Virtual and Augmented Reality for Edutainment

Dr. Bernd Lutz

Fraunhofer IGD Rundeturmstr. 6 64283 Darmstadt

Germany

Tel.: +49 6151 / 155 - 264 Fax.: +49 6151 / 155 - 196 email: <u>Bernd.Lutz@igd.fhg.de</u>

http://www.igd.fhg.de/igd-a4

Definition of Virtual and Augmented Reality

Definition of Virtual Reality

- Realtime rendering
- Interaction
- Immersion
- Mixing real and virtual images

Movies & Games

Movies:

- No interaction
- Less immersive

Games:

- Less immersive
- Mostly standard input devices

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Why should we use VR/AR for Edutainment?

New forms of teaching:

- Learning by experience
- Learning by doing
- ...

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Problem

• The learning matter hast to be experiencable

Why should we use VR/AR for Edutainment?

Virtual and Augmented Reality offer:

- Flexibility
- Direct experience
- Interactivity
- Interesting technology

Trends in learning and public education

Education as a recreational activity

- At Museums and science centers
- On vacations and study trips

Schearning becomes more informal

Popular science programs top television ratings of pure entertainment formats in German TV

Understanding of science as an entertaining experience

Attractiveness of VR and AR

A lot of variations of the technology :

- Degree of immersion in the virtual world
- Interactivity
- Mobility
- Dynamic of the virtual world

A lot of different needs:

- Preservation and digital documentation of cultural sites
- Presentation world wide
- Presentation on-site of disappeared constructions
- Exploiting the didactical potential of 3D graphics

Attractiveness of VR and AR

People are very interested in the technology

cybernarium days:

• Waiting time up to 4 hours

•	All	ages
---	-----	------

	010		
Up to 15	5,6		
16 - 25	41,2		
26 - 35	22,0		
36 - 45	7,9		
46 - 55	9,0		
Over 55	14,1		

Types of virtual learning environments

Training environments

- flight simulators
- driving simulators

Explorative worlds

• Virtual Cathedral of Siena

Experimental worlds

• Virtual Universe

Constructive worlds

- Virtual Gorilla Exhibit project
- ALICE

Boeing 747-400 Flugsimulator der Lufthansa Flightsaining

Learning Environments !

• Explore and interact with complex data and processes

Learning Environments !

- Be a hitchhiker to the virtual galaxy
- Get a better understanding of debris in space

Learning Environments !

• Be a virtual diver in a fascinating underwater world

Where to present it?

•Schools

•Universities

•Training centers

•Exhibitions

•Museums

How to do it

Creation of the presentation

- Preparation phase
- Models, textures, lighting, etc.
- Authoring
- Interaction
- Presentation

How to do it: Preparation phase

Data acquisition

- Background information
- Storyboard
- Plans, pictures, etc. of objects needed

Preparation

- Definition of Soft- and Hardware
- Definition of workflow

How to do it: Modelling

Hardware

• Scanner

Software:

- CAD Software
- Modelling tools
- Animation software
- Photogrammetry
- Converter
- ...

Fraunhofer Institut Graphische

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

How to do it: Modelling

Problems:

- Polygonal models
 - Polygon count
- Special effects
 - ♥ Reflections
 - 🏷 shadows
- Data structures
 - ∜ Converters
 - simulations

Textures:

- Add realism
- Presentation of surfaces
- Reduce polygon count
- Animation

Bitmap textures:

- Image sources:
 - Photographs
 - S Scans of surfaces
 - ⇔Computer generated images

Image processing steps:

- Perspective correction
- Cropping
- Colour correction
- Removal of disturbing objects

Hardware bottlenecks:

- Texture size should be a power of two (e.g. 1024x 512, 128x512 pixels)
- Maximal texturesize (1024x1024 or 2048x2048)
- Limited texture memory

Shaders:

- Algorithmic images
- Supported by the GPU
- Unlimited resolution
- Special effects

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

How to do it: Authoring

Scene composition / configuration

- Composition of complex scenes
- I/O devices
- Level-of-Detail
- Camera

Setup of dynamic components

- Interaction between objects
- scripts

How to do it: Authoring

flow control system:

- Controls the reactions of the system
 - ♥ Navigation
 - ♥ User interaction
 - ♦ Changes of system state
- Controls the learning process

Depends on:

- VR/AR system used
- Type of learning environment
- Learning matter
- etc.

How to do it: Authoring

Flow control system

- Navigation control
- Finite state machine
- ...
- Complex simulation system
- Learning management systems

Interaction

Interaction devices

- Intuitive use
- Robust
- Usability

Interaction

- Navigation with 6 degrees of freedom
- Interaction with the world
- Shouldn't distract from the learning matter

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Fraunhofer Institut Graphische

26

Classification of input devices

- Desktop device
- VR input devices
- Special devices

- Classification of input devices
 - Desktop device
 - VR input devices
 - Special devices

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Classification of input devices

- Desktop device
- VR input devices
- Special devices

Advantages:

• Specialised for VR

Disadvantages:

- Expensive
- Problems with sizes (children)

Classification of input devices

- Desktop device
- VR input devices
- Special devices

Advantages:

• Intuitive to use

Disadvantages:

- No standard
- Made for one purpose

Desktop devices

(e.g. mouse, keyboard, joystick)

Advantages:

- Cheap
- Well-known

Disadvantages:

- No standard
- Not intuitive to use

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

ben ist.

Fraunhofer Institut Graphische

Zur Anzeige wird der QuickTime venar IFF (Linkamprimiert)

VR input devices

(e.g. spacemouse, data-glove, wand)

Advantages:

- Optimized for the use in VR
- 6D input

Disadvantages:

- Expensive
- Difficult to use
- Not for children

Special devices (e.g. steering wheel, flashlight)

Advantages:

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

- Optimized for the application
- Intuitive to use

Disadvantages:

- Sometimes expensive
- Only usable for special applications

Fraunhofer Institut

Graphische

• Only usable for a special task

.....

Presentation

Virtual Reality:

- Projection based
 - ♥ Computer-Monitor
 - ♦ Largescreen Display
 - ∜ CAVE
 - 🏷 HEye Wall
- Head-mounted Systems
 - ₿HMD
 - ₿ BOOM

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Presentation

Augmented Reality:

- See-through devices
 - ♦ See-through glasses
- Video-see-through
 - ∜Video glasses
 - \mathbb{A} AR-Telescope

Zur Anzeige wird der QuickTime Dekompressor IFF (Unkomprimiert) ben igt.

Dunhuang Art Caves

• Virtual representation of the Mogao CAVES

♦ 500 caves in the north of China
♦ 0nly 30 are still open to the public

- Digital documentation of the site
- **Preservation** of vulnerable cultural assets
- **Presentation** to a large public

♦ The virtual visit becomes a real experience
♦ Appeal to the visitor emotions

Dunhuang Art Caves : Immersion

Not only watch but experience history

Dunhuang Art Caves

Involve the visitor by

• Finding the right interface

Flash light as input interaction device
 Correct lighting and shadows

• 3D Sounds

Audio text information

∜ Music

 "Exploring the c "Being in China"

Video: Dunhuang Art Cave

- Challenge of content creation and complexity of the content creation
- Huge construction with a lot details
- High realism is necessary to ensure the acceptance of the digital model
- Fidelity to the real building and real context must be respected

The "Making of"

- 5 000 images
- 4 hours video-tape
- plans books
- Modeling tools
- Constant update among the designers

Applying high resolution textures (300 MB)

High realism through physically correct light simulation

- 150 000 polygons
- 800 light sources
- day light simulation
- hierarchical light simulation to handle the model complexity

Cathedral of Siena: light simulation

Without light simulation

Fraunhofer Institut Graphische

With light simulation

45

Cathedral of Siena: the user interface

Interface for large publics and groups presentation

- Touchscreen
- Metaphor of a historical book
- Intuitive navigation
- Realization over a web-based client/server architecture

Cathedral of Siena: virtual guide

Video: Cathedral of Siena

Reliving destroyed sites (Bad Hersfeld)

- Virtual reconstruction of the church
- Presentation the evolution and history over time
- Museum presentation as well as creation of a video for visitors

Church Bad Hersfeld

Interior of the Church

Church "Bad Hersfeld"

Travel in time and space

- From the present, back to past
- From real to virtual

Church Bad Hersfeld

Switching between real and virtual for a better understanding of the historical evolution

Video: Church Bad Hersfeld

Presentation of historical ceremonies

- An animation presents the funeral ceremony
- Valorization of the site through supplementary information
- Implementation: projection on the floor
- Feeling to look into the grave

Presentation of historical ceremonies

Representation of the grave objects

- At the right place
- In 3D
- With zoom of details

Igartubeiti Farmhouse

- Virtual reconstruction of 16th and 17th century wooden architecture
- Scalable presentation from web to high immersive projection screen

Igartubeiti Farmhouse

- Bringing the building to life with virtual humans
- Telling the history using digital storytelling techniques

Peranakan Culture

• Promotion of Singapore's unique heritage

Peranakan Culture

• Virtual Tour Guide

Base	Blink	Smile
Walk	Climb Up Stairs	Turn Right

Peranakan Culture

• Interaction with context-sensitive cursors, on-screen menus, and the virtual tour guide

Idea

- to confront the museum visitor with interactive exhibits
- to provide informal learning through interactive exploration
- to overcome the "do-not-touch" caution
- to offer an interactive environment to complementarily present art works "in stock

Requirements

- "... novel combination of intuitive interaction techniques and the presentation of multimedia content ..."
- "... digitized paintings on projection screens ..."
- "... novel experience during an exhibition visit ..."
- "... invisible computer ..."
- "... no special physical device like a mouse or pointer shall be needed to interact with a system ..."

Scenario

>museum exhibit installation

▶as intuitive as possible => usable without training

▶ pointing gesture based interaction

≻large scale screen

>video-based interaction

2d digitized paintings3d VRML sculptures

SELECTED CERTAIN: [1]

Pointing at predefined areas

Selection of

- images
- artists
- the matic areas
- help buttons
- interaction tools

• laser pointer

• magnifying glass

• torch light

Magnifying Glass

Torch Light

Video: Interactive Museum Exhibit

Fraunhofer Institut Graphische

70

Interactive Museum Exhibit ZGDV

The Virtual Gallery Exhibit

Idea

- to offer museum visitors a personalized exhibition
- to combine a virtual exhibition in a real setting
- to offer an interactive environment to complementarily present art works "in stock" first evaluation results

Requirements

- "... novel combination of innovative visualisation techniques and the presentation of multimedia content ..."
- "... digitized paintings in real picture frames..."
- "... novel experience during an exhibition visit ..."
- "... intuitive interaction similar to a traditional visit of an exhibition ..."

Scenario

➢ virtual gallery exhibition

▶ personalised exhibition

look and feel similar to real exhibitionas intuitive as possible

combining virtual world and real settingtakes place in a real exhibition room

<image>

▶ provision of additional information

Scenario

>visitor moves from one frame to the other

>detection of location is based on hidden features

> superimposition of images into the frames

> location aware audible explanations

Virtual Graffiti

• Getting famous - legally

Video: Virtual Graffiti

Mixing Real and

VirtualObjects

"Virtual Showcase"

Enrich real objects with virtual information with help of the "Virtual Showcase"

- small objects are magnified on monitors
- Missing parts are added virtually

Stereo "Virtual Show Case"

- Projection-Based Augmented Reality
- Allows interactive presentation of a mixed content
- Supports multiple users
- Stereoscopic (3D) viewing
- Realistic combination of virtual and real objects
 - ♦ high resolution graphics
 - Smatching illumination
 - correct occlusion
 - Smatching depth perception
 - b ani mations

Packing and Presentation

Video: Raptor

Fraunhofer Institut Graphische

84

RAPTOR: Towards Augmented Paleontology

Oliver Bimber and Miguel Encarnação Fraunhofer Center for Research in Computer Graphics, Providence (RI), USA, (obimber,me)@crcg.edu

Ferrum Exhibition

- Virtual showcase in Ferrum Exhibition
- Virtual reconstruction of damaged or non-existent parts of artworks that cannot be shown otherwise

Mobile Travelling

in Tim e & Space

- Imagination
- Creativity

ArcheoGUIDE - Vision (Olympia)

Resurrect the past ...

... with the help of modern AR technology

ICAT 2004

Fraunhofer Institut Graphische

89

PDA Approach

- The right information at the right time and at the right place through:
 - location-based information selection
 - Personalization of the presentation through profiling of the visitor (expert, interested, ...)
- Use of augmented reality images to enrich view of the surrounding
 - ♦ Better understanding
 - ♦ Making the most of the visit

ArcheoGUIDE - Screenshots

A Designation of the second

Heraion

Mobile augmented reality : high end solution

Markerless Tracking

Database with calibrated images and virtual information

Video: ArcheoGUIDE

