size localized occupancy map instance. Thus, we can
assign much computation power and memory to the hap-
tic rendering for object models.

Besides, any type of object data is available such as sur-
face-based and volume-based 3D representation as well
as 2.5D object data since the only graphic rendering con-
texts are referred for the collision detection and the force
generation. Once the background scene is rendered by
graphic device, therefore, we can touch it.

In addition, it does not use any pre-computed hierarchy
of object data such as bounding boxes or voxmap. Thus,
we can reduce time and effort assigned to the off-line
processing and moreover we can achieve excellent abil-
ity for the haptic rendering of the static as well as dy-
namically changing background scene which is usually
found in the multimedia contents. In future, we will use
it for the 3D broadcast application.

Acknowledgement
This work was supported by the Ministry of Information
and Communication (MIC) through the Realistic Broad-
casting IT Research Center (RBRC) at Gwangju Institute
of Science and Technology (GIST).

References

 (a) (b)
Fig. 6. 2.5D data sets. (a) color map, (b) depth map

Fig. 7. Haptic rendering with background scene com-
posed of 2.5D data sets.

1. Massie, T.M., Salisbury, J.K., “The PHANToM Hap-
tic Interface: A Device for Probing Virtual Objects.”
ASME Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Volume 1, pp.295-301, 1994.

2. Zilles, C.B., Salisbury, J.K., “A constraint-based god-
object method for haptic display”, Intelligent Robots and
Systems 95. 'Human Robot Interaction and Cooperative
Robots', Proceedings. 1995 IEEE/RSJ International Con-
ference on, Volume 3, pp. 146-151, 1995.

3. K. Salisbury, et al., “Haptic rendering: programming
touch interaction with virtual objects” Symposium on
Interactive 3D Graphics, pp. 123-130, 1995.

4. Diego C. Ruspini, Krasimir Kolarov, and Oussama
Khatib., “The haptic display of complex graphical envi-
ronment”, In SIGGRAPH 97 conference proceedings,
Volumn 1, pp. 295-301, 1997.

5. Chih-Hao Ho, Cagatay Basdogan, mandayam A.
Srinivasan, "Efficient Point-Based Rendering Tech-
niques for Haptic Display of Virtual Object", Presence,
Volume. 8, No. 5, 1999

6. A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin and
D. Manocha. “Six Degree-of-Freedom Haptic Display of
Polygonal Models”, Proc. Visualization 2000, pp139-
146, October 2000, Utah, United States.

7. Sarah Frisken, "Beyond Volume Rendering: Visuali-
zation, Haptic Exploration, and Physical Modeling of
Voxel-based Objects", Mitsubish Electric Research
Laboratories, TR95-04, 1995

8. R. S. Avila, L. M. Sobierajski, “A Haptic Interaction
Method for Volume Visualization” IEEE Visualization,
1996.

9. William A. McNeely, Kevin D. Puterbaugh, James J.
Troy, “Six Degree-of-Freedom Haptic Rendering Using
Voxel Sampling”, SIGGRAPH ’99 Proceeding of the
26th Annual Conference on Computer Graphics, ACM,
pp401-408, 1999

10. T. Maneewarn, B. Hannaford, D. Storti, M. Ganter,
“Haptic Rendering For Internal Content Of An Implicit
Object,” ASME Winter Annual Meeting Haptics Sym-
posium, Nashville, TN, Nov. 1999

11. Laehyun Kim; Kyrikou, A.; Sukhatme, G.S.; Des-
brun, M., “An implicit-based haptic rendering tech-
nique”, Intelligent Robots and System, 2002. IEEE/RSJ
International Conference , Volume 3, pp. 2943-2948,
2002.

12. Karabassi, Evaggelia-Aggeliki, Papaioannou, Geor-
gios and Theoharis Theoharis, “A fast depth-buffer-
based voxelization algorithm”, Journal of graphics tools,
Volume 4, number 4, pp. 5- 22, 1999.

13. Bayakovski, L. Levkovich-Maslyuk, A.Ignatenko,
A. Konushin, D. Timasov, A. Zhirkov, M. Han, I. K.
Park, “Depth Image-based Representations for Static and
Animated 3D Objects”, International Conference on
Image Processing (ICIP02), Vol. 3, pp. 25-28, 2002.

http://brl.ee.washington.edu/publications/Rep125.pdf
http://brl.ee.washington.edu/publications/Rep125.pdf

