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Abstract

The demand for customizing models is increasing rapidly,
but the related techniques for sculpting in the volumetric
form raise several issues that need to be addressed. These
issues include preserving sharp features, inter-cell indepen-
dency, maintaining consistent topology, and adaptive reso-
lution. These issues affect the quality of resulting shapes
and the execution speed while manipulating models. Tra-
ditionally, marching cubes algorithm provides satisfactory
performance for visualizing volume data in sculpting ap-
plications. However, sharp features, which are important
characteristics of models, are lost while using marching
cubes to visualize the resulting volume data. Furthermore,
we need to perform crack patching operations to fill up
the gaps between different resolutions in adaptive resolu-
tion. In contrast, these issues could be easily fulfilled by
replacing the underlying isosurfacing algorithm with cubi-
cal marching squares algorithm. In this paper, we propose
data structures for storing volume data and methods for
Boolean operations to manipulate these data. We archive
highly detailed models while sculpting at interactive speed
by using proposed data structures and methods in conjunc-
tion with cubical marching squares algorithm.
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1. Introduction

Recently, due to the more and more widely use of
three-dimensional digital animations, the demand for var-
ious models is increasing rapidly. To produce a three-
dimensional model, we need different kinds of specialties
or special equipments to make a model. The requirements
for customizing a three-dimensional model are the same as
producing them. In contrast, sculpting [2, 9, 12, 13, 15]
in the virtual world provides a natural way to let people
intuitively customize models.

To perform sculpting in the virtual world, volumetric
techniques [7, 8, 10] are usually involved to provide a
smooth and efficient sculpting environment. One benefit
of using volumetric techniques is that we can easily predict
the resulting performance according to the space we used.
However, the related techniques for sculpting in the volu-
metric form raise several issues that need to be addressed.
The first issue is preserving sharp features. Comparing to
original marching cubes algorithm, sharp features preserv-
ing algorithms provide better appearances if the shapes of
volume data contain edges or corners, Fig. 1 shows an ex-
ample. The second issue is inter-cell dependency. Although
sharp feature preserving algorithms preserve sharp features
of models, unfortunately, they introduce another problem,
the dependency among cells. This problem limited the par-
allelizability of applications using these techniques. Hence,
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Figure 1: A sharp features preserving algorithms restores
edges or corners of a fandisk model in volumetric form. (a)
The result of marching cubes. (b) The result of a surface
extracting algorithm with sharp features preserving ability.

(a) (b)

Figure 2: Inter-cell independency. (a) Cells in different res-
olutions. (b) Cells are disjoint in space which is an witness
of inter-cell independency.

the ability to accelerate by GPU becomes harder. Fig. 2
shows the visualization of inter-cell independency, where
cells are disjoint in space. The third issue is maintain-
ing consistent topology. There have been many ambigui-
ties found in certain marching cubes configurations where
there are more than one ways to triangulate, Fig. 3 shows
an example. To more precisely represent a shape inside a
cell, different kinds of topology should be detected and ren-
dered. Finally, adaptive resolution is required to produce
more detail using the same size of memory. However, they
can result in cracks [14] at the interfaces of grid cells at
different resolutions. Fig. 4 shows an example of cracks.

However, these issues could be easily fulfilled by replacing
the underlying isosurfacing algorithm with cubical march-
ing squares algorithm [6]. Our sculpting process has three
stages: storing volume data in a special data structure,
applying Boolean operations, and, finally, extracting sur-
faces from the stored volume data. To sculpt under cubical
marching squares algorithm, we proposed data structures
and methods which can operate at interactive speed while
performing Boolean operations. The outline of this paper
is organized as following. First, section 2 describes related
work. Second, section 3 describes the data structure for the
volume data that reduces the storage and makes the com-
putation faster. Third, section 4 describes the algorithms to
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Figure 3: An example shows different topologies co-existing
in the same configuration.

(a) (b)

Figure 4: Adaptive resolution causes cracks. (a) The front
view of the scene. (b) The close-up view of the scene, where
orange and cyan arrows highlight the crack.

perform Boolean operations on the data structure. Fourth,
section 5 describes the way we render the volume data. Fi-
nally, the rest of the sections discuss the result, conclusion,
and future work.

2. Related Work

Sculpting in a virtual world is one of the applications that
require fast rendering from polygonal representation and
fast CSG operations from volumetric representation. The
marching cubes algorithm[10] provides a convenient and ef-
ficient way to convert volume data to isosurfaces, hence per-
mitting us to represent objects as volume data, manipulate
them volumetrically and efficiently display them by con-
verting to isosurfaces on the fly. Galyean et al. [4] propose
an volumetric modeling technique based on the marching
cubes algorithm. However, although the original marching
cubes algorithm is generally effective, it has the problems
described above and will affect the correctness and the ac-
curacy of the surface representation. To reduce the number
of triangles, Ferley et al. [2] propose a system for resolu-
tion adaptive volume sculpting. However, crack patching
is performed to fill cracks where two cells of different reso-
lutions meet [14]. Heidrich et al. also propose a real-time
adaptive isosurfacing method [5]. In addition to adaptive
resolution, the original marching cubes algorithm does not
represent sharp features well. By using extra information
of normals, Kobbelt et al. [8] propose the extended march-
ing cubes (EMC) algorithm which preserves sharp features.
Perng et al. [12] propose a volume sculpting system using
EMC in uni-resolution.

In addition to marching cubes based methods,
Frisken et al. [3] propose a sculpting system with adaptively

sampled distance fields (ADFs) to preserve sharp features
with an efficient refinement, but this was limited to local
modification. Perry et al. [13] propose a system for sculpt-
ing digital characters based on ADFs. Pointshop 3D [15]
is able to perform modeling, which is limited to normal
displacement, for point-based geometry. Adams et al. [1]
propose methods for Boolean operations which apply to
point-based geometry. Ohtake et al. [11] use a partition-
of-unity method to construct models from sets of points.

Although many of these contributions deal with vol-
ume sculpting, these works have concentrated on part of
the problems for volume sculpting. Recently, Ho et al.
[6] propose a cubical marching squares algorithm (CMS)
to deal with preserving sharp features, inter-cell indepen-
dency, maintaining consistent topology, and adaptive res-
olution. We obtain these benefits from incorporating with
CMS to archive highly detailed models for sculpting.

3. Storing Volume Data

To represent volume data as precise as possible, we choose
a mixed form representation instead of a traditional used
scalar field. We use arrays of rays to store samples of a vol-
ume data. Each sample is a point located at the surface of
a volume data and it stores the following information: the
position of itself and the normal direction at this position.
Each ray contains a list of samples. First, considering one-
dimensional cases as shown in Fig. 5, a ray contains pairs
of sample points to represent regions. A pair of samples
defines a region, the first sample marks the left boundary
and the second sample marks the right boundary. We de-
fine a sample as a left bounding sample if it marks the left
boundary of a region. Also, we define a sample as a right
bounding sample if it marks the right boundary. Thus, the
ray itself stores data in vector form.

(a)

(b)

Figure 5: The data structure of a ray in 1D, where yellow
points represent sample points, red arrows represent nor-
mal directions of sample points, and solid lines represent
regions. (a) A ray intercepting a region. (b) A ray inter-
cepting two regions.

Second, considering a two-dimensional case as shown in
Fig. 6, an array of rays consist pieces of one-dimensional
regions. These one-dimensional regions discretely represent
the shape of the gray solid triangle in Fig. 6.

Third, to represent a three-dimensional volume data with
rays discretely, we use a two dimensional array of rays to
store each pieces of the data as one-dimensional regions.
Thus, this representation is actually an image with each
pixel stores a list of samples. In compare to scalar field,
this representation requires much smaller space to store
data and preserves all the detail of the volume data. In
addition, we can store exact normal direction in this repre-
sentation to meet the requirement of sharp feature preserv-
ing techniques.



Figure 6: A 2D analogy of our data structures.

Geometric representation, such as a polygonal mesh, an
implicit surface, or a set of point clouds, could easily con-
verts into our volumetric representation. Since our goal is
to represent the volume data as precisely as possible, the
Hermite data is acquired at a very fine resolution, say, a
uniform nk×nk×nk grid. For these geometric representa-
tions, we shoot an array of axis-aligned rays, along one of
x, y, and z axes. For each ray, we store all the intersection
points of this ray and the volume data, and their normals.
We refer to the intersection points as sample points and
their normals as sample normals. The resolution of the
array is (nk + 1) × (nk + 1), where nk is the finest reso-
lution. A straightforward method to generate an array of
rays with intersections is to use a modified ray tracing al-
gorithm. However, since all rays are axis-aligned, we found
that it is faster to scan convert the geometry using the or-
thographic projection and a Z-buffer with a Z-list for each
entry. Thus, we call this representation as Z-list-buffer.

Finally, to visualize volume data using cubical marching
squares algorithm, we use three arrays of rays to store sam-
ples. Each array contains rays along an axis, say, x-axis,
y-axis, and z-axis. Using three axis-aligned arrays of rays
is convenient for querying intersections along each axis for
the cubical marching squares algorithm.

In our experiences, the average number of samples in
a ray is approximately equal to 2.86 for a dragon model,
and 2.05 samples for a fandisk model. Hence, the result-
ing performance should be better than performing Boolean
operations in scalar fields. For instance, a 512× 512× 512
distance field requires 512 samples in a ray. This can be re-
duced to approximately 2 samples using our ray structure.

4. Boolean Operations

Sculpting in virtual world is the same as performing contin-
uous subtraction operations to a target object. To mimic
the sculpting behavior, we store the tools and the target ob-
jects in the Z-list-buffers format. Then, we perform Boolean
operations on objects in Z-list-buffers format. Because we
use array of rays to store volume data, Boolean operations

could perform in one dimension, which is much simpler than
perform these operations in higher dimension. In this sec-
tion, we describe algorithms to perform Boolean operations
of two rays.

First, union operations in sculpting application add ma-
terials to a target object. Fig. 7 shows two objects, a cube
and a sphere, for performing the following Boolean opera-
tions. Fig. 8 shows an example of uniting these two objects.

(a) (b)

Figure 7: Two objects for performing Boolean operations.
(a) A cube. (b) A sphere.

Figure 8: The resulting object after performing a union
operation of objects in Fig. 7.

We use the procedure RayUnion in Algorithm 1 to per-
form union operation of two rays. In this procedure, we
merge all samples in the list of second ray into the list of
first ray and we sort the resulting list according to the z-
value of each sample. Then, we remove regions which are
inside another region by the procedure MergeRegion in
Algorithm 2. The resulting samples in the list of first ray
are the result after performing union operation.

Algorithm 1 RayUnion. This procedure performs a
union operation of two rays.

1: procedure RayUnion(Ray A, Ray B)
2: for each sample s in B.list
3: A.list← A.list ∪ s;
4: end for
5: Sort(A.list);
6: MergeRegion(A);
7: end procedure

Second, subtraction operations in sculpting application
remove materials from a target object. Fig. 9 shows an
example of subtracting a sphere from a cube.



Algorithm 2 MergeRegion. This procedure performs an
operation to remove inner regions inside a region.

1: procedure MergeRegion(Ray R)
2: level← 0;
3: T ← ∅;
4: for each sample s in R.list
5: if Dot(s.normal, R.direction) < 0 then
6: level← level − 1;
7: if level == 0 then
8: T ← T ∪ s;
9: end if

10: else
11: if level == 0 then
12: T ← T ∪ s;
13: end if
14: level← level + 1;
15: end if
16: end forR.list← T ;
17: end procedure

Figure 9: The resulting object after performing a subtrac-
tion operation of objects in Fig. 7.

We use the procedure RaySubtraction in Algorithm 3
to perform subtraction operation of two rays. This proce-
dure is similar to the procedure RayUnion in Algorithm 1.
The only difference is the normal direction of each sample
is inverted before we merge the sample into the list of first
ray. After that, we sort the resulting list according to the
z-value of each sample. Then, we remove regions which are
inside another region by the procedure MergeRegion in
Algorithm 2. The resulting samples in the list of first ray
are the result after performing subtraction operation.

Finally, there are other Boolean operations, such as in-
tersection and complement, could perform in similar steps.
Fig. 10 shows an example of intersection of a sphere and
a cube. The intersection operation could be achieved by
replacing the code ”level==0” to ”level==1” at line 6 and
line 8 in Algorithm 2.

5. Rendering Volume Data

To visualize volume data, we use cubical marching squares
to extract the surface of the volume data. We adaptively
partition the space in a binary fashion. The space is subdi-
vided by a plane in the following sequence: X-Y plane, Y-Z
plane, and X-Z plane, then circulate back to X-Y plane and

Algorithm 3 RaySubstraction. This procedure performs
a subtraction operation of two rays.

1: procedure RaySubstraction(Ray A, Ray B)
2: for each sample s in B.list
3: s.normal← −s.normal;
4: A.list← A.list ∪ s;
5: end for
6: Sort(A.list);
7: MergeRegion(A);
8: end procedure

Figure 10: The resulting object after performing an inter-
section operation of objects in Fig. 7.

so on. The subdivision is processed in a top-down manner.
We start from a very coarse uniform n0×n0×n0 base grid,
in our implementation, n0 = 8. Then, we exam each cell to
decide should we going further or not. We continuous sub-
divide a cell if it has the tendency to contain a complicated
surface, or it has an ambiguity. We detect the tendency
by a heuristic, checking whether the maximal spanning an-
gle of all pairs of sample normals inside this cell exceeds a
predefined angle threshold. When this happens, it means
that the surface inside a cell might not be flat enough and
should be subdivided.

The extracting process requires to determine the follow-
ing information: a vertex is inside or outside the volume,
and which intersection samples are on an edge. For each
vertex, we use the procedure IsInside in Algorithm 4 to
check a vertex is inside or outside the volume. Basically, a
vertex is inside if it is in the middle of a pair of neighbor-
ing samples which the first sample is a left bounding sample
and the other is a right bounding sample. For each edge, we
use the procedure GetSample in Algorithm 5 to retrieve
the samples which are on an edge. Because all samples on a
ray are sorted in their z-order, retrieving samples between
two vertices of an edge is straight forward. First, we cal-
culate the z-values of these two vertices regarding to the
origin and the direction of the ray. Then, we get samples
which are between these z-values.

6. Results

To render the same volume data, in our experiences, we ob-
served the distance error of the results using cubical march-
ing squares are about one-third of the distance error using
the other algorithms. Thus, we think the data structures



Algorithm 4 IsInside. This procedure checks a vertex is
inside or outside.

1: procedure IsInside(Ray R, Vertex v)
2: dist← Dist(v, R.origin); . signed dist. between 2 points

3: find sample s ∈ R.list where
4: Dist(s.position, R.origin) ≤ dist
5: Dist(s.position, R.origin) is maximum
6: end find
7: if Dot(s.normal, R.direction) < 0 then
8: return False;
9: else

10: return True;
11: end if
12: end procedure

Algorithm 5 GetSample. This procedure retrieves the
samples which are on an edge.

1: procedure GetSample(Ray R, Vertex v1, Vertex v2)
2: S ← ∅;
3: dist1 ← Dist(v1, R.origin);
4: dist2 ← Dist(v2, R.origin);
5: for each sample s ∈ B.list
6: dist← Dist(s.position, R.origin);
7: if dist1 ≤ dist ≤ dist2 then
8: S ← S ∪ s;
9: end if

10: end for
11: return S;
12: end procedure

and the methods discussed in this paper can provide bet-
ter visual quality for a sculpting application. To compare
these method in visual, we demonstrate some results of our
sculpting experiences.

To show the effectiveness of preserving sharp features,
we perform several operations and compare the resulting
shapes of marching cubes and cubical marching squares.
First, we subtract a three dimensional shape of the text
”CMS” from a cube. Then, we subtract a sphere from the
previous result. Fig. 11(a) shows the resulting shape of the
previously described operations extracted using marching
cubes algorithm. Fig. 11(b) shows the result using cubical
marching squares. We can see the sharp features are well
preserved by comparing these two figures.

To show the effectiveness of preserving topology, we cre-
ate a thin region by subtracting several spheres from a cube,
two of these spheres are very close to each other. Fig. 12(a)
shows the front view of the result. We observed there is
a thin region at the left-top part of the figure. Fig. 12(b)
shows the close-up view of the result extracted using dual
contouring. We observed some defects cause by extract-
ing wrong topologies in this figure. Fig. 12(c) shows the
close-up view of the result extracted using cubical marching
squares, the resulting shape is well preserved by determin-
ing the topologies inside cubes.

To show crack-free feature in adaptive resolution, we per-
form the following task. We create cells of a sphere using
previously described methods. Then, we merge several cells

(a) (b)

(c) (d)

Figure 11: A cube subtracted by the text ”CMS” and a
sphere. (a) the resulting shape extracted using march-
ing cubes. (b) the resulting shape extracted using cubical
marching squares. (c) the close-up view of (a). (d) the
close-up view of (b).

(a) (b)

Figure 13: A result of sphere and part of the cells are
merged. (a) the result of marching cubes, the white re-
gions are the cracks between different resolutions. (b) the
result of cubical marching squares.

into a bigger cell. The merge operation makes a larger
depth difference between this cell and its neighboring cells.
Fig. 13(a) shows the result of marching cubes, where sev-
eral cracks can be observed in this figure. Fig. 13(b) shows
the result of cubical marching squares. This result shows
cracks are eliminated.

7. Conclusion and future work

In this paper, we propose a virtual sculpting application
using the Z-list-buffers and the cubical marching squares
algorithm for volume sculpting. The resulting shapes of
sculpting have better visual quality due to the following
facts hold: (1) sharp features are well preserved; (2) topo-
logical ambiguity can be determined and solved by the de-
tected sharp features; (3) the problem of cracks between
adjacent cells when using a multiresolution representation
for the data is solved. Also, the performance of sculpting
reachs at a interactive speed due to the following features:
(1) 3D features can be reconstructed starting from the 2D
features located on the faces of the cells; this avoids intercell
dependencies; hence, it has potential to perform in parallel;
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Figure 12: A cube subtracted by five spheres, a thin region is created at the left-top portion. (a) The front view of the
result. (b) The close-up view of the result in flat shading using dual contouring. (c) The close-up view of the result in
flat shading using cubical marching squares.

(2) the ray structure reduces the need of a linear sequence
of samples into a fewer number of samples; this makes a
faster computation and a smaller storage. These features
make our method quite simple, relatively easy to imple-
ment and, at the same time, effective. Currently, we have
implemented part of our algorithm on a GPU. We observed
a 8-to-16-time speedup in computation using a GPU. How-
ever, the resulting speed is only comparable to our CPU
implementation. As many other GPU algorithms, the bot-
tleneck is the data transfer between CPU and GPU. In the
future, we plan to fully implement our algorithm on a GPU
to decrease the requirement of bus bandwidth. We believe
that our algorithm will benefit from the improvement on
the bus bandwidth between CPU and GPU.
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