Coarse-to-Fine Collision Detection

for Real-Time Applications in Virtual Workspace

Yoshifumi KITAMURAT, Haruo TAKEMURATT and Fumio KISHINOT

t ATR Communication Systems Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan
phone: +81-7749-5-1211
<kitamura, kishino>@atr-sw.atr.co.jp

ft Nara Institute of Science and Technology
8916-5 Takayama-cho, lkoma-shi, Nara, 630-01, Japan
phone: +81-7437-2-5291

takemura@is.aist-nara.ac.jp

Abstract — We propose a method for detecting inter-
ference and potential collisions among objects to facili-
tate cooperative work in a virtual space. It satisfies both
“accuracy” and “computational efficiency” in the virtu-
al environment where there are multiple independently
moving objects. In paticular, the method detects faces
with arbitrary motion (translation and rotation) in three
main stages. In the first stage, the coarse stage, an ap-
proximate test is performed in the entire workspace to
select sufficiently close objects by using their bounding
shapes. In the second, the mid stage, interfering object
parts are identified using the octree representation of the
object shapes. In the third, the fine stage, a polyhedral
representation of the object shapes is used to more accu-
rately identify the faces that are likely to collide. Specific
pairs of faces belonging to any of the interfering objects
found in the second stage are tested; detailed computa-
tion is therefore performed on a reduced amount of data.
This method tests collisions in the entire workspace all
the time, and achieves an appropriate efficiency in de-
tecting pairs of faces about to collide. Experimental data
demonstrate the efficiency of the proposed method.

Keywords —  virtual workspace, operator assistance,
collision /interference detection, bounding shapes, octree,
polyhedral shape representation

1 Introduction

A virtual environment created by computer graph-
ics and having appropriate user interfaces can be
used in many applications. For example, by mea-
suring a user’s viewing position, hand position and
hand shape, we can establish an object manipula-
tion environment in a virtual space where the user
can directly grasp, move or release objects created
by stereoscopic computer graphic images. Provided
multiple users could share this environment, more
potential applications would exist [1]. In such a case,

147

it would be ideal for the users to handle objects just
as they would do in a real environment with no sense
of incompatibility.

When two or more operators are engaged in co-
operative work such as changing a layout, matching
parts, etc., if their work is supported by assistance
tools, they may be able to manipulate virtual objects
without difficulty. Such tools include a force feed-
back device, which can generate a reaction between
two faces touching each other [2], and guidance soft-
ware which can lead faces of objects to appropriate
positions [3]. In any case, it is important to select
the attracting pair of faces of objects and test the
interference or collisions among them efficiently.

The issue of interference or collision detection has
been examined in studies focusing on path planning
of manipulators or mobile robots [4][5][6][7]); how-
ever, a drastic increase in computation results when
detection techniques are applied directly to the prob-
lem in a virtual workspace. When we consider the
application of a collision detection method to real-
time operator assistance in a virtual workspace, in-
vestigation into the computation time is necessary so
that the operator will not feel any sense of incompat-
ibility. For the applications of computer animation
and virtual reality, much research effort has been di-
rected to efficient interference or collision detection
[8][9]{10][11]; however, they have not been able to ef-
ficiently identify the attracting pair of faces that are
likely to collide in the entire workspace containing
multiple moving complicated objects.

Colliston detection methods using polyhedral
shape representation are common and yield compar-
atively accurate results, but they need to test all
combinations of faces and edges of objects in the
environment to detect interference. Therefore, the
computational cost increases with the number and
shape complexity of objects. Though [12] uses vox-




els for rough identification of the candidat faces, s-
patial access is not efficient; this is because it us-
es a flat set of voxels (i.e., all voxels are the same
size) rather than a hierarchical structure (such as
an octree), which could be used to quickly localize
the interference region between two objects without
having to examine each individual voxel.

Using octree shape representation, interference a-
mong objects can be detected by traversing their oc-
trees in parallel [13]. Octrees can represent the de-
tails of object shapes to different degrees using dif-
ferent numbers of levels, but the computational cost
is proportional only to the actual number of nodes
visited. Even an octree with limited depth is useful
for approximately identifying object parts causing
interference. A method in [14] is efficient in environ-
ments where there are multiple independently mov-
ing objects. In this algorithm, However, the motion
of objects is restricted to translation, and there is an
overhead for updating positions of and detecting in-
terference among octree shape representations even
when the distances among objects are large enough.

In this paper, we propose a method for detect-
ing potential collisions among faces of objects with
arbitrary motion (translation and rotation). This
method satisfies the requirements of “accuracy” and
“computational efficiency” so that the operator will
not feel any sense of incompatibility in a virtual
workspace. Experimental results show that the pro-
posed method has goog efficiency when there are
multiple complicated objects in the environment.

2 Operator Assistance in Vir-
tual Workspace

2.1 Virtual Cooperative Workspace

A virtual cooperative work environment created by
computer graphics and having appropriate user in-
terfaces can be shared by multiple users. Figure
1 shows an example of such a virtual cooperative
workspace. Each user’s viewing position, hand posi-
tion and hand shape are measured using the system;
therefore, the user can directly grasp, move or release
objects created by stereoscopic computer graphic im-
ages. A user at one site is connected with other user-
s at remote sites through communication networks.
The result is a shared virtual workspace, where the
users manipulate objects cooperatively.

Let us enumerate the features of a virtual coop-
erative workspace. First, there exist n objects in
the workspace, where n > 2. Second, there are m
(1 £ m < n) moving objects manipulated individu-
ally by m operators. Here, each operator is assumed
to manipulate only one object, and each object is
manipulated by at most one operator. Third, since
the objects are moved by hand, the trajectories of
moving objects can not be analytically described.
Furthermore, the motion of objects may suddenly

148

change. Fourth, data on the motion of objects is
extracted at discrete time instants restricted by the
computing time for hand gesture recognition, image
generation, etc.

SOOI -t

Figure 1: A virtual cooperative workspace

2.2 Operator Assistance

We consider assistance in a task in a virtual coop-
erative workspace; e.g. changing a layout, matching
parts, and so on. In Figure 1 for instance, we consid-
er piling objects on other objects or inserting objects
into other objects to support the task. A simplified
example is shown in Figure 2. The task involves
cooperative work to place object A (operated by a
user) onto the upper surface of object B (operated
by another user), and avoid collision with standing
obstacle C. Without assistance tools, the users may
feel this task to be too difficult, i.e. putting two faces
(a, b) in contact. However, with assistance from a
force feedback device, or a guidance software (de-
scribed earlier), for example, the users should feel
more comfortable. In any case, it is important to
select the attracting faces and test the collisions a-
mong them efficiently.

When we consider the application of a collision
detection method to real-time operator assistance in
a virtual cooperative workspace, investigation into
the computation time is necessary so that the oper-
ator will not feel any sense of incompatibility. In the
above example of Figure 2, until the pair of faces (a,
b) is found, the operator will move the object directly
with his hand. Therefore, the collision/interference
test among objects must be performed in real time.
However, once the attracting pair of faces is detect-
ed, the computer system will assist in the precise
movements of objects. Taking a somewhat longer
computation time may be tolerated because the op-
erator will not move the object directly in this stage.

Using such an adequate operator assistance sys-
tem, a user can move a virtual object to any ap-
proximate position without any operator assistance
and with quick interference tests. Once the object
moves close enough to another object, the motion
of this object will be supported by one of many as-
sistance tools. Even if this process requires a lot of



computation, this stage is performed by the system
with no interaction between users.

Though it is possible to use any collision detection
method in a simple environment, this is not so in an
environment in which there are multiple indepen-
dently moving complicated objects. In the following
sections, we describe the features of some methods
for detecting interference and collisions among ob-
jects.

moving /

standing

Figure 2:
workspace

Assistance in a virtual cooperative

3 Shape Representations

3.1 Polyhedral Shape Representation

Polyhedral shape representation is one of the most
common shape representations. Interference be-
tween polyhedral objects is detected by testing all
combinations of faces and edges. The average time
complexity for the test (for n objects) is O(n?. EF),
where E, F are the number of edges and faces in the
average object. The computational cost is quadratic
in E or F, and also quadratic with respect to the
number of objects, n. Therefore, it is difficult to
use such a method when there are multiple, inde-
pendently moving complicated objects. However, if
the number of faces or edges that are likely to col-
lide can be restricted, these interference detection
methods are useful.

In order to reduce the number of faces and edges,
the approximation of objects with bounding spheres
or boxes is sometimes used. The interference of two
objects is easily detected by comparing the distance
between their centers of gravity with the sum of the
sizes (radii in the case of spheres) of the approximate
shapes. However, the approximation error increases
when the objects are complex or concave, and it is
not possible to identify directly the attracting parts
of the objects (e.g. edges or faces) where collisions
occur.

149

3.2 Octree Shape Representation

. The octree represents an object shape by recursive

subdivision of a space into octants. A tree node is
labeled black (white) if it is completely contained
within the object (free space); otherwise, the node
is labeled gray.

Using octree shape representation, the interfer-
ence between two objects can be detected by travers-
ing two trees in parallel [13]. Let N4, Np denote a
pair of corresponding nodes at any time during the
traversal. If either N4 or Np is white, neither of
their children are traversed, and the traversal of the
remaining nodes is continued. If both N4 and Np
are black, these nodes are determined to be inter-
fering. If either N4 or Np is gray, their children
are traversed. The depth of the traversal along each
path down from the root is determined by the shal-
lower of the two paths terminating in a white leaf.
For n objects, a similar traversal of n trees is needed.

Since the time complexity of interference detection
using octree shape representation is proportional to
the actual number of nodes visited, the average time
complexity for detecting interferences among n ob-
Jects is O(K'n), where the average number of nodes
in atreeis K. It is convenient to use octree represen-
tation with an adequate level for identifying object
parts causing interference.

4 Coarse-to-Fine Collision

Detection

The above discussion shows that it is difficult to
achieve both “accuracy” and “computational effi-
ciency” by using only one method of collision de-
tection. An efficient method is to first perform an
approximate test to identify interfering objects in
the entire workspace, then to perform a more accu-
rate test to identify the object parts causing inter-
ference/collisions. We propose such a method using
bounding shapes, and octree and polyhedral repre-
sentations of object shapes. The algorithm is de-
scribed below.

4.1 Outline

Figure 3 shows the control flow in our method. Sup-
pose there are n objects in the workspace, and that
for each object all the bounding sphere (box), octree
and polyhedral representations are known.

The bounding spheres (boxes) for each object
are updated periodically (at discrete time instants

-+, ti—1, ti, tiy1, ---) using the observed objec-
t motion parameters. When no interference among
bounding spheres (boxes) can be found, these motion
parameters are stored. Once interference is found,
both the octree and polyhedral shape representa-
tions for each object are updated using the stored
motion parameters. Then, the interference among



objects detected above is tested using octree shape
representations. If any interference nodes are found,
the faces inside of these nodes are tested for collision-
s. To avoid collisions, future object positions and
orientations are extrapolated using these motion pa-
rameters. Potential collisions are then checked using
the extrapolated representations to detect collisions
between the time interval t; and ¢;;; using the fol-
lowing steps.

Here, both the octree and polyhedral shape repre-
sentations are updated at every time instant. Note
that updating polyhedral representations is relative-
ly straightforward. An algorithm capable of updat-
ing the octree of a three-dimensional object for ar-
bitrary rotation and translation is proposed in [15].

[-n of rotati

| updating bounding nhaﬂ
I

interference test using bounding shape I:

interfering

S S—

updating octree updating polyhedral
shape representation shape representation
I

[ extraction of faces in interfering node-1

|
generation of
CG images

Figure 3: Proposed method of collision detection.

collision test using polyhedra

likely to collide

lp.nol-clt

4.2 Procedure

We assume that the speeds of moving objects are
slow compared with the sampling intervals. We also
assume that the objects are rigid, and their motions
between successive time instants are translations and
rotations.

4.2.1 Approximate Interference Detection
using Bounding Shapes

An approximate interference test in the entire
workspace is performed to select close enough ob-
jects by using their bounding shapes. We choose
these bounding shapes (bounding spheres or boxes)
depending on the shape of the objects so as to obtain

150

the smaller approximate error. In the case of bound-
ing spheres, the interferences of objects are detect-
ed by comparing the distance between their centers
of gravity with the sum of the radii of the bound-
ing spheres. On the other hand, the interferences a-
mong bounding boxes (rectangular parallelopipeds)
are detected by testing if one of the following posi-
tional relationships of all combinations of faces and
edges exists: both endpoints of an edge lie on the
same side of the plane containing the face (Edge 1),
an edge intersects the outside of the face of the plane
(Edge 2), or an edge intersects the inside of the face
of the plane (Edge 3). We can detect interference for
Edge 3.

4.2.2 Interference Detection using Octrees

Until the interferences among bounding shapes are
found, the octree and polyhedral shape representa-
tions of objects are not updated. Only the matrices
of consecutive motions are updated in this period.
Once the interferences are found, motions are trans-
formed into a displacement with respect to the initial
positions of the octree and polyhedral shape repre-
sentations.

Interference in the entire workspace is detected by
traversing the updated objects’ octrees in parallel. If
there exists a black node whose corresponding node
in another tree is also black, these nodes are con-
sidered to be interfering. The traversal is performed
down to a predetermined lowest level. At this lowest
level, for safety, any pair of corresponding gray nodes
is considered to be interfering. After the traversal is
completed, all interfering nodes and corresponding
objects are identified. This determines the objects
and their approximate parts that are likely to collide
in the near future.

4.2.3 Extraction of Faces in Interfering N-
odes

We extract the faces of an object that intersect with
its octree nodes (marked as interfering with other
objects). For each of such interfering nodes in an
object’s octree, the coordinates of the eight vertices
of the corresponding cube C are substituted in the
equation of the plane T of each face F of the in-
terfering object. If all vertices do not lead to the
same sign (positive or negative) for the value ob-
tained after substitution, then this face F' is judged
as possibly causing the interference detected by oc-
tree representation. To determine if the face actual-
ly does cause the interference, the polygon S of the
intersection between C and T is found. A simple
two-dimensional interference detection is then done
between S and F. If an intersection is found, F
is labeled as interfering; otherwise, F is labeled as
noninterfering.



4.2.4 Accurate Collision Detection Using
Polyhedra

The faces identified above are checked for collision-
s. At any time instant ¢;, in order not to miss the
collisions between time intervals, the possibility of
collision between ¢; and t;, is tested by consider-
ing the volume expected to be swept by each face
during the interval [t;, ¢;1,] (see Figure 4). To be
conservative, collision is assumed if these volumes
intersect even though such intersections are a neces-
sary, but not sufficient, condition for the occurrence
of collisions.

For each moving face 4, we compute the convex

hulls V¥ of a set of vertex points of At (ie. af, a¥f,

ay,...) and A*+ (ie. af*!, ol ay*',..) (chapter
3 in [16]) which are expected to be swept by face A
during the interval [t;, t;;,]. For each face B' with
which intersection of A% is to be tested during the
interval [¢;, t;1,], the convex hulls V§' of a set of
vertex points of B* and B'i+! are computed. Here,
face A and face B at time ¢ = ¢; are specified by A'i
and B%| respectively.

Then the intersection between V: and V' is test-
ed. The intersection is detected by testing whether
one of the following positional relationships of all
combinations of faces and edges exists: both end-
points of an edge lie on the same side of the plane
containing the face (Edge 1), an edge intersects the
outside of the face plane (Edge 2), or an edge inter-
sects the inside of the face plane (Edge 3). We can
detect an intersection in the case of Edge 3.

This identifies all pairs of faces that are expected
to collide in the time interval [t;, ¢;1,] by testing for
collisions among faces extracted in each node of the
octree for which interference has been found. This
method is not efficient when the number of vertex-
es of each face is large. In this case, a more effi-
cient method (such as Muller-Preparata’s method in
chapter 7 of [16]) might be useful to test for the in-
tersection of convex polyhedra. Figure 4 shows the
simplest case (triangles).

Figure 4: Collision detection between moving faces
identified by octree representation as potentially col-
liding.

151

5 Experiments

This section first evaluates the performance of the
proposed collision detection algorithm using a stan-
dardized environment. Then it gives experimental
results from practical conditions including general
objects.

5.1 Performance Evaluation using S-
tandardized Objects

For performance evaluation, we use sphere-like ob-
Jects represented by triangular patches. Spheres are
selected because of their orientation invariance. An
octree shape representation of this object is shown in
Figure 5. Here, the octree representation hierarchy
is considered to have five levels, and the root node
of the octree corresponds to the entire workspace.

(a) polyhedra

(b) octree

Figure 5: Experimented object represented with
polyhedra (168 triangular faces) and corresponding
octree shape representation.

5.1.1 Experiments with Multiple Moving
Objects

The interference and collision detection among mul-
tiple identical objects (spheres) is tested. Each
sphere has a corresponding octree shape represen-
tation like Figure 5(b). Constant translation and
rotation parameters are given to each object A, B,
C, D, ..., and only objects A and B collide. The
initial position of the centers and motion vectors of
each object are listed in Table 1. The initial position-
s of six objects (from A to F) in the experimented
workspace are shown in Figure 6. All objects are
located sufficiently away from each other. Here, the
units are equal to the length of the side of the small-
est octree cube (or voxel), i.e. level 0 (depth 5). The
workspace is divided into M3, M = 25 voxels at the
lowest level. The diameter of the polyhedral shape
representation of each sphere is 3.8 voxels with re-
spect to 5-level octrees, while the diameter of the
octree shape representation of each sphere is 5 vox-
els. The size of the bounding shape is slightly larger
than its octree shape representation.

In the beginning, after the positions of the bound-
ing shapes of each object have been updated, an
approximate test is performed to identify close ob-
Jects in the entire workspace at every processing cy-
cle. Once the intersections among bounding shapes




Table 1: Initial positions and motions of objects (unit: 5-level octree)

object | initial positions translation rotation

(vozels) (vozels/cycle) (degrees/cycle)
A (4.0, 4.0, 4.0) (0.03, 0.015, 0.02) | (0.0, 0.05, 0.05)
B | (18.0,12.0,14.0) | (-0.03,-0.015,-0.02) | (0.05, 0.05, 0.0)
C | (25.0, 25.0, 14.0) | (0.005, -0.01, 0.005) | (0.0, 0.05, 0.05)
D (14.0, 3.0, 25.0) | (-0.01, -0.005, 0.0) | (0.0, 0.05, 0.05)
E (3.0, 25.0, 3.0) (0.01, 0.0, 0.01) (0.0, 0.05, 0.05)
F_ | (25.0,14.0, 25.0) | (-0.005, -0.001, -0.001) | (0.0, 0.05, 0.05)

Figure 6: Experimental space including six objects
(identical spheres) at initial positions

are found, the positions of the octree and polyhe-
dral shape representations of each object are updat-
ed, and a test is performed to identify interfering
object parts using the octree representations of the
object shapes. If any interfering nodes are found,
the polyhedral representations of the object shapes
are used to more accurately identify the object parts
causing the interference and collisions. We measure
the computation time of each processing cycle on a
workstation (Silicon Graphics ONYX).

One of the results from two moving objects hav-
ing 168 triangular patches and 5-level octree shape
representations is shown in Figure 7. Both cases
using bounding spheres and bounding boxes were
experimented. For the bounding boxes, up to time
t = 104 (cycles), no interference can be found; there-
fore, the computation cost is relatively small (less
than 1 msec: minimum measurable resolution time
in our experiment). Once the intersections among
bounding boxes are found at ¢ 105, more com-
putation is needed to update the positions of the
octree and polyhedral shape representations of each
object, and to test the interference among identi-
fied objects using the octree representations (Note
that even this stage requires about 25 msec.) At
t = 169, interfering nodes of octree are found, and

152

much more computation is needed to detect faces in
the interfering nodes and to test the collisions among
them. Though interfering nodes are found, the de-
tected faces do not collide up to t = 196. Finally, at
t = 196, collisions among detected faces are found,
and this experiment is terminated. At the last stage
of this collision detection, 299 msec is needed to i-
dentify 8 pairs of faces that are going to collide from
37 interfering octree nodes. Here, we test the col-
lisions among faces identified by each node of the
octree for which interference has been found.

For the bounding spheres, the shape of the graph
is quite similar except when the intersections among
bounding spheres are found (¢ = 144). The compu-
tation time for the intersection test of the bounding
rectangular parallelopiped is almost the same as that
for the bounding spheres.

computation time (ms)

300

250

100

0 £ nﬂﬁ‘T‘A’/’

150
t(cycle)

Figure 7: Computation time for each processing cy-
cle of collision detection between two same objects
having 168 faces by the proposed methods (using
bounding spheres and boxes)

Experimental results obtained using bounding
spheres for multiple moving objects are shown in Fig-
ure 8. In this figure, the computation time of each
processing cycle for collision detection among multi-
ple identical objects having 168 faces is measured.



The computation time of updating the bounding
shapes, and octree and polyhedral shape represen-
tations are almost equal against the increase of the
number of objects. In addition, in the case of bound-
ing boxes, we can get almost the same results. In the
beginning period, the computation time is almost 1
msec for six objects for both bounding shapes.

In comparison with a conventional collision detec-
tion algorithm using only polyhedral shape repre-
sentation (which is described in 3.1), our method
accomplishes the collision test very quickly in any
stage. For example, the computation time for the
polyhedral method requires about 29 seconds for two
objects. The polyhedral method needs to test colli-
sions among all combinations of faces at every pro-
cessing cycle; therefore, considerable computation is
necessary throughout the experiment. For collision
detection among spheres, constraints of parametric
methods might be useful in eliminating the candi-
date faces. However, since these types of constraints
are not always good for concave or complex objects,
we compared our proposed method with the poly-
hedral representation collision detection algorithm,
which does not use the above constraints.

computation time (ms)
300
——— 2 objects ﬂ
----- 3 objects
250 =+ 4 objects
-~ 5 objects
----- 6 objects
200
150
100
. [
1] 50 100 150 200
t (cycle)

Figure 8: Computation time of each processing cycle
for collision detection using bounding spheres among
multiple identical objects

In Figure 9, the computation time of the proposed
method at the last stage of collision detection which
requires maximum computation is compared with
the collision detection method using only polyhedral
shape representation, for various numbers of object-
5. The experimental results show the efficiency of
the proposed method when the number of objects
increases. : :

153

computation time (s)
1000
100 | e
e

o

«=""" polyhedral method
10

proposed method

0.1

2 3 4 5 6
number of objects

Figure 9: Computation time of each processing cy-
cle for collision detection among multiple moving ob-
Jects having 168 faces against the number of objects

5.1.2 Experiments with Two Moving Ob-
Jects Having Different Numbers of
Faces

The interference and collision detection between t-
wo identical objects (spheres) represented by sever-
al kinds of polyhedral shape representations, each
having a different number of planar patches is test-
ed. Figure 10 shows these results using bounding
spheres. In this figure, the computation time at the
last stage of the proposed collision detection, which
requires maximum computation, is compared with
that of the conventional collision detection method
without any constraint of bounding shapes and oc-
trees, i.e., using only polyhedral shape representa-
tion. The experimental results show the efficiency of
the proposed method when the number of faces of
the objects increases.

5.2 Experiments for Practical Envi-
ronment

Our proposed algorithm is applied to a practical en-
vironment. A space shuttle, a statue of venus, and
a chair, each represented by triangular patches and
an octree shape representation are used. The octree
shape representation of each object is generated in
advance by the method of [17] from its polyhedral
shape representation (see Figure 11 for space shuttle
example).

5.2.1 Space Shuttles

The interference and collision detection among six
identical objects (space shuttles) is tested with their
bounding spheres. The initial positions and direc-
tions of the objects (from A to F) in the experi-
mental workspace are shown in Figure 12. Constan-
t translation and rotation parameters are given to
each object and only objects A and B collide. Here,



computation time (s)

14

polyhedral method

12

10

i
H
S
H
i
H
H
3
i
§
!
'
§
H
H
{
H
3
H
l
H
1
1
2
s
]
H
H
_I
H
1
i
§
H

proposed method

/

0 200 400 600 800 1000
number of faces

Figure 10: Computation time of each processing cy-
cle for collision detection between two identical ob-
Jects against the number of planar patches of the

objects.

level-6 octree is used. In this experiment, the faces
of the polyhedral shape representations are all trian-
gles, and the octree shape representation of Figure
11 (b) is used by integrating its octree root node in-
to the level-2 (depth 4) octree node whose root node
corresponds to the entire space.

(c) octree (level 6)

(b) octree (level 4)

Figure 11: A space shuttle represented using poly-
hedra and its corresponding octree shape represen-

tation.

The results from the six moving objects (space
shuttles) each having 528 triangular patches are
shown in Figure 13. In this case, the environment is
considered to have 3168 faces in total. Up to time
t = 115 (cycles), no interference can be found; there-
fore, the computation cost is relatively small (less

Figure 12: Experimental space including six objects
(space shuttles) at their initial positions.

than 1 msec: minimum measurable resolution time
in our experiment). Once the intersections among
bounding shapes are found at ¢t = 116, more compu-
tation is needed to update the positions of the octree
and polyhedral shape representations of each object,
and to test the interference among identified objects
using the octree representations. At ¢ = 188, inter-
fering nodes are found, and much more computation
is needed to detect faces in the interfering nodes and
to test the collisions among them. Though interfer-
ing nodes are found, the detected faces do not collide
up to ¢t = 183. Finally, at t = 184, collisions among
detected faces are found, and this experiment is ter-
minated. At the last stage of this collision detection,
263 msec is needed to identify 4 pairs of faces that
are going to collide from 45 interfering octree nodes.
As easily understood from the result in Figure 8, re-
sults from other object numbers are quite similar to
Figure 13’s.

On the other hand, the computation time for col-
lision detection for six objects without using octree,
i.e., using only polyhedral shape representation, is 70
minutes. while our proposed method requires 263 m-
sec. In this case, our proposed method detects col-
lisions in about 0.06% of the time required by the
polyhedral method.

5.2.2 A Cluttered Environment

An environment that includes several kinds of ob-
Jects is tested (Figure 16). Here, a space shuttle,
a statue of venus and a chair having 528, 1868,
and 146 faces, respectively, are used. Each object
has a corresponding octree shape representation as
shown in Figure 11 or 15. Many types of collisions
are observed by giving different sets of translation
and rotation parameters to each object. Figure 17
shows one of the results from the collision between

154



computation time (ms)

150

100

t(cycie) 150

Figure 13: Computation time of each processing cy-
cle for collision detection among six objects (space
shuttles).

Figure 14: A snapshot of an instant in which collision
is detected.

the venus statue and the space shuttle. At the last
stage of this collision detection, 1132 msec is needed
to identify 2 pairs of faces that are going to collide
from 48 interfering octree nodes, while the polyhe-
dral method without using octree requires 27 minu-
ites for the same environment.

6 Application to Operator As-
sistance in a Virtual Coop-
erative Workspace

As described above, some pairs of faces that are
likely to collide are detected by our proposed col-
lision detection algorithm. Using the detected pairs
of faces we can establish the operator assistance sys-
tem in a virtual cooperative workspace.

In the example of Figure 2, however, not only the
pair of face a of object A4 and face b of object B, but
also some pairs that include the side faces of object

165

(a) statue of venus
(polyhedra: 1816 faces)

(b) statue of venus
(octree: level 4)

(c) chair
(polyhedra: 146 faces)

(d) chair
(octree: level 4)

Figure 15: Examples of experimental general objects
represented using polyhedra and their corresponding
octree shape representation.

A might be detected. Since the way to handle these
pairs of faces depends on the task to be assisted and
the assistance methods, it should be considered in-
dependently of collision/interference detection meth-
ods. In the case of Figure 2, if we assume the task
to be assisted as cooperative work, such as putting
object A operated by a user onto the upper surface
of object B operated by another user and avoiding
collision with standing obstacle C, we can detect the
pair of attracting faces (a and b) by using such prop-
erties as the parallelism of a pair, the time of colli-
sion, the area of faces, or the horizontality of faces.
Once the attracting faces are selected, such tools as
a force feedback device, which can generate a reac-
tion between two faces touching each other[2], and
guidance software which can lead objects to appro-
priate positions [3] are available. Figure 18 shows
the concept of the latter method. With this tool,
when the operator grasps an object in the virtual
environment and moves it close to another object
(i.e. within a threshold), both objects automatically
become attached. In other words, all the operator
needs to do is to control two translations and one
rotation of freedom of the grasped object.

A user can move a virtual object to an ap-
proximate position without any operator assistance.
Here, quick interference tests are executed. Once the
object moves close enough to another ob Ject, the mo-
tion of this object will be supported by one of the
assistance tools. Even if this process requires much
computation, this final stage is necessary for an ac-
curate test. Even for a complicated environment like



Figure 16: Experimental space (level-5 octree is
used) including several kinds of objects

Figure 14, our proposed collision detection method
requires 263 msec to identify pairs of faces that are
going to collide. The method is therefore sufficient
for real-time applications with operator assistance.
Our proposed collision detection method is effi-
cient compared with polyhedral methods, however,
it 1s not sufficient for real-time applications in very
complicated situations like in Figure 16. Since the
proposed collision detection method can be easily
implemented on a parallel processor, real-time col-
lision detection in environments containing multi-
ple independently moving complicated objects, can
be achieved. Concretely speaking, the computation
time of collision detection at the last stage which
requires maximum computation can be reduced by
testing the collisions between pairs of faces parallelly.

7 Summary and Conclusion

We have proposed a method for detecting poten-
tial collisions among faces of objects. which satis-
fies “accuracy” and “computational efficiency”. Ex-
perimental results have shown the efficiency of the
proposed method, especially when there are multi-
ple, complicated objects with arbitrary motion in
the environment. The method tests collisions in the
entire workspace all the time, and achieves an ap-
propriate efficiency in detecting pairs of faces about
to collide. These detected pairs of faces are used for
the operator assistance method.

Collision detection is accomplished in about 1 m-
sec when an object is sufficiently away from another
object in our experiments, and even in the last stage
of accurate collision detection, it requires only 263
msec to identify the pairs of faces that are likely to
collide.

This collision detection method enables the user

156

computation time (s)

11

1.0

0.9

0.8

0.7

0.6

0.5
0.4 /

0.3

0.2

0.1

100 150

t(cycle)

Figure 17: Computation time of each processing cy-
cle for collision detection among objects (a space
shuttle, a statue of venus and a chair) in a practical
environment.

threshold 1

Figure 18: An example of operator assistant

in a virtual workspace to manipulate a virtual ob-
Ject without any sense of incompatibility while he
moves the object directly with his hand. Once the
object moves close enough to another object and the
attracting pair of faces is detected, the motion of
the object is supported by assistance tools; thus, the
precise placement of the object is possible. Taking
a somewhat longer computation time may be toler-
ated because the operator will not move the object
directly in this stage.



References

(1]

(3]

4]

(5]

[6]

(7

(8]

[0

(10]

(11]

(12}

[13]

Takemura, Haruo and Kishino, Fumio. Co-
operative work environment using virtual
workspace. In CSCW, pp. 226-232, 1992.

Iwata, Hiroo. Artificial reality with force-
feedback: development of desktop virtual space
with compact master manipulator. Computer
Graphics, Vol. 24, No. 4, pp. 165-170, 1990.

Chanezon, A., Takemura, H., Kitamura, Y.,
and Kishino, F. A study of an operator assis-
tant for virtual space. In Virtual Reality Annual
International Symposium, pp. 492-498. IEEE,
1993.

Hwang, Yong K. and Ahuja, Narendra. Gross
motion planning — a survey. ACM Computing
Surveys, Vol. 24, No. 3, pp. 219-291, 1992.

Boyse, John W. Interference decision among
solids and surfaces. Communications of the
ACM, Vol. 22, No. 1, pp. 3-9, 1979.

Canny, John. Collision decision for moving
polyhedra. IEEE Trans. on PAMI, Vol. 8, No. 2,
pp. 200-209, 1986.

Kawabe, S., Okano, A., and Shimada, K. Col-
lision detection among moving objects in simu-
lation. Robotics Research, Vol. 4, pp. 489-496,
1988.

Moore, Matthew and Wilhelms, Jane. Collision
detection for computer animation. Computer
Graphics, Vol. 22, No. 4, pp. 289-298, 1988.

Sclaroff, Stan and Pentland, Alex. Generalized
implicit functions for computer graphics. Com-
puter Graphics, Vol. 25, No. 4, pp. 247-250,
1991.

Hubbard, Philippe M. Interactive collision de-
cision. In Symposium on Research Frontiers in
Virtual Reality, pp. 24-31. IEEE, 1993.

Youn, Ji-Hoon and Wohn, K. Realtime collision
decision for virtual reality applications. In Vir-
tual Reality Annual International Symposium,
pp- 415-421. IEEE, 1993.

Garcia-Alonso, A., Serrano, N., and Flaquer,
J. Solving the collision decision problem. Com-
puter Graphics and Applications, Vol. 14, No. 3,
pp. 36-43, May 1994.

Ahuja, N., Chien, R. T., and Bridwell, N. In-
terference detection and collision avoidance a-
mong three dimensional objects. In Inierna-
tional Conference on Artificial Intelligence, pp.
44-48, 1980.

157

(14]

(15]

(16]

[17]

Kitamura, Y., Takemura, H., Ahuja, N., and K-
ishino, F. Efficient interference detection among
objects using octree and polyhedral shape rep-
resentation. In Asian Conference on Computer
Vision, pp. 775-779, 1993.

Weng, J. and Ahuja, N. Octree of objects in ar-
bitrary motion: Representation and efficiency.
Compuler vision, graphics, and image process-
ing, Vol. 39, No. 2, pp. 167-185, 1987.

Preparata, Franco P. and Shamos, Michael
Ian. Computational geometry, an introduction.
Springer-Verlag, 1988.

Kitamura, Y., Bayle, M., Takemura, H., and K-
ishino, F. Generation of an octree from a poly-
hedral shape representation. In IEICE Confer-
ence 1994. D-604, 1994. (in Japanese).




