

Distributed Autonomous Interface using ActiveCube
for Interactive Multimedia Contents

Ryoichi Watanabe1, Yuichi Itoh1, Yoshifumi Kitamura1,
Fumio Kishino1, and Hideo Kikuchi2

1 Human Interface Engineering Lab.,

Graduate School of Information Science and Technology, Osaka University
2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan

ryoichi@ist.osaka-u.ac.jp
2 System Watt Co., Ltd. 4-1-38-4F, Isobedori, Chuo-ku, Kobe, 651-0084, Japan

Abstract
In this paper, we describe a unique and novel function of
ActiveCube that develops interactive multimedia
contents; a new method that reduces the load of the host
PC by distributed control between the host PC and
cubes. Furthermore, we propose and implement a
method that restricts unnecessary packets in the network
between the host PC and cubes by realizing autonomous
activity of each cube and encapsulation of input/output
devices. Then we conducted experiments to evaluate the
performance of the proposed system to achieve natural
and intuitive interactions.

Key words: tangible user interface, 3D modeling, real-
time interaction, bidirectional interface, distributed
control, autonomous activity

1. Introduction
Recently, technological advancements in personal
computers provide users an opportunity to use and enjoy
various kinds of rich multimedia contents, including 3D
video games, interactive digital art work, audio and
video delivered over the web, and so on. Such
interactive contents cannot be realized by using
traditional media (e.g., books, audio records, still
images, and films). Though multimedia contents have
grown and are widely spread, interactions with these
contents are generally performed by a keyboard,
pointing devices, and a 2D desktop monitor. Since such
interactions are very different from those in the real
world where we live and act, users have difficulty
interacting with multimedia contents.

On the other hand, much research has focused on user
interfaces that can make interactions with a computer
more intuitive. Some researchers utilize physical
electronic objects as user interfaces [1-10]. These
interfaces have improved the intuitiveness of 3D shape
modeling or interactive manipulation. In addition, if
users construct 3D objects on a computer by simply

combining physical objects, the user interface for 3D
shape modeling becomes more intuitive. If constructed
physical objects were capable of accepting user input
and expressing simulated output results, users could
directly interact with 3D environments by using physical
objects instead of ordinary interaction devices (e.g., a
mouse, a keyboard, and a display monitor).
Consequently, user interfaces become more intuitive,
and it would be easier to understand what is happening
in a virtual environment because the constructed object
in the real world acts as a physical replica of the virtual
structure.

Thus, if users use physical electronic objects as user
interfaces during interactions with multimedia contents,
they could create and change contents by simply
assembling physical blocks. Moreover, they could
interact with the contents by using the constructed
physical structures. As a result, we could develop useful
systems in educational fields for children or in the
medical field to prevent dementia. To realize such a user
interface that allows users to intuitively interact with rich
multimedia contents, we developed the ActiveCube
system [11-13] that allows users to construct and interact
with 3D environments using physical cubes as
bidirectional user interfaces. By using this system, we
developed various applications using multimedia
contents: retrieval of 3D shape models [14], cognitive
assessment [15, 16], and an interactive edutainment
system [17]. However, as the contents become richer,
procedural problems in the computers increase and
become more complex.

In this paper, we describe a new ActiveCube function
that reduces the host PC’s load by sharing procedures
between the host PC and cubes. Furthermore, we
propose and implement a method that restricts
unnecessary packets in the network between the host PC
and cubes by realizing autonomous activity of each
cube. We also conducted experiments to evaluate the
performance of the proposed methods in achieving
natural and intuitive interactions.

2. Previous Work

2.1 Related Work
3D shape modeling by assembling physical objects is a
solution that solves the complexity problem in 3D space
and offers an easy way to recognize spatial configuration
in 3D environments. Research on 3D shape modeling
using physical objects to achieve an intuitive interface
was carried out in the early 1980s with architecture
designs [1] using “Machine-Readable Models” [2, 3].
These ideas were succeeded by further efforts [4, 5].
Recently, a modeling system was proposed in which the
geometry of completely assembled Lego-type blocks is
recognized by a computer after being connected to it and
turned on [6]. In this system, users utilize 3D models in
the game. However, the recognition of the geometry of
connected blocks in this approach is an offline process
that does not work in real time while a user is connecting
or disconnecting blocks.

Some interaction systems use physical objects. In the
“Triangles” system [7], users can enjoy such computer
interaction as opening a web page or interacting with a
story by connecting triangular planes to each other.
However, users can only input the shape of the structure
and cannot acquire the results of interaction via physical
objects due to a lack of output devices on the planes.
“AlgoBlock” [8] has a program-coding interface that
uses physical blocks with which users can easily
program Logo-like language by assembling physical
blocks. However, the environment of execution is
separated from coding, forcing each learner to
understand the positioning of each environment in
addition to its role. “Electronic Blocks” [9] is
computational Lego blocks that have inputs or outputs.
Users create simple programs by assembling blocks to
learn programming and logic through play.
“Navigational Blocks” [10] was designed to achieve
easy interaction with a database through tactile
manipulation and haptic feedback. Using physical blocks
as representations of data queries effectively provides
users with an easily understood, creative, and

explorative means of learning.

2.2 ActiveCube System
In this section, we describe the functions and features of
the ActiveCube system related to this paper.
ActiveCube is a novel user interface that consists of a set
of rigid cubes. It has three features: real-time 3D
modeling, real-time interaction, and a bidirectional
interface. To achieve these features, we need technology
that can obtain and control the information of connected
faces and sensor values in real time. So, we use a real-
time network management system called Local
Operating Network (LON) technology (Echelon
Corporation). Each cube is equipped with a
microprocessor called a Neuron Chip (NC, Toshiba
Corporation, TMPN3120FE3M) that allows us to control
all cubes in real time. It has 2 KBytes RAM, 16 KBytes
ROM, 2 KBytes Electrically Erasable Programmable
ROM (EEPROM), and can run at 20 MHz. The chip
achieves a speed of 39 kbps for communications with
other chips. There are several input/output cubes those
are equipped with input/output devices and control them.
In addition, there are also plain cubes that enrich only
the shape representation without input/output devices.

An ID number (called a cube ID) is assigned to each
cube for the unique identification of cubes. An ID
number (called a face ID) is also assigned to each face of
the cube to identify connecting faces. Four electric
communication lines are required on each face for
communication and power between cubes. For this
purpose, four contact terminals are arranged on each
face. Three contact terminals allocated on a concentric
circle at the center of the face are used for networks #1
and #2 and the ground (GND), as shown in Figure 1.
Two of the four hooks for physical connections between
cubes are used to supply power (Vcc), and the other two
hooks are used to recognize connections with other
cubes.

The connected cubes constitute a network bus made up
of RS-485 components. Therefore, all cubes and the host
PC can communicate directly in real time without
depending on the topology. The cubes are connected to
the host PC through a special cube called a base cube

Fig. 1 Arrangement of contact terminals

Fig. 2 ActiveCube system configuration

(Figure 2). Communication between cubes and the host
PC is achieved by translating RS-485 to FT-10 on a
router. By using a special network card, the host PC can
access the network constituted of cubes. The software
installed in the host PC uses the ActiveCube library
based on a toolkit called LonWorks Network Services
(LNS), Echelon Corporation. By using this library, the
host PC can control valuables in cubes.

As shown in Figure 3, the host PC directly
communicates with cubes and obtains their connected
cube and face IDs in real time. The host PC manages
connection status information in the tree structure. As a
result, the host PC can correctly recognize the 3D
structure. Moreover, to realize such flexible 3D
modeling as multiple-cube connections (Figure 4), the
host PC controls output signals for face recognition [13].
When the host PC obtains data from the input cubes, it
performs polling to input cubes at regular intervals. The
causal relationship between the input and output devices
can be determined by applications in the host PC.

Thus, because the host PC must communicate directly
with all of the cubes and manage the system in real time,
the host PC requires a lot of CPU resources.
Consequently, it is difficult to fully realize applications
using rich multimedia contents that require huge CPU
power. Toward intuitive interaction with multimedia
contents, we have to improve several points of the
previous ActiveCube system. Moreover, in applications
for children, the ActiveCube system requires quick
responses because children sometimes quickly and
repeatedly connect and disconnect them.

In the next section, we describe a novel function of the

implementation of ActiveCube: a method that reduces
the host PC’s load. We propose a method to restrict
unnecessary packets in the network between cubes and
the host PC.

3. Distributed Control by Base Cube

3.1 Addition of Microprocessor
To reduce the host PC’s load, we propose a method to
share procedures between the host PC and the base cube.
Though we incorporated NCs into all of the cubes, the
NC already has a lot of tasks, such as communication
with other cubes and the control of input/output devices
in the cubes. Therefore, it is difficult for the NC to
perform additional procedures. Instead of designing
completely new infrastructure for our implementation,
we kept the NC and incorporated a second
microprocessor into the base cube.

Because the second microprocessor must be fast and
have a large amount of programmable memory to share
tasks with the host PC, we chose H8S/2633 from the
H8S family [Renesas Technology Corporation]. It is a
high-performance microprocessor with a 32-bit
H8S/2600 CPU core and a variety of built-in peripheral
functions. It has 256 KBytes reprogrammable flash
memory and 16 KBytes data RAM. The maximum clock
frequency is 25 MHz. The program is coded in C
language and assembler and downloaded into flash
memory via the RS-232C serial port by using a toolkit
called Flash Development Toolkit [Renesas Technology
Corporation].

3.2 System Configuration
Figure 5 shows the proposed system configuration. The
base cube has two microprocessors, a NC and a H8S.
The host PC communicates with H8S via RS-232C port.
The two microprocessors in the base cube communicate
with each other via parallel communication. Each cube
communicates with other cubes via a RS-485 network

Fig. 3 Central control by host PC

Fig. 4 Multiple-cube connection

Fig. 5 Proposed system configuration of
ActiveCube system

bus, as in the previous implementation.

All the cubes constitute a network bus comprised of RS-
485 components, as in the previous implementation,
through which the host PC and cubes directly
communicate. In addition, in the proposed method all
cubes can communicate with each other by using
“explicit messages,” which are supported by Neuron C
(programming language for the NC). The program can
send or receive a maximum of 228 Bytes of data
between NCs. The unique address of a NC is defined in
the program and written into the EEPROM.

As described above, the two microprocessors in the base
cube communicate with each other via parallel
communication. Neuron C supports a parallel I/O object,
which allows bidirectional communication with the other
microprocessor at 3.3 Mbps. The physical interface of
the parallel I/O object is realized by using all eleven I/O
ports. To synchronize communication and prevent
collisions of sending data, a token passing protocol is
built in the NC firmware. The microprocessor having a
token owns the right to send data. In communication
between two microprocessors, we implement H8S as a
master and NC as a slave. When H8S has data to send to
NC, H8S sets the first bit of data high and sends data
from the next bit. When H8S doesn’t have any data to
send, it delegates the right by setting the first bit low. On
the contrary, when NC sends data to H8S, we utilize a
built-in function for parallel communication of the NC.
Since in the base cube all NC I/O ports are used for
parallel communication, we implemented the functions
to recognize connected faces or to control input/output
devices into the H8S.

The H8S in the base cube communicates with the host
PC through the RS-232C serial connection at the baud
rate of 9.6 kbps. The H8S and the host PC send and
receive data in one Byte units. When one cube sends
data to the host PC, it first sends data to NC in the base
cube, and NC transmits data to H8S. Then H8S converts
the explicit message into a protocol that the host PC can
understand. On the other hand, when the host PC sends
data to a cube, the H8S adds header information to the
data and transmits it to NC in the base cube through the
parallel interface. NC converts the received data into an
explicit message and sends it to the cube whose address

is included in the message.

We developed the ActiveCube Library offered as a class
of C++ and Dynamic Link Library (DLL). With this
library, the program in the host PC can recognize the
constructed structure by using connection information
from the base cube and control I/O devices equipped on
each cube.

3.3 Distributed control by Base Cube
We describe the details of the proposed method in which
the host PC and the base cube share the procedures of
controlling cubes, as shown in Figure 6. When a new
cube (a child cube) is connected to a cube that has
already been connected to the network (a parent cube),
the base cube communicates with these cubes by an
explicit message, obtains their cube and face IDs, and
sends them to the host PC. The base cube controls the
output signals for face recognition instead of the host
PC. For example, when multiple cubes (B, C, and D) are
connected to parent cube (A), as shown in Figure 4, the
base cube controls the output signal from the cube near
cube A and creates the same situation when the cubes
are connected one by one. As a result, the host PC
correctly recognizes the 3D structure.

Since the host PC doesn’t care about shape recognition
procedures any more, we can reduce the host PC’s load.
Consequently, we can allocate resources in the host PC
to the application software with rich multimedia
contents.

4. Autonomous Cube Activity
In previous implementations, when the host PC obtains
data from input cubes, it performs polling to all of the
input cubes at regular intervals as shown in Figures 7
(1), (2). After receiving data from the input cubes, the
host PC retrieves the causal relationship between the
input and output devices determined in the software
(Figure 7 (3)) and then controls the output devices
(Figure 7 (4)). This also creates a situation where the
host PC always requires a lot of CPU resources for

Fig. 6 Distributed control by base cube

Fig. 7 Interaction with input/output devices by
polling

polling. Moreover, there are sometimes unnecessary
packets in the network between the host PC and cubes.
In this section, we present a method to resolve these
issues.

4.1 Autonomous Activity of Input Cubes
The most appropriate solution for reducing the host PC’s
load is to quit polling. For this purpose, we propose a
method to let input cubes work autonomously and
observe sensor values. When the application doesn’t
require the sensor value of an input cube, the host PC
stops sending cube data to prevent unnecessary packets
in the network between the host PC and cubes. If an
input cube is permitted to send data by the host PC and
detects changes in sensor values, it sends them to the
host PC by explicit message. Thus, since the host PC
doesn’t need to perform polling at regular intervals,
unnecessary packets between connected cubes and the
host PC are restricted, reducing the load of the host PC.

4.2 Encapsulation of Input/Output Devices
When users interact with the ActiveCube system using
input/output devices, the best solution for reducing the
host PC’s load is to directly control output devices in an
output cube with an input cube’s sensor value (Figure 8).
In this method, first the host PC changes the destination
of an input cube’s sensor value from the host PC to an
output cube, which shows interaction results to the
sensor. Secondly, when the input cube detects changes
in sensor value, it directly sends the value to the output
cube. Once the destination is changed, the input and
output cubes autonomously and directly communicate
with each other, reducing the host PC’s load. However,
since the causal relationship between the input and
output devices is programmed into the cubes in advance,
it is difficult to dynamically change the relationship by
connection procedures or constructed structure.

To dynamically change the relationship between I/O
cubes, we propose a method to create threads where
causal relationships are described at each input cube in
the host PC (Figure 9). By using this method, the causal
relationship is encapsulated at each input cube. When an

input cube is connected, a thread for the input cube is
created. When the input cube detects changes of sensor
value, it sends the sensor value to the host PC. After
that, the host PC resumes the thread for the input cube
and searches for the causal relationship described in the
thread. Then the host PC controls the output device
based on the causal relationship. We incorporated this
function into the ActiveCube library for application
developers.

Because interaction between the input and output
devices performed in the thread differs from the main
process, the main process’s load is reduced, simplifying
application operations that use rich multimedia contents.
In addition, since the causal relationship between the
input and output devices is described at each input cube,
the relationship is clarified. Consequently, it becomes
easy for developers to design interaction parts.

5. Experiment
When users interact with multimedia contents using the
ActiveCube system, quick response is crucial in such
tasks as connection/disconnection of the cubes and
interaction with input/output devices. We conducted
experiments to evaluate the real-time performance of the
proposed system configuration. Furthermore, we
allowed several children to construct and interact with
the 3D structures using ActiveCube and discussed our
system’s usability.

5.1 Experimental Method
In the experiments, we used four kinds of cubes: light
cubes (that emit RGB colors with 256 brightness levels),
plain cubes, a base cube, and a ping cube (that
immediately replies to a message from the host PC after
receiving a message from it). We conducted the
following three experiments both in the previous
implementation and in the proposed system.

Fig. 8 Input cube sends sensor values directly to
output cube

Fig. 9 Encapsulation of input/output devices

Experiment 1: Communication time between the
host PC and cubes
Communication time between the host PC and the cubes
was measured. A message from the host PC reaches the
ping cube via the base cube and some plain cubes. After
receiving this message, the ping cube sends a message to
the host PC via the same cubes whose time is measured
by the timer in the software on the host PC. We
conducted this experiment five hundred times.

Experiment 2: Interaction time between output
cubes and host PC
We measured the time from the order transmission by
host PC to the actual light-up of the light cube.

First, a base cube and a light cube were connected to the
network. Next, when a certain button on the display of
the host PC is pressed, the host PC sends a command to
the light cube to turn on its light. The color of the label
on the host PC’s display is simultaneously changed. We
carried out ten measurements from the change of the
color of the label to the light-up of the cube. As
measurement apparatus, we use a digital video camera
(NTSC, 29.97fps=33.4 msec/frame) because in the cube
it is impossible to synchronize a clock between the host
PC and the microprocessor.

Experiment 3: Recognition time of connection
and disconnection
The recognition time of connection and disconnection
was measured. Concretely, we connected and
disconnected the plain cube to/from the base cube and
then measured the time required for the host PC to
recognize connections/disconnections. At first, when a
plain cube was connected to the base cube, the power
LED was turned on as soon as it received power. If the
host PC recognized this connection, the label’s color on
the display of the host PC changed. Similarly, when the
plain cube was disconnected, the power LED turned off,
and if the host PC recognized this disconnection, the
label’s color changed. We measured the time required
for the host PC to recognize the
connection/disconnection ten times with a digital video
camera.

5.2 Results
From the results of experiment 1, in the previous
implementation, the average communication time
between the host PC and cubes was 248.2 msec; in the
proposed method, the average communication time was
80.8 msec. From the results of experiment 2, in the
previous implementation, the average interaction time
between the host PC and the output cubes was 447.6
msec. On the contrary, in the proposed method, this time
was 33.4 msec. From experiment 3, in the previous
implementation, the average connection recognition time
was 1409.5 msec (standard deviation is 253.8 msec), and

disconnection was 865.1 msec (standard deviation is
148.1 msec). In the proposed method, the average
connection recognition time was 370.7 msec (standard
deviation is 19.0 msec) and disconnection was 126.9
msec (standard deviation is 56.3 msec).

5.3 Discussion
The experiments proved that the proposed method
achieves much quicker response than the previous
implementation. We assume this difference reflects
improvements of the communication system. In the
previous implementation, we utilized a LNS toolkit to
control each cube; however, since this toolkit could not
directly control the communication layer, it required
much time in the communication process. In contrast,
with the proposed method, cubes and the host PC
directly communicate with each other, dramatically
improving the processing speed in the communication
part. Moreover, in experiment 3 the recognition time of
connection/disconnection became shorter because the
base cube controls the face recognition signal instead of
the host PC, and so the communication route was
shortened.

Generally, the response time of a user interface should
be appropriate to the tasks. For instance, in simple and
frequent tasks, users probably feel comfortable if the
response time is around one second [18]. From all the
results measured by experiments, response times of
interaction with ActiveCube are less than one second,
and these results show that the proposed methods have
sufficient performance to support natural and intuitive
interactions.

As shown in Figure 10, several children played with a
simple ActiveCube application in which users construct
3D structures by computer and interact with them using
input/output cubes (e.g., a gyroscopic sensor cube, an
ultrasonic sensor cube, a light cube, and so on). After a
few minutes, most children understood how to use

Fig. 10 Children’s interaction with ActiveCube

ActiveCube and the causal relationship between the
input and output devices (e.g., the brightness of a light is
controlled by the distance measured by an ultrasonic
sensor). Children especially seemed to enjoy interacting
with the input/output devices. Some searched for a new
causal relationship by connecting additional input/output
cubes. However, some children broke the structure
during interaction. For them it seemed difficult to
correctly construct the 3D structure because of the
connectors between cubes. We have to improve the
system’s robustness and connectivity.

6. Applications
By using the proposed system, it has become possible to
realize applications that utilize rich multimedia computer
contents. We developed educational applications for
children called “TSU.MI.KI,” based on a traditional
Japanese toy [17]. Children play in the virtual
environment by constructing and manipulating physical
cubes and using input/output devices equipped on cubes.

As one example using the TSU.MI.KI system, we
developed a storytelling system for children to seek the
virtual world (Figures 11 and 12). Users have to find a
virtual object to overcome difficulty in the virtual world
and create a virtual object by assembling physical cubes.

The system retrieves and shows candidate objects similar
to the constructed shape (Figure 11). If users select one
of these candidates, they can manipulate it by using the
constructed structure equipped with input/output devices
and travel in the virtual world. For example, if users
select a plane and encounter a dangerous situation, such
output cubes as lights or vibrators show warning
messages (Figure 12).

TSU.MI.KI provides edutainment (educational-
entertainment) experiences for children. We believe this
application can stimulate their creativity and
imagination.

7. Conclusion
We presented a unique and novel function of
ActiveCube that easily and intuitively interacts with rich
multimedia contents; the method reduces the host PC’s
load by sharing procedures between the host PC and
cubes. Moreover, we proposed and implemented a
method that restricts unnecessary packets in the network
between cubes and host PC by realizing autonomous
activity of each cube and encapsulation of input/output
devices. Experimental results showed that ActiveCube
had sufficient performance to achieve natural and
intuitive interactions.

As future works, we are planning to implement more
sophisticated I/O devices into this system (e.g., a liquid
crystal display or a camera for image recognition), to
incorporate wireless communication between the host
PC and cubes, and to develop applications that fully
exploit the ActiveCube’s functionality.

Acknowledgements
This research was supported in part by Special
Coordination Funds of the Science and Technology
Agency of the Japanese Government, and “The 21st
Century Center of Excellence Program” of the Ministry
of Education, Culture, Sports, Science and Technology,
Japan, and the Exploratory Software Project grant of
Information-technology Promotion Agency, Japan.

References
1. R. Aish and P. Noakes, “Architecture without

numbers - CAAD based on a 3D modeling system,”
Computer-Aided Design, vol.16, no. 6, pp. 321-328,
1984.

2. J. H. Frazer, J. M. Frazer, and P. A. Frazer, “Three
dimensional data input devices,” Proc. of
Conference on Computers/Graphics in the Building
Process, pp. 409-416, 1982.

3. J. H. Frazer, “An evolutionary architecture,”
Architectural Association, 1995.

4. G. Anagnostou, D. Dewey, and A. T. Patera,
“Geometry-defining processors for engineering

Fig. 11 3D shape model retrieval in TSU.MI.KI system

Fig. 12 Interaction with virtual plane

design and analysis,” The Visual Computer, vol. 5,
pp. 304-315, 1989.

5. M. Resnick, F. Martin, R. Sargent, and B. Silverman,
“Programmable bricks: toys to think with,” IBM
Systems Journal, vol. 35, no. 3-4, pp. 443-452, 1996.

6. D. Anderson, J. Frankel, J. Marks, A. Agarwala, P.
Beardsley, J. Hodgins, D. Leigh, K. Leigh, K. Ryall,
E. Sullivan, and J.S. Yedidia, “Tangible interaction
+ graphical interpretation: a new approach to 3D
modeling,” Proc. of SIGGRAPH2000, pp. 393-402,
2000.

7. M.G. Gorbet, M. Orth, and H. Ishii, “Triangles:
tangible interface for manipulation and exploration
of digital information topography,” Proc. of
Conference on Human Factors in Computing
Systems (CHI '98), pp. 49-56, 1998.

8. H. Suzuki and H. Kato, “Algoblock: a tangible
programming language, a tool for collaborative
learning,” Proc. of 4th European Logo Conference,
pp. 297-303, 1993.

9. P. Wyeth and G. Wyeth, “Electronic blocks:
tangible programming elements for preschoolers,”
Proc. of INTERACT' 01, pp. 496-503, 2001.

10. K. Camarata, E. Y. Do, B. R. Johnson, and M. D.
Gross, “Navigational blocks: navigating information
space with tangible media,” Proc. of International
Conference on Intelligent User Interface (IUI '02),
pp. 31-38, 2002.

11. Y. Kitamura, Y. Itoh, and F. Kishino, “Real-time
3D interaction with ActiveCube,” CHI 2001
Extended Abstracts, pp. 355-356, 2001.

12. R. Watanabe, Y. Itoh, M. Kawai, Y. Kitamura, F.
Kishino, and H. Kikuchi, “Implementation of
ActiveCube as an intuitive 3D computer interface,”
Proc. of 4th International Symposium on Smart-
Graphics, pp. 43-53, 2004.

13. R. Watanabe, Y. Itoh, M. Asai, Y. Kitamura, F.
Kishino, and H. Kikuchi, “The soul of ActiveCube -
implementing a flexible, multimodal, three
dimensional spatial tangible interface,” Computers
in Entertainment, vol. 2, no. 4, 2004.

14. H. Ichida, Y. Itoh, Y. Kitamura, and F. Kishino,
“Interactive retrieval of 3D shape models using
physical objects,” Proc. of the 12th ACM
International Conference on Multimedia 2004,
pp.692-699, 2004.

15. E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, S.
Sutphen, and L. Liu, “Cognitive cubes: a tangible
user interface for cognitive assessment,” Proc. of
Conference on Human Factors in Computing
Systems (CHI '02), pp.347-354, 2002.

16. E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, S.
Sutphen, L. Liu, and F. Kishino, “Spatial tangible
user interfaces for cognitive assessment and

training,” Proc of Bio-ADIT 2004, pp. 410-425,
2004.

17. Y. Itoh, S. Akinobu, H. Ichida, R. Watanabe, Y.
Kitamura, and F. Kishino, “TSU.MI.KI: Stimulating
children's creativity and imagination with interactive
blocks,” Proc. of The Second International
Conference on Creating, Connecting and
Collaborating through Computing (C5), pp. 62-70,
IEEE Computer Society, 2004.

18. T. W. Butler, “Computer response time and user
performance,” Proc. of Conference on Human
Factors in Computing Systems (CHI '83), pp. 56-62,
1983.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

