
Occlusion Detection of Real Objects using Contour
Based Stereo Matching

Kenichi Hayashi, Hirokazu Kato, Shogo Nishida
Graduate School of Engineering Science, Osaka University,1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan

{hayashi,kato,nishida}@nishilab.sys.es.osaka-u.ac.jp

Abstract

In Augmented Reality, the occlusion between virtual and
real objects has to be managed correctly, so that users can
look at the natural scene. In order to overcome this prob-
lem, the depth of the real world from the user’s viewpoint
is employed. However, if the system is used in an environ-
ment including moving or deformable objects, the depth has
to be measured in real-time. In this paper, we propose a
method for real-time stereo matching using a contour based
approach to acquire the accurate depth of the boundary of
real objects.

Keywords: augmented reality, occlusion, contour based
stereo matching, video see-through

1. Introduction

Augmented Reality (AR) interfaces typically involve the
real time overlay of virtual images on the real world. Con-
sistency between the virtual objects and the real world has
to be managed correctly so that users feel that the com-
bined scene is natural. Geometrical consistency is espe-
cially important. There are two geometrical consistencies
to be managed in Augmented Reality. The first is the con-
sistency of the coordinate systems of the real and virtual
worlds. In order to appear part of the real scene the virtual
imagery needs to have the same coordinate system. The
second is correct occlusion between virtual and real objects.
However, in current video see-through AR systems virtual
objects are usually rendered on the video image without
using depth information from the real scene, so real objects
are always occluded by virtual objects. We call this the
”occlusion problem”. As figure 1 shows this problem re-
duces the illusion that the virtual objects are part of the
real world scene and affects the user’s recognition of the
geometrical relationship between real and virtual objects.
Moreover, in the case of collaborative AR interfaces, when
virtual objects incorrectly cover parts of the user’s body
this can affect communication between the users. So, in an
AR interface, it is important to represent correct occlusion
between virtual and real objects. In this paper we describe
a contour-based technique that can be used to calculate
correct occlusion in real-time.

2. Related Work

There have been a number of earlier efforts to address the
occlusion problem in AR interfaces. Yokoya et al. acquire
depth information of real objects by using stereo match-
ing [1]. In this method, to reduce the computational cost,
stereo matching is limited to the region where virtual ob-
jects should be rendered. However, this method had prob-

Figure 1: Occlusion problem in Augmented Reality

lems with its accuracy. Although detailed depth informa-
tion is found in a limited region, stereo matching is not so
accurate so that the boundary between the real and virtual
images is not represented correctly. Kim et al. also used
stereo matching to estimatethe depth of the real environ-
ment [2]. In their method, the depth of boundary of real
objects is estimated to find the natural occlusion between
real and virtual objects. However, their technique is com-
putationally expensive and difficult to process in real-time.

Ohta et al. proposed a client-server depth sensing
method [3]. Clients can obtain the depth of the real en-
vironment from a large depth sensing device (server). This
device provides accurate depth information in real-time.
However, since the viewpoint of the server is different to
that of the clients, there may be regions in the clients view
where depth information has not been acquired.

Fuhrmann et al. proposed the method using the 3D mod-
els of real objects that called ”phantoms”, rendering them
in the same position that real objects exist to solve the
occlusion problem [4]. This method will work when the
target real objects are rigid. However, it cannot be applied
to deformable objects such as human hands,

Lepetit proposed a contour based approach [5]. They
obtain the depth information of real objects by estimating
their contours. Since the contour of a real object will change
in each frame, they manually define the contour of object
in key frames and use this to estimate the object contour in
the current frame. However, their algorithm is impossible
to run in real-time and cannot be applied to deformable
objects.

Setohara et al. proposed a method based on background
subtraction to extract moving objects in real environment
[6]. As part of the background image, they use a marker
pattern that is used for camera pose estimation. However,
since the depth information of moving objects is not ac-
quired, it is impossible to find the correct occlusion. More-
over, moving objects can only be detected in the region
with the marker pattern.

3. Our Method

In this paper, we propose a new technique to resolve the oc-
clusion problem in real-time. The main goal of this method
is to resolve the case when a user’s hands are occluded by
virtual objects in a tabletop AR system.

Our method consists of 2 steps:

1. Object Segmentation: We detect moving objects from
the dynamic background by extending the method
proposed by Setohara et al. [6].

2. Depth Sensing: We perform depth sensing in just the
region around the moving object in the real environ-
ment.

This is possible for tabletop AR systems because the 3D
information of the static environment can be found from an
earlier offline stage. Under this condition it is possible to
reduce the computational cost of stereo matching and also
provide stable stereo matching.

The method proposed by Setohara et al. is based on
background subtraction, and can be applied to dynamically
changing backgrounds. However, in their work moving ob-
jects can only be detected in the region in front of a marker
pattern. Our method use the pictures of real environment
called ”key frames”, and so extends the area in which mov-
ing objects can be detected to the general region outside
the marker pattern. We will explain the details of this in
the next section.

Once segmented from the background, the depth of mov-
ing objects is found by stereo matching. We assume that
what is important for resolving the occlusion problem is not
finding a detailed depth map, but representing the natural
occlusion between real and virtual objects. So we attach
the highest importance to correctly finding the boundary
of real objects.

So, stereo matching is processed only at the boundary
of moving objects found from step one. This process is
explained in more detail in section 5. We will describe
experimental results in section 6 and discuss our method in
section 7.

4. Moving Objects Detection

Setohara et al. proposed a method to detect moving ob-
jects in front of a set marker pattern, using the maker
pattern as a background image [6]. For example in figure
2, the marker pattern (Fig.2-a) is transformed in compli-
ance with the current viewpoint (Fig.2-b). Moving objects
are detected by comparing camera image (Fig.2-c) and this
transformed pattern. However, moving objects can only
be detected in front of the marker pattern. Moreover, in
this method, it is assumed that the background pattern is
composed of a black and white image. However, the color
value of marker patterns actually seen in the camera image
is liable to change depending on the camera characteristics,
illumination condition and observation position. So if such
an ideal black and white pattern is used for background
subtraction, detection error may occur.

However, this error can be reduced if an earlier picture
taken by a camera from the same position as the current
camera can be employed for background subtraction. This
picture is assumed to just have the background objects in it
and none of the moveable or foreground objects in it. In or-
der for this to be useful background pictures would need to

Figure 2: The moving objects extraction method by Seto-
hara et al.

be taken from all possible camera positions, which is impos-
sible. In our work we generate a background virtual cam-
era image taken from current viewpoint dynamically and
use this for background subtraction. In the next section,
we explain the algorithm to generate a virtual viewpoint
image using a finite number of offline images taken from a
particular position.

4.1. Keyframe based approach

To generate the background virtual viewpoint image, we use
images taken from particular positions in an earlier offline
stage. We call these images ”keyframes”. Figure 3 is an
example of a set of keyframes. These images are captured
stored in the offline stage before the user starts the real
time AR application. For each camera image we also store
a transformation matrix Mk that transforms the marker
coordinate system to the current camera coordinate system,
and a projection matrix P .

Figure 3: Keyframes

Let X= (x, y, z, 1)′ be a 3D coordinate of the marker
coordinates. Let xk be 2D coordinate of a pixel that X is
projected on the keyframe image plane. xk can be written
as following equation using Mk, P and X.

(
s
t
q

)
= P ´ Mk ´ X (1)

xk =

(s
q

t
q

)
(2)

Where (s, t, q)′ is a vector in the projective space. As
a result, the 2D coordinate on a keyframe image xk is ac-
quired via perspective transformation. Similarly, the 2D
coordinate on a current camera image xc that corresponds
to xk is acquired from equation (1) (2) using Mc instead
of Mk. Where, Mc is a transformation matrix between a
marker coordinate system to a camera coordinate system
at current camera position (Fig.4). Once xk and xc are
acquired, it becomes possible to compare a pixel value of
the keyframe image at xk, Ik(xk) and a pixel value of the
current camera image Ic(xc).

It is possible to employ Projective Texture Mapping [7]
[8], which is a real-time rendering technique in Computer
Graphics and Pixel Shader [9] to acquire Ic, Ik, and com-
pare with them effectively.

Figure 4: Pixel matching between keyframe and camera
image

4.2. Extend a detectable region

Since Setohara’s method uses a marker pattern to compare
with a camera image, the moving objects detection is lim-
ited on 2D plane of a marker pattern. On the other hand,
our method uses keyframe projection that can apply to gen-
eral 3D planes. So, we can extend the detection area from
a 2D plane to 3D surfaces. To achieve this, it is necessary
to have a 3D model of real environment.

Figure 5 (a),(b) show the 3D model of the scene and
the keyframe projected on it. These figures show that the
projected keyframe image is no different from the camera
image with no moving objects.

4.3. Robust background subtraction method

In this section, we propose a robust algorithm that com-
pares the corresponding pixels between the camera image
and keyframe image to detect moving objects. Moving
objects are detected by background subtraction where a
keyframe image is used as background image. However,
if a simple algorithm such as SAD (Sum of Absolute Dif-
ference) is employed, shadows of moving objects may also
be detected as moving objects. To avoid this problem, we
employ the following algorithm.

I0
b =

Ib

∥ Ib ∥ (3)

I0
c = (Ic ´ I0

b) I0
b (4)

α =
∥ I0

c ∥
∥ Ib ∥ (5)

d = ∥ I0
c ` Ic ∥ (6)

Where, Ic and Ib indicate a pixel value of the camera im-
age and background image respectively, represented as a 3
dimensional vector consisting of an R, G, and B channel. I0

b

is a normalized vector of Ib and I0
c is a vector formed when

Ic is projected into Ib space. The value α indicates a ratio
of brightness, and d indicates a difference of color. Figure
6-(a) illustrates the relationship between these vectors.

To determine if a pixel is in the moving object region or
not the following conditions are used (see Fig.6-(b)):

If (d > θ ∥ α < θα1 ∥ α > θα2)

The pixel is part of a moving object

Else

The pixel is in the background or shadows

(a) 3D model of real environment

(b) Keyframe image projected on the 3D model
of Fig. 5(a)

Figure 5: Extended detectable region

Figure 6: Real objects extraction algorithm

(a) : d is defined as a distance between color vec-
tors. Ic and Ib indicate a color vector of the cam-
era and background image.
(b): α indicates a ratio of brightness between I0

c

and Ib. if α < θα1 or α > θα2 , then the pixel is
considered as part of a moving object.

5. Contour based stereo matching

In order to solve the occlusion problem, it is necessary to
find the depth of real objects, and then compare it to that of
virtual objects in view. In this chapter, we propose contour
based stereo matching method for finding real object depth.

5.1. Contour based stereo matching

Normally it requires a lot of computational cost to acquire
a dense and accurate depth map using stereo matching. In
our stereo matching method, we achieve real time results by
just performing stereo matching on the boundary of moving
objects, between the object and background. The moving
objects are detected using the method proposed in previous
section. We do not acquire the depth value of the inner pixel
regions of the moving object, but they can be estimated by
interpolating the boundary depth values.

In order to stable stereo matching, we propose 2 step
stereo matching algorithm; first using region matching and
then boundary line matching. Figure 7 illustrates the flow
of the proposed stereo matching algorithm.

5.2. Region matching

First, we determine the corresponding regions between that
of left and right camera image. To do this, the boundaries
of the moving object region in the image are traced. Its size,
boundary length, and center of mass are computed. These
region parameters are used for matching between regions
in the left and right camera image.

Since stereo cameras used in AR systems are placed close
to each other, and have almost the same camera param-
eters, in general it can be assumed that the region pa-

rameters of the corresponding regions are not so differ-
ent. Therefore, we can determine the corresponding regions
roughly by evaluating the ratio of each parameter with a
certain threshold. Then, in order to uniquely determine the
corresponding regions, the error in the epipolar constraint
between the center of mass of each region is evaluated.

5.3. Boundary line matching

Once the corresponding regions between the left and right
camera images are determined, we determine the corre-
sponding points on the boundary of each of the regions.
Stereo matching is not applied to all the points on the
boundary line, but to only the points sampled along the
boundary according to following procedure;

1. Divide the boundary line of the moving object region
into segments of equal lengths (Fig. 7 (4-a)).

2. Segments that are not appropriate to stereo matching
are excluded. As illustrated in Fig. 7 (4-b), if there are
more than 3 segments that intersect with a horizontal
line, then all the intermediate segments are excluded
as such segments are occluded easily.

3. Sample the points that have the largest tangent in each
segment (Fig. 7 (4-c)). This is because, in the case of
parallel stereo matching, the error of depth estimation
tends to be small at the point that has a large tangent.

Note, the depth density of moving object region is not
acquirable by means of such a sampling. However, it
becomes possible to not only reduce matching cost but
also improve matching accuracy.

4. Find matching point of the sampled point in the right
image and compute its depth value. We select the
matching points of each sample from the correspond-
ing region in the right image, which minimize the dis-
tance from the epipolar line of each one.

Note, the matching points of each sample will exist in
the same order along with the boundary line. In other
words, the matching point of one sample between other
samples also exists between their matching points. So,
they are effectively searched from previous matched
point along the boundary line sequentially.

5. Interpolate the depth of intermediate points on the
boundary line by the depth values of neighboring sam-
pled points (Fig. 7 (6)).

6. Interpolate the depth of the inner region horizontally
by using the boundary depth values (Fig. 7 (7)).
This interpolation is implemented efficiently by using
graphics hardware.

Figure 7: Flow chart: boundary-based stereo matching

6. Experiments

In this section, we evaluate the processing time of our al-
gorithm. Table 1 shows our experimental environment.

Table 1: Experimental environment
OS RedHatLinux9

CPU Intel Pentium4 processor 3GHz
Graphics card nVIDIA QuadroFX4000

Camera CANON HMD
VH-2002 build-in Camera

6.1. Moving Object Detection

Figure 8 shows a camera image of the real environment that
contains the user’s hand and a black object as moving ob-
jects. Figure 9 shows the result of moving object detection
using the keyframe at the lower left in Figure 8. Here, the
region with the shaded pattern in figure 9 indicates the de-
tected moving object. Each pattern indicates the following
detected condition.

• Shaded: Detected by difference of color between the
camera image and the keyframe image.

• Horizontal stripes: Detected when the ratio of
brightness is less than a threshold value.

• Vertical stripes: Detected when the ratio of bright-
ness is more than a threshold value.

And although there are object shadows in this camera
image, they are not detected as a moving object by our
background subtraction algorithm described in section 3.3.
As a result, the moving objects are detected correctly. The
processing time is 9ms with 640x480 frame size, so that the
frame rate is maintained at 30fps.

Figure 8: Experimental scene

Figure 9: Result of moving object extraction

6.2. Evaluation of Accuracy

We evaluated the accuracy of the proposed stereo match-
ing. We used a depth acquired by square maker detection
[10] as a default correct value. Figure 10 illustrates the
depth measurement of each method. We render a virtual
square in a marker plane, then, acquire a depth at one pixel
selected manually (Fig. 10 (a)). This correct depth value is
calculated from transformation matrix acquired by marker
detection. On the other hand, we also put a real square
object in a same marker plane as a measurement target.
Then, we acquire the depth value at the same pixel by us-
ing the proposed stereo matching method (Fig. 10 (b)), and
evaluate the error against the correct depth value acquired
by marker detection.

The range of measurement was from 300mm to 1000mm.
The depth was measured 100 times at the same range, and
then we calculated the average depth value and standard
deviation. Figure 11 shows the result. The measurement
error was less than 6mm within the range 300mm - 600mm.
At the distance more than 600mm, the error became larger.
The maximum error in depth was 12mm, found at 850mm.

Figure 10: Illustration of the experiment

(a): Acquiring the correct depth; the virtual
square is drawn on the marker plane using the
transformation matrix acquired from marker de-
tection. Then, we pick up the depth value of one
pixel.
(b): Acquiring the measured depth; We put the
target object (real one) in the same place, and
then, pick up the measured depth of the same
pixel of (a).

Figure 11: Stereo measurement accuracy

6.3. Contour based stereo matching

Figure 12 shows the result of proposed stereo matching. In
this experiment, we used the poles (Fig. 12 (a) - (d)) and

the teapot (Fig. 12 (e) - (h)) as a virtual object. We
can see that there is correct occlusion between the virtual
and real objects. Processing time is 20ms with a 640x480
frame size. Total processing time is 40ms including moving
objects detection for stereo images.

7. Discussion

In this section, we discuss the problems of the method pro-
posed in this paper.

7.1. Moving Object Detection

It is necessary to project a keyframe onto a 3D model of
the real scene. Since this keyframe projection use a trans-
form matrix acquired by marker detection, the accuracy of
marker detection affects that of the keyframe projection.
Hence, when the transform matrix includes a large error, a
false detected region will appear. A false detection may es-
pecially appear where a pixel value changes drastically like
across an edge. However, these regions are much smaller
than correctly detected regions, and so, we excluded such
small regions by thresholding at the stereo matching stage.

7.2. Contour Based Stereo Matching

The proposed stereo matching will fail in the following
cases.

• Boundary lines of the moving object region couldn’t
be detected accurately in left or right camera images
(Fig. 13 -(b)),

• While two or more regions are detected separately in
the left (right) image, they are merged in the right
(left) one.

• A false detected region merges with the correct one
(Fig. 13-(c))

If these cases occur, incorrect depth values will be in-
cluded in the boundary depths. However, in a boundary
line that contains invalid depth data there will be a point
that a depth value changes drastically. We assume that a
depth value changes smoothly along with boundary line,
and so, can exclude such points.

Figure 13: Example case of detection error

Figure 12: Result of stereo matching

8. Conclusions

In this paper, we attempted to overcome the occlusion prob-
lem in video see-through Augmented Reality. Our proposed
method consists of 2 steps. In the first step, we detect mov-
ing objects in the scene. In this method, a keyframe, which
is a picture of the scene taken from some positions at an ear-
lier offline stage, is employed to improve the robustness to
illumination and camera characteristics changes. Moreover,
it was implemented on the graphics hardware for realtime
processing. And in the second step, we proposed contour
based stereo matching using the moving object detection of
the first step. As a result, it becomes possible to represent
correct occlusion between virtual and real objects.

References

[1] Yokoya N., Takemura H., Okuma T., and Kanbara M.
Stereo vision based video see-through mixed reality.
Proceedings of 1st International Symposia on Mixed
Reality(ISMR’99), pages 131–145, 1999.

[2] H. Kim, S. Yang, and K. Sohn. 3d reconstruction of
stereo images for interaction between real and virtual
worlds. Proceedings of the 2nd IEEE and ACM Inter-
national Symposium on Mixed and Augmented Real-
ity(ISMAR’03), pages 169–177, 2003.

[3] Ohta Y., Sugaya Y., Igarashi H., Ohtsuki T., and
Taguchi K. Share-z: Client/server depth sensing
for see-through head mounted displays. Proceed-
ings of 2nd International Symposia on MixedReal-
ity(ISMR’01), pages 64–72, 2001.

[4] A. Fuhrmann, G. Hesina, F. Faure, and Michael Ger-
vautz. Occlusion in collaborative augmented environ-
ments. Computers and Graphics, pages 809–819, 1999.

[5] V. Lepetit and M.O. Berger. A semi-automatic
method for resolving occlusion in augmented reality.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2000.

[6] Setohara H., Kato H., Kawamoto K., and Tachibana
K. A simple solution of occlusion problem in aug-
mented reality and its application for interaction.
TVRSJ, 9(4), 2004 (in Japanese).

[7] Cass Everitt. Projective texture mapping.
http://www.nvidia.com/developer, 2001.

[8] Mark Segal et al. Fast shadows and lighting ef-
fects using texture mapping. In Proceedings of SIG-
GRAPH’92, pages 249–252, 1992.

[9] E. Lindholm, M. J. Kilgard, and H. Moreton. A user-
programmable vertex engine. In Proceedings of SIG-
GRAPH 2001, pages 149–158, 2001.

[10] Kato H. and Billinghurst M. Marker tracking and hmd
calibration for a video-based augmented reality: Con-
ferencing system. Proc. of 2nd Int. Workshop on Aug-
mented Reality, pages 85–94, 1999.

