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I. Introduction

Virtual reality, 'VR’, is the 'hype’ name for virtual environments, but hype and public relations alone cannot drive
the field of VR. So the question we ask ourselves is: why do displays work so well? The answer which | will
present in this paper is that seeing is an illusion that hides the actual processes of vision. These illusions apply
equally well to the worlds of VR as to the so-called 'real’ world.

From primitive times humans have accepted a story-telling setting. As society has become more technological
we have progressed from oral stories to books and radio; the theatre has been supplemented by movies and
TV and now head-mounted displays. But throughout human history the human imagination has been captured
by story-telling and the theatre.

Humans are also very adaptable; many careful studies have been carried out on eye-hand adaptation. The
wearing of spectacles is another common example. We know from experiments that the human cerebellum
plays an important role in this adaptation.

Il. Description of Visual Processes that lead to VR

A number of informational and interactive components of the VR setting all work together to lead to the illusion
that we are actually experiencing the artificial sensory world as it is being presented to us.

ii-1.- IMMERSION
max screen
head mounted display

stereo -- also multisensory surround
interest as with good movie or absorbing novel

lI-2.- INTERACTION
ocular manual control and congruency
image tracking of head motion -- rate limitation
computer graphics -- overlay model >> video
preview/prediction




1I-3.- INTUITIVE
easy for naive beginners
training -- in a natural way
robust in case of emergencies

end-effector control vs joint-angle-control
glove >> joysticks
comfort vs ocularmotor strain

lI-4.- INFORMATION FLOW
visual enhancements -- on-the-scene
on-the-screen
overload -- dual displays -- see-thru
looking without seeing
workplace

Ii-5.- ILLUSIONS
nature of human perception
normal ’seeing’ is an illusion

lll. Description of Some Visual lllusions

We have tried to collect anddocument a number of illusions that may play greater or lesser roles in various VR
settings. These are listed in outline form below and will serve as a skeleton for our discussion.

ll-1. ILLUSION of COMPLETENESS AND CLARITY
top-down cognitve models control
the perceptual process
visual lobes are not perceived
e.g.,- a page of reading material
use Necker cube illusion to demonstrate
rapid generation of models

ilI-2. ILLUSION of 3D WORLD
in spite of 2D retina reception
due to generation of models in 3D
cognitive and spatial models are 3D
again, use necker cube illusion

I-3.- ILLUSION of CONTINUITY IN TIME
eyelid blinks interrupt vision
saccadic suppression interrupts vision
also absence of grey out secondary to
microfixational eye movements



lil-4.- ILLUSION of INSTANTANEOUS ACTION
sampled data delay in motor commands

li-5.- ILLUSION of SPACE CONSTANCY
retinal image motion with saccades
type Il -- commanded motion but.......
corollary discharge and efferent copy
to the Helmholtz comparator
saccadic suppression of image displacement

l1I-6.- ILLUSION of SPACE STABILITY
unconscious of flow fields
unconscious of expansion fields

ll-7.- ILLUSION of PRESENCE OR TELEPRESENSE
congruence of head and image motion
egocentric direction set by
gaze movements and space constancy
congruency of visual-motor action

reference frames

IH-8.- ILLUSION of SEEING WHEN ONLY LOOKING
why HUD may be dangerous
"looking without seeing"
" one doesn’t see and ALSO doesn’t know one is not seeing!"
(consider --- seeing without looking)

IV. Looking Without Seeing

Some years ago, when HUD (head-up display) was being suggested for automobiles, a letter | wrote was
published in the Forum section of the IEEE "Spectrum” (p. 8, April, 1989) suggesting that this might not be a
very safe development. The text of the short letter is given below:

“Looking without seeing"

I was very interested to read Ronald K. Jurgen’s “New Frontiers for Detroit's Big Three"
[October 1988, p. 32]. In my opinion the head-up display (HUD) offered by General Motors
Corp. is a very dangerous developent since people do not always see things, even when
they are looking right at them.

Even more dangerous, with the HUD, people might not even be aware that they are not
seeing. Thus a driver could be distracted from seeing a part of an obstacle on the road by
virtue of the instrumentation display on the windshield, even though his gaze is straight
forward.



| believe the HUD so common in military aircraft may in fact be a contributing cause to the
large number of accidents that have occurred in the last few years. Of course, the military’s
high normal accident rate makes it difficult to be certain that the HUD is the major
distracting factor. )

Lawrence W. Stark, Berkeley, Calif.

V. The Scanpath Theory for Active Vision

The scanpath theory, put forward in 1971, suggests that a top-down internal cognitve model of what we "see"
controls not only our vision, but also drives the sequences of rapid eye movements and fixations, or glances,
that so efficiently travel over a scene or picture of interest.

The cognitive model of what we expect to see is what we actually 'see’. This internal model drives our eye
movements in a "scanpath”, a repetitive, sequential set of saccades and fixations over subfeatures of the
picture or scene, so as to check out and confirm the mode (Figure 1). These scanpath sequences are
idiosyncratic to the subject and to the picture.

VI. Further Experimental Evidence Supporting the Scanpath Theory

On the basis of this suggestive evidence, the scanpath theory was put forward asserting that an internal
cognitive model controlled active looking, scanpath eye movements and the perceptual process (Figure 2).

At that time, most visual neurophysiologists, psychologists, and computer vision scientists believed that events
in the external world controlled eye movement. Our internal cognitive model must fairly acccurately represent
the external world scene or our species would have gone bottom-up like the dinosaurs. How, then, can we
prove our assertion of the scanpath theory? Experimental answers came from studies of scanpaths of human
subjects viewing fragmented figures, ambiguous figures (Figure 3), Necker cubes, from studies of eye
movements during visual imagery and during visual search.

Mathematical methods to quantitate the evidence for experimental scanpaths developed along two lines:  (i.)
Markov Matrices of transition coefficients (Figure 4) documented that scanpaths were neither deterministic nor
random, but were considerably constrained by probabilistic coefficients; and  (ii.) String Editing Distances that
appeared to be better suited to measuring the constraints over an entire scanpath string (Figure 5).

Experiments have shown that when we look at ambiguous pictures (Figure 3), patterns of eye movement
change with the mental image we have of the ambiguous figure. When we engage in visual imagery, looking at
a blank screen and visualizing a previously seen figure, our scanpath eye movements are similar whether
viewing the figure or the blank screen (Figure 6B). This provides strong evidence that the internal cognitive
model and not the external world (since this is absent in visual imagery) drives the scanpath. Recent evidence
uses string editing distances to quantitate the similarity and dissimilarity between scanpaths. Also, studies of
visual search indicate that a primitive form of pre-cognitive spatial model controls a 'searchpath’ sequence of
eye movements (Figure 6B).

VIl. Robotic Vision

Buttressed by these new views of top-down human vision, we have applied the scanpath theory to robotic
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vision. Here we use our ‘khowledge of the spatvial layout of the robotic working environment, including position
and orientation of the video cameras, and the nature of the robots and the work-pieces to develop a
computational “cognitive model" (Figures 7 and 8) .

This computer model then controls the image processing. Regions of interest, ROIs, are generated so that
image processing, such as local thresholding and centroid calculations, can be carried out efficiently and
robustly (Figure 9). Only those subfeatures essential for identification and control are processed, reducing the
computational task greatly. The model not only controls image processing, as in human vision in the scanpath
mode, but can also control the robots, the cameras, and displays for the supervisory human teleoperators. The
model also serves to reduce communication bandwidth requirements since only commanded and correction
model parameters are transmitted. Thus a top-down visual scheme satisfies a visual feedback control system
for robots.

Of course, this application to robotic vision and autonomous control of robotic motion does not prove that the
scanpath theory is operative in man; the experiments reported earlier, hopefully, provided that evidence. The
use of the scanpath sceme in robotic vision does explicate and make concrete the workings of this theory of
active vision and its efficacy.

VIIl. Overview of Human Vision

VllI-1. Perception and Philosophy and Eye Movements

Perceptual processes may be divided into four stages, as by Kant (Figure 10). The chaotic world of
Appearances, "stuff', has energies that impinge on our organs of Sensation, “bottom-up physiology without
space and time." Representation, called ideals by Plato and “top-down cognitive models* by us, activates
Perception per se to actively seek for, and interpret, confirmation or denial of hypothesized models. Here we
consider the "active looking scanpath as the operational phase of perception per se."

An open question often raised at my lectures is "how are cognitive models formed"? Again, naive realists,
bottom-up as always, believe without much reflection that external experience flows inward to form a cognitive
model. The centroid in some feature space of all the tables | have seen provides me with the type notion of a
table. Alternatively, Plato felt that each infant was born with a complete set of ideals that needed to be
"awakened" by some argument or experience. Our concept rests upon the inate ability of the brain to
synthesize models by means of analogic reasoning or propositional construction. These models can be brought
up for consideration rapidly, and can be then discarded, modified, etc.to match the perceptual situation.

The scanpath theory, put forward in 1971, suggests that a top-down internal cognitve model of what we "see"
controls not only our vision, but also drives the repetitive sequences of rapid eye movements and fixations, or
glances, that so efficiently travel over a scene or picture of interest. Only 10% of the duration of a sequence of
views of a target are taken up by the durations of the saccadic eye movements; the intervening fixations or
foveations have 90% of the total viewing period.

Philosophers have speculated that we “"see in our mind's eye", but until the scanpath experiments, little
evidence supported this conjecture. Eye movements are an essential part of vision because of the dual nature
of the visual system -- i) the fovea, a narrow field, about one-half to one degree, of high resolution vision; and ii)
the periphery, a very wide field, about 180 degrees, of low resolution vision, sensitive to motion and flicker. Eye
movements must carry the fovea to each part of a scene or picture or page of reading matter to be processed



with high resolution. An illusion of clarity exists, that we ’see’ the entire visual field with high resolution, but this
cannot be true.

VIll-2. Vision

Understanding that visual processes can be bottom-up or top-down helps us to put in order our notions about
vision. Keep in mind one of the most interesting questions for future neurophysiology (especially aided by
active imaging experiments, functional MRI and PET): Where does bottom-up vision meet top-down vision?

Bottom-Up processes: Lower level vision is sometimes the name given to foveal vision wherein high resolution
acquisition of information, as in reading a word, can occur. Recall, the fovea is only one-half to one degree in
diameter. Wide angle peripheral vision, middle level vision, of the human retina, although low resolution, is
ideally adapted for motion perception, flow field analysis, and pre-attentive "pop-up" parallel sensing.

Top-Down processes: Higher level vision includes perception occurring in the mind’s eye. The cognitive model

-of a scene or a picture is the philosopher's "representation®. Its operational phase is the active looking
scanpath. Eye movements are also driven in a top-down fashion so that critical regions-of-interest (ROI's)
determined from the cognitive model can be sampled with high resolution foveal vision.

Vill-3. VR Applications

We now return to the developing world of VR. How varied and exciting are the applications for VRI!
Entertainment has quickly moved into this area, moving from TV to head-mounted displays, video games and
theme parks. Immersion in a wide, colorful, interesting visual scene and interactions with head movement and
manual and locomotory controls of position and viewpoints enable the human subjects to participate in the
multi-sensory surrounding environment. Although I have focused on vision, sound, smell and other senses can
strongly reinforce the visual illusions.

Technical expertise from and to the field of simulation has played a pioneering role in VR. Flight simulators are,
of course, the most developed, but there are also auto, ship, and train simulators. Telerobotics, or the control of
distant robots and vehicles, is likely an important area for enabling people to work through, and in, a VR system.
Indeed, this was our laboratory’s entree into VR. See-through head-mounted displays, HMD's, permit not only a
VR environment, but also an extra outside view onto a real scene or another display device. Of course with this
‘augmented” reality, there is the problem of sharing human attention between two tasks, of "looking without
seeing."

The aim of this paper was to discuss VR in the light of what we know about human vision; | hope we have
succeeded.

Acknowledgement: We are happy to acknowledge partial support from TRADOC, USA, White Sands, New
Mexico (Drs. David Dixon and Fernando Payan, Technical Monitors) and from NASA-Ames Research Center
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years with our many colleagues and students; and, especially, to Professor Michitaka Hirose, Tokyo University.
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Figure 1 Experimental Scanpath Examples

The scanpath consists of the repetitive sequences of eye movements and fixations while a
subject viewed the outline drawings of two trees (upper left and upper right); these are
idealized in the diagram (lower right). Note also a quite different eye movement pattern
(lower left). (From Noton and Stérk, 1971)
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Figure 2 Scanpath Theory

Human visual perception is largely a top-down
process with a cognitive model actively driving
foveated vision in a repetitive 'scanpath’ over
subfeatures of the scene or picture of interest
to check on and modify or change the working
hypothesis. (From Stark and Krischer, 1989
(324])



Figure 3 Triply Ambiguous Figure

Upper picture shows old man with moustache, old woman with gnarled chin and nose, and young
woman seen in profile with eyelash extending from silhouette (Fisher, 1972). Lower left figure
shows eye movements and fixations during experimental run. Lower right figure shows eye
movements during four successive occurrences with subject in that cognitive state wherein he saw
old man. (From Stark and Ellis, 1981 [211])
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Figure 4 Markov Model for Generating Scanpath
Itis possible to simulate scanpaths from markov matrix coefficients. Left matrix determines that in
state n, simulated eye moves with probability 1 to state n+1 yielding deterministic simulated
scanpath below; some fuzzyness in fixation within fovea is introduced and prevents line
superimposition. Middle probabilistic matrix provides for transition probabilities as indicated and
produces scanpath below showing some order and some randomness. Random matrix on right
allows equi-probability of transitions from any state to any other state and results in completely
disordered eye movement sequential pattern; note the coefficients. (From Stark and Ellis, 1981

[211))
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Figure 5a
editing
For study of eye movements while text is read
it is possible to carry out ‘“priori*
regionalization.  Text (upper left), regions
(upper right), text superimposed on regions
(lower left), alphabetic code labelling regions
(lower right). (From Choi and Stark, in
preparation, 1992)

Regionalization for String-

Figure 5b Generation of String Sequence
from Fixations

Eye movement superimposed on text (upper
right). Eye movement fixation labeled in
sequential order and by duration (upper left);
note peripheral calibrating saccades. Eye
movements and fixations superimposed upon
*a priori* regions (lower left). Example of
fixations labeled as per appropriate regions
(lower right). Finally (also lower right) a letter
sequence established as A-B-B..... (From Choi
and Stark, in preparation, 1992)

Figure 5¢
Distances
Example of two strings produced in this case
by one subject reading the same text on two
occasions. The string sequence is
compressed to remove refixations within a
single region leaving modified string. Editing
includes deletions, insertions and
replacements; all three processes are
illustrated. When string-editing has occurred
string two equals string one. Thus the
distance equals three and normalized distance
equals three divided by string length. (From
Choi and Stark, in preparation, 1992)

Algorithm for String-Editing



Figure 6a Visual Imagery Experiments

Showing similarity of scanpaths for looking (upper left) and for imagery (upper right). Two
repetitive scanpaths occurred during the 10 seconds for looking and also during the 10
seconds for visual imagery for one pattern, #2, of four patterns of quasi-random simplified
checkerboards. In this experiment two trials were also carried out approximately one week
apart on the same subject. Scanpaths that 'should’ be similar (between looking and imagery
of the same target or between looking and imagery of the same target one week apart) are
underlined so that the string editing distances of these 24 related scanpaths can be seen to
be much less (0.25 + /- 0.15; n=24) than distances between unrelated views (0.78 +/ — 0.08;
n=96) , (right middle). (From Brandt and Stark, in preparation, 1994)

Figure 6b Searchpaths

The eye movement pattern developed while the subject was repetitively tasked to find about
7 +/- 2 target trucks intermixed with vans and cars serving as decoys in this stereographic
scene. The repetitive sequences of eye movements, here called searchpaths controlled by a
spatial model may be a primitive form of scanpath, controlled by a cognitive model. (From
Choi and Stark, in preparation, 1994)
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Figure 6a Visual Imagery Experiments
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Figure 7 Cooperative Control in Telerobotics

Overview of scheme for model control of image processing. 3D Model (upper right) in space controls the
TRWE, the telerobotic working envionment (upper left), including robots, cameras, and image processing.
Defining numerical parameters, abstracted by image processing algorithms working only within ROI's,
regions-of-interest, are able to correct and update the 3D model. Communication channel can be
narrow-bandwidth since only sensed and control parameters are exchanged between the space and the
earthlab 3D models (right). The human operator, H.O. (lower left), can view a display, partly controlled by
him and partly by the lower 3D model. He can also manually control the robots and cameras by
controlling the 3D model with immediate (or delayed as would be the actual case) feedback, or he may be
in a supervisory csmmand mode --- approving of suggested paths or task-segments or setting into motion
emergency interruptions and reinitializing and recalibrating. procedures. Here, we have redundant control
pathways and modes of operation. (From Stark et al., 1987 [296))
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Figure 8a Forward Model for Robotic
Control
Kinematic structures of Armatron indicated
together with open circles and open
oblongs indicating commanded and thus
expected position of on-the-scene-
enhancements. Also shown is 3D
- schematic robot working environment with
grid floor. - Note path planning lines
indicated together with a critical point
marked by a cross; also workpiece to be
grasped with a reference line, an on-the-
screen-enhancement to grid floor; height
is thus made easily perceivable for human
supervisory control. (From Nguyen and
Stark, in preparation, 1992)

Figure 8b Feedback Model Monitoring Dynamic Performance : ‘ :
Computer model of Armatron robot rotating under autonomous path-planning control about 20
successive frames indicate dynamic rotation. Plus markings indicate results of centroid calculation;
thus this is a feedback model of robot. (From Nguyen and Stark, in preparation, 1992)
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Figure 9a Bottom-Up Threshold
Algorithm

Pixel intensity plot shows pixel intensity as
a function of x and y coordinates of video
picture with intensity in the third vertical
axis. ROI outlines are picked up as a
vertical open top boxes with on-the-scene
enhancement as peaks within the ROls.
ROI heights are proportional to adaptive
threshold, with each local region having a
different threshold level; this advantage of
top-down control of image processing
makes for a very robust and autonomous
scheme. (From Nguyen and Stark, in
preparation, 1992)

Figure 9b Centroid Calculation

Video images of robot have ROls
superimposed. In these examples the
ROlIs controlled by the feedforward model
are excellent predictors of dots. Centroid
calculations are very rapid and enable
feedback processing of  kinematic
parameters of robots, showing accuracy in
response to feedforward command. This
example studied comparison of two
centroids versus one local ellipsoid whose
major angle could equally generate
kinematic parameters. (From Nguyen and
Stark, in preparation, 1992)



PERCEPTUAL PROCESSES

(BU) (BU) (TD)
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Kantian Definitions

APPEARANCE SENSATION PERCEPTION REPRESENTATION
Erscheinung Empfindung Anschauung Vorstellung
ther Phil her
phenomenon impression perception noumenon
(Leibnitz) (Mach) (Leibnitz) (Leibnitz)
class of intuition ideal
appearances (Descartes) (Plato)
(Russell) ‘
notion
(Berkeley)
Our Terms
"stuff" "bottom up “active looking “top down
( not 'things’!) physiology scanpath as cognitive
without the operational model"
space and phase of
time" perception per se"
doctrine of a more planned,
specific forceful,
nerve determined
‘endings’ activity

Figu:2 10 Bottom-up and top-down components of overall perception
ine active looking scanpath is the operational phase of "perception per se".
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