A 3/

ICAT '97

Implementation Notes of a VRML 2.0 Browser

Ning WU, Takami YASUDA" and Shigeki YOKOI™

*Graduate School of Human Informatics
Nagoya University
Furou Chyou, Chikusaku, Nagoya, 464-01 JAPAN
wuning@yokoi.gs. human.nagoya-u.ac.jp

** School of Informatics and Sciences
Nagoya University
Furou Chyou, Chikusaku, Nagoya, 464-01 JAPAN
yasuda@info.human.nagoya-u.ac.jp
yokoi@info. human.nagoya-u.ac.jp

Abstract

In this paper, we present some methods for
implementation of VRML 2 browser. Topics involved
are implementation of Event model, PROTO and

implementation of Java in the Script node.

Key words: Browser Implementation, Virtual Reality,
VRML

1. Introduction

Every successful industry must have some kind of
standard to exchange information. So do the field of
Virtual Reality. A standard to exchange VR
information is essential. VRML [1][2] is such a
standard. VRML stands for Virtual Reality Modeling
Language. It is a description language that is used to
publish 3D virtual world on the Internet. VRML 1 was
published in May 1995. Its ability is limited to the
description of static worlds. VRML 2 was finalized in
August 1996. It mainly extends VRML 1 in the area
of behavior -- sounds, moving objects, animations and
user interactions.

Developing a VRML 2 compliant browser is a
difficult job. There are many VRML 2 browsers being
developed [3][4][5]{6], but none of them is fully
compliant to the specification. The most frequent
postings on VRML mailing List are VRML 2 files that
do not work on current VRML 2 browsers. The
problem of incompatibility between different VRML
2 browsers may split the unity of VRML society and
seriously damage the standard’s future. In order to

-165-

come out with an optimized fully compliant reference
implementation, it is necessary to discuss various
aspects of the implementation details of VRML 2
browser.

In this paper, present some practical
implementation methods for the most difficult yet
basic aspects of VRML 2 browser. Topics involved

are implementation of Event model, PROTO and

w¢e

implementation of Java in Script node. They are
causing most compatibility problems. We have not
articles on the

found publicized papers or

implementation details of these areas.

Section 2 deals with implementation of VRML event
model. We show an internal data structure that can
implement the event model in VRML 2 specification
very efficiently. It supports all the features of VRML
2 such as event cascade, fan-in (multiple eventOut
routed to one eventln) and fan-out (one eventOut
routed to multiple eventOut) with the least overhead.

Section 3 deals with implementation of PROTO. We
propose a method that will solve nested PROTO
instantiation problem, default field value initialization
problem and DEF/USE pointer recovery problem
simultaneously. The method is based on object
persistence. It enables a browser developer to
manipulate PROTO node types in the same way as a
build-in node type.

Section 4 deals with implementation of Java in Script

node. We propose a method that requires no Java

Virtual Machine source code to implement the Java
Script node interface. The requirement of Java VM
source code is a major reason that Java did not
become the standard VRML script language.

2. Implementation of VRML event model

The most significant difference between VRML 1.0
and VRML 2.0 is that VRML 2.0 has behavior, which
means a VRML 2.0 world may have sound, moving
objects, animations and user interactions. Unlike
traditional procedure language that defines the
detailed flow of a behavior by procedure calling,
VRML is generally a descriptive language that only
describes what may behave in a Scene. (The VRML
Script nodes are based on procedure models. We think
that may be a drawback of VRML). The behavior data
flow in VRML is indicated by Event object generation
and Event cascades through eventOut, ROUTE and
eventIn[2].

Event Object

timestamp void *

eventOut Object

eventinList | Data Field

+ ROUTE
eventin *
ROUTE
eventin *
ROUTE
eventin *
y
eventin |« eventin
Node Objecti Node Object3
eventin
Node Object2

Fig.1: The relations between Event, eventOut, eventln
and ROUTE.

Most Events in a VRML world are generated by
Sensor nodes, Collision node or Script nodes. The
Events are generated because of time elapse, user
interaction or Event cascades. Once an Event is
generated in a node (which means the node must have
an eventOut field) and there is a ROUTE from the
eventOut to another node’s eventln, data exchange
happens, which may result in a behavior of the virtual
world.

In our implementation, Events and eventOuts are
treated as objects; eventIns are considered as object’s
member methods; ROUTEs are converted into
member method pointers during initialization. The
relations between Event, eventOut, eventln and
ROUTE are summarized in Fig. 1.

2.1 The structure of Event

An Event Object has two fields: a data field that
specifies the specific Event information and a field
that contains the timestamp the Event occurs. The
Event object may be used in the form of an Event
array, it is desirable to have a fix-sized Event object.
Because the Event information may vary in size from
a SFFloat to a MFString, we put a “void *” pointer in
the Event object. The pointer can be casted to a
specific field type at runtime. The timestamp may be
used to synchronize the Event cascade, when an
eventOut is routed to multiple eventlns. Subsequent
Event of an Event cascading has the same timestamp
of the initial one. It can also be used to stop Event
cascade looping as in the situation of Fig. 2:

| —
Node A Field a
v
Node B Field b
+
Node C Field c

I

|

Fig. 2: A legal usage of Event cascade that
may cause Event looping

If one wants to keep the value of the exposed fields a,
b, ¢ of objects A, B, C respectively always equal, the
most straightforward way is to ROUTE the three

-166-

fields together (an exposed field has the functionality
of both an eventOut and an eventIn). If one of a, b, ¢
is changed, the other two will also be changed by
Event cascade, and Event cascade looping can be
prevented by stopping the cascade when the second
Event with the same timestamp arrives.

2.2 The structure of eventOut, eventIln and
the representation of ROUTE

A VRML world consists of VRML node objects.

Some node objects contain data fields that are
eventOut objects. An eventOut Object has two fields:
a data field that contains a specific Event information
and an eventInList. The data field is the field that the
“void *” pointer in an Event object points to. The
eventInList contains the eventlns that are routed from
the eventOut.

An eventln is a member method of a node object. It
takes only one parameter: an Event object.

When a VRML file is processed, the ROUTE
statement is converted into items of eventInList in the
eventOut object that the ROUTE originated from. If
node A’s eventOut O is routed to node B’s eventln I,
O’s eventInList will contain an entry pointing to I.

2.3 How an Event go from eventOut through
routes into eventln

When a node generates an Event and sends the Event
to its eventOut, first, an Event object with the current
timestamp will be constructed. Then, the Event
object’s “void *” pointer will be set to the eventOut
object’s data field. Finally, for every entry in the
eventOut’s eventInList, the eventin member method
will be called with the Event object. Because the
specific Event information type is predefined in
VRML 2.0 specification, “void *” pointer of the Event
object can be converted into specific data type in the
eventln method, and data field of the eventOut can be
accessed through the pointer.

2.4 How Event cascade happens

In the procedure of eventln, new Event object can be
created based on the input Event. Because the eventln
is a member function of a node object, the newly
created Event can be sent to the node object’s
eventOut. If the eventOut has a ROUTE to another
node object’s eventln (the eventOut object’s
eventlnList is not empty), Event cascade happens.

2.5 Other notes

From the above description of the internal data
structure of VRML event model, the implementation
of fan-in (multiple eventOut routed to one eventln)
and fan-out (one eventOut routed to multiple
eventOut) is straightforward. Fan-in means eventln
method pointer can exist in more than one eventQOut
object’s eventInList, which is no problem; fan-out
means an eventOut object’s eventInList may contain
more than one eventln entry, which is why we put a
list there.

3. Implementation of PROTO

Introduction of PROTO is an important advantage of
VRML 2 over VRMLI. New functionality can be
introduced by defining a PROTO -- a user defined
node type that has the functionality of multiple build-
in nodes. A VRML 2 browser recognizes the PROTO
definition and treats an instantiated PROTO like an
ordinary build-in node. New primitives, components
such as NURBS surface can be defined. Many
disputes about whether a specific feature should be
added to VRML 2 ended because the feature can be
implemented by PROTO.

PROTO A

PROTO B Node A

PROTO D

PROTO C Node B

PROTOE

PROTO F

PROTO B Node A

PROTO D

Fig. 3: A nested PROTO may cause Event
looping

3.1 Difficulties of implementation

Browser must face difficulties of
implementing nested PROTO, default initial values of
fields and especially the DEF and USE pair within

PROTO definition.

developers

Nested PROTO means each PROTO definition may
contains multiple nodes, and a previously defined
PROTO can be used in a later PROTO definition just
like the build-in node, thus create a node hierarchy
that has to be reproduced during PROTO instantiation

(Fig. 3).

The standard build-in node’s default field value is
initialized in its default constructor. But if a node
becomes a sub node of a PROTO, its field’s default
initial value may be required to be different from the
value in the default constructor. Another way should
be found to fill in the default field values.

The DEF and USE pair is a one-object multi-use
scheme that is suitable to present objects with the
same physical attributes that differ only in space
position and/or orientation. One example is the four
tires of a car. Because the DEF and USE pair is
internally represented by multiple pointers pointing to
the same object, changing the appearance of one tire
will result in changes in all the four tires, which is
desirable. On the other hand, PROTO instantiation is
different. Each instance of a PROTO is itself an
object. Changing one instance’s attribute will not
affect the others. If use DEF and USE pair in the
PROTO definition, trying to reproduce the pointing
structure when PROTO is instantiated will be a
headache.

Because a browser has to treat a build-in node
instance and a PROTO node instance the same way, it
is desirable to have both kinds of instance instantiated
in the same way. A build-in node has a corresponding
C++ class. Making a new build-in node instance is as
simple as making a new C++ object using the
constructor. For a PROTO, an ordinary approach
might be the C++ copy constructor approach:
implementing a general PROTO class as some kind of
container; making a template PROTO object when
parsing the PROTO definition (so far so good); using
C++ copy constructor to reproduce the object (which
is very similar to new a build-in node) when there is a
request for PROTO instantiation. Unfortunately, this
approach simply does not work well.

-168-

X

. No pointer

Fig. 4:Incorrect PROTO instance copy with a
USE pointer by making a copy of the object the
pointer pointed to

Incorrect

pointer

Fig. 5:Incorrect PROTO instance copy with a
USE pointer by making a copy of the pointer itself

Let’s assume the PROTO to be a container node such
as Group. Because C++ class encapsulation, in the
situation of a well-designed C++ class library, the
container object cannot operate directly on the data
fields of the nodes in the container. During the copy
construction, it is certainly no problem to make a copy
of the container own data structure, but problems arise
when making copies of the contents in the container.

There are two sorts of contents in the container. One
is a real node object (a DEF), the other is a pointer to
the real node object (a USE). For the real object,
copying the object is easy. But for the pointer (the
USE), correct result cannot be obtained by either
making a copy of the object the pointer pointed to
(Fig. 4) or making a copy of the pointer itself (Fig. 5).
Correct result can only be obtained by tracing all the
DEF/USE pairs across container hierarchy, which will
break C++ encapsulation. It will become quite
annoying in the nested PROTO situation.

The above three problem may be solved by keeping
tracks of all the PROTO definition and parse the
PROTO definition tree every time when a PROTO is
instantiated, but we do not think it is an elegant way.

We solved the problem with a more general approach
that is based on object persistence.

3.2 Object persistence method

I read the concept of Object persistence in a book
about Object C published in 1986. While an object
has all the sorts of advantages such as inheritance,
polymorphous over an ordinary data structure, it has a
large drawback when the power switch of the
computer is turned off and the object is eliminated
from the memory: the object states will be lost. The
rebuilding of a specific object state from traditional
data files is tedious and slow. There is a way to save
objects’ state between working sessions, which is
called Object Persistence. The first C++ object
persistence implementation I have seen is Borland
C++ 3’s OWL library, which introduced TStreamble
class. Microsoft MFC combined the same concept in
its class library’s Serialize method.

The basic idea of Object persistence is to save and
restore the object’s memory image, which consists of
class type (the invisible C++ virtual table) and the
object’s data members. Ordinary data members can be
saved and recovered like a traditional data structure,
which one writes and reads sizeof(the data structure)
bytes to and from the disk file. The tricky part is data
members that hold pointers to other objects. Pointers
are memory addresses. It is not likely that an object
may have the same memory address in two different
working sessions. So it is meaningless to save and
restore the pointer’s value itself. There must be a
scheme to trace what object the pointer pointed to and
recover the pointer’s value according to the object’s

-169-

actual memory address. This is quite similar to our
DEF/USE pair nested PROTO
instantiation.

headache in

The instantiation of a PROTO is achieved by
serializing the template PROTO object into a memory
stream and reconstructing the instance from the
memory stream through Object persistence interface,
which ensure the pointing structure of the PROTO to
be persistent.

4. Implementation of Script node
4.1 What is Script node

The ability of describing behavior in VRML2.0 is the
most important improvement of VRML2.0 over
VRMLI1.0. However, if one studies the VRML2.0
specification, he can find out that the secret of
VRML2.0 behavior relies heavily on the existence of
Script node.

A script node is a VRML node containing programs
written in languages other than VRML (typically in
Java, or JavaScript). It can signify a change of scene
(virtual world) or user action, receive events from the
other part of scene, make decisions, influence other
part of the scene by sending Event out or more
directly by modifying field values of other nodes.

Most VRML 2.0 contents contain more than one
Script node. Unfortunately, VRML community did not
reached
standardization. There are two scripting language

agreement on scripting language
(Java and JavaScript) bindings in the Appendix, but
the VRML2.0 specification makes no requirement of
scripting language support for a VRML 2.0 browser.
This means that even if a browser is VRML 2.0
compatible, it is possible that 90% of the VRML 2.0
worlds published on the
incorrectly on the browser. In the real world today,
Sony Community Place [3], [4],
Dimension X [5] support Java as scripting language,
SGI Cosmoplayer support VRMLScript (a subset of
JavaScript)[6], [7]. SGI promised to support Java as
scripting language in the future. So Java will probably

become the standard scripting language of VRML.

Internet may behave

Worldview

Our browser support Java as its scripting language.
There is no publicly available material on how to
incorporate Java into VRML Script node. Here, we

present our implementation method.

42. Why using Java in Script node is
disputable

VRML society did not come out with a general
agreement on what should be the standard scripting
language. But during the discussion, Java did stand
out among the other suggestions. Java is secure,
powerful, platform neutral, well defined (have a
publicly available specification) and most importantly,
most web contents developers have already got
experience with Java by embedding Java applet into
HTML homepages. The only deficiency of Java
(prevent it from becoming the VRML scripting
language standard) is that the execution of a Java
program requires a Java VM (Java Virtual Machine).

The two most famous and widely available Java VMs
are Sun VM (used in Netscape Navigator) and
Microsoft VM (used in Microsoft Internet Explorer).
Because the security of Java relies highly on Java
VM, which requires significant amount of safety
verification, an acceptable third party free Java VM
implementation may not come into VRML scene in
the near future.

The implementation of Java in VRML script node
requires that the program runs in native code (VRML
browser) and byte codes run in Java VM (script) to
communicate with each other. It was assumed that the
communication between native code browser and Java
VM requires Java VM source code. At the time of
VRML 2.0 specification discussion, the majority of
VRML society knew nothing about workarounds of
the problem. So the VRML 2.0 specification comes
out without any requirement for a standard scripting
language.

Later, we found out that it is not necessary to have
source code access to use the Java VM in a VRML
browser. One can use the Java VM through its RNI
(Raw Native Interface). We suppose that the current
available VRML browsers with Java support used
similar approach.

4. 3 Incorporating Java in Script Node
4.3.1 Pre requirement

Our VRML browser was developed in Microsoft
Visual C++4.0 (later upgraded to 4.2) and Microsoft

-170-

SDK for Java 1.5 (It is said to be a superset of Sun
JDK 1.02).

The C header file “Native.h” which declaring the RNI,
import-library “msjava.lib” which gathers the export-
point of Microsoft VM and utility
“msjavah.exe” are included in the SDK [8].

Java

The details of VRML Script node semantics is shown

in [1], [2].

4.3.2Construct a Java object in native code

As stated in [1][2], each Script node has associated
programming language code (in our case, written in
Java), referenced by the ur/ field. How to download a
piece of Java byte codes (a Java class file) via a url is
beyond this paper’s scope (one easy way to download
a Java class is through Java programming!) and will
not be discussed here.

Once the Java class file is downloaded. An object of
the downloaded class can be constructed by calling
execute_java_constructor [8]. Every Java object in a
VRML file is constructed before users see anything,
even if the Java object is not at all used in the
displaying. It is because that the object’s initialize
method (see below) must be called before the
browser presents the world to the user and before any
events are processed by any nodes in the same VRML
file as the Script node containing this script [2]. It is
needless to say that the initialize method has to be
called gfter the object construction.

The execute java constructor example is shown in
Fig. 6.

4.3.3 Calling Java methods from native code

Basically, after the Java object construction, there are
three methods that will be called from native code.
The three methods are defined in Appendix B of [2].
They are public methods of class Scripr. The three
methods are:

initialize: is called before the browser presents the
world to the user and before any events are processed
by any nodes in the same VRML file as the Script
node containing this script.

shutdown: is called when the corresponding Script
node is deleted or the world containing the Script
node is unloaded or replaced by another world.

processEvents: is called when the script receives some
set of events.

The three methods can be called out by
execute_java_dynamic_method [8]. How to call the

three methods out is shown in Fig.6

4.3.4 Java class packages for VRML

The interfaces of Java class packages for VRML are
listed in the Appendix B of [2].

The classes are divided into three Java packages:
vrmi, vrml.field and vrml.node.

vrml package contains the basic classes like: Event,
Browser, Field, Mfield, ConstField ConstMField,
Base Node, etc.

vrml.field package contains specific field classes like:
SFColor, etc.

vrml.node package contains two classes: Node and
Script.

Most classes have a counterpart in native code. If the
native part of browser is developed in C++, their code
even looks very similar. The methods that can be
completely programmed in Java are quite simple. The
more difficult parts are those methods that calling a
native method or a Java method that declared to be
native and implemented in native code.

4.3.5 Using native code in Java program

For Microsoft Java VM, there are two methods to use
native code in Java program. One is through COM
(Component Object Model) interface, a typical
Microsoft technique with which a COM object may be
imported like an ordinary Java class. It will start an
endless dispute to argue about whether using
Microsoft limited techniques is right or not. But if one
develop Windows application only, it is not bad for
him to use COM, because he will have to use COM
some where in the program to get a Windows

compatible logo.

Our VRML browser used a more simple way of
calling native code: declaring a Java method in the
Java program as native, and implementing the Java
method in native code. A simple example is shown in
Fig.6.

Most of these Java methods related to native code

-171-

have the shape of setXXXXX or getXXXXX, which
writes or reads values in the data structure of native
code. The key of implementing these methods is the
data member (native_address) of Java class that holds
the class’s native counterpart’s memory address.

The procedure of creating a natively implemented
Java method is as follows:

First, define a class in Java, and add native keyword
into the required method’s declaration. Then, use Java
compiler (jvc) to compile the Java class. Next, use
utility msjavah to produce a C header file for use by
the native code from the compiled class file. Next,
implement the method in native code. There are a
couple of helper function/Macros in the native.h to
interpret and access the Java class data members.
Last, gather all these native implemented Java
methods in a DLL (Dynamic Linking Library). The
DLL can be linked into Java program at run time.

4.3.6 Linking the native methods into Java
program

The DLL produced in 4.3.4 can be linked into Java
program at run time by calling:

System.loadLibrary("vrmljavalib") ;

vrmljavalib is the DLL’s name. System.loadLibrary
need to and only need to be called once for every Java
VM session. There is no problem if Java methods
implemented in native code are loaded earlier than its
belonged class.

S5.Summary

In this paper, we presented the implementation detail
of our VRML 2 browser. We discussed the
implementation of Event model, PROTO and the
implementation of Java in the Script node. VRML
Browser development is one of several basic areas in
VRML research. We look forward to seeing more
publications on this area.

Acknowledgments

This research was supported in part by THE HORI
INFORMATION SCIENCE PROMOTION
FOUNDATION.

Ex 4.3.2, construct a Java object from native code

Ex 4.3.3, calling java methods in native code

public class SFFloat
{

int native_address;

public native void setValue(float f);

C:>jvc SFFloat.java

C:>msjavah SFFloat (Produce SFFloat.h)

#include "varargs.h"

#include "SFFloat.h"

{

*(float *)this->native_address=v;

/IThe implementation of SFFloat_setValue in SFFloat.c

HObject *phobj = execute_java_constructor(NULL, "AScript", NULL, "()");

execute_java_dynamic_method(NULL, phAScript, "initialize", "()V");
execute_java_dynamic_method(NULL, phAScript, "shutdown", "()V");
execute_java_dynamic_method(NULL, phAScript, "processEvents", "(I{Lvrml/Event)V",count, phEvent);

Ex4.3.5, using native code in Java program, a simplified version of class SFFloat

//The content of SFFloat.java, the field native_address will be set by native program during creation

(Compile the SFFloat class)

__declspec(dllexport) void _cdecl SFFloat_setValue (struct HSFFloat *this, float v)

Fig. 6: Examples of Java VM Raw Native Interface

References

[1] The Virtual Reality Modeling Language
Specification,

http://vrml.sgi.com/moving-worlds/spec/index.html

[2] Rikk Carey and Gavin Bell, The Annotated VRML97
Reference Manual, ADDISON-WESLEY
DEVELOPERS PRESS 1997

[3]1 SONY Community Place,
http://www.sonypic.com/vs/

[4] Worldview,
http://www.intervista.com/products/worldview/index.
html

[5] Dimension X (Microsoft),

http://www.microsoft.com/dimensionx/default.htm

-172-

[6] SGI Cosmo Player,
http://www.sgi.co.jp/ TEXT/Products/cosmo/player
[7)VRMLScript Parser and Implementation,
http://vrml.sgi.com/moving-worlds/spec/vrmlscript.zip

[81Microsoft SDK for Java 1.5

