
LIFE SPACIES II: from text to form on the
Internet using language as genetic code

Christa SOMMERER, Laurent MIGNONNEAU, Roberto LOPEZ-GULLIVER

ATR Media Integration and Communications Research Lab,
 2-2 Hikaridai, Seika-cho, Soraku-gun, 61902 Kyoto, JAPAN

 christa@mic.atr.co.jp

Abstract

We are artists working on the creation of interactive
computer systems that use the audiences’ participation as
essential input for the creation of image structures within
the systems [1]. In 1999 we created an interactive web
sites for the Internet called "Life Spacies II". This web
sites allow users on the Internet to write text messages
that are instantly translated into visual three-dimensional
forms. Our custom designed text-to-form editor takes the
letters, syntax and sequencing of a text message as
genetic code and translates them into three-dimensional
forms. As the text messages of the different users on the
Internet are usually unique and diverse, unique and
personal three-dimensional forms can be created by the
users.

Key words:

1. Introduction

“colorless green ideas sleep furiously”
(Noam Chomsky)

According to Noam Chomsky, human language
acquisition is based on a universal grammar that is
genetically embedded within the human mind of all
normal children, allowing them to learn their native
languages naturally and seemingly effortlessly. [2] It was
also Chomsky who coined the above phrase of “colorless
green ideas sleep furiously,” an expression that might
not make much logical sense to a more scientifically
oriented person, but does have quite a lot of meaning for
a more visual or art minded person. Though this sentence,
as Chomsky has shown, is grammatically correct, its
meaning cannot be grasped through logic alone. When
we hear this sentence for the first time we see pictures or
forms or shapes appearing in our minds. These forms are
vague, yet they are defined to a certain degree and can
certainly create visual sensations and emotions. Inspired
by Chomsky’s sentence and based on the idea of

translating words or sentences into visual forms, we
created an interactive systems for the Internet, called
"Life Spacies II".
This system consists of an Internet web page, that allows
users to write text messages into a text window.
Through our specifically designed text-to-form editor we
are able to translate these text messages into three-
dimensional visual forms and shapes. The following
chapters will describe the text-to-form editor in more
detail.

2. LIFE SPACIES - from text to form on the
Internet

Fig. 1 “Life Spacies” web site

ICAT '99

The "Life Spacies II" web page (Fig. 1) allows people
throughout the world to interact with the system. By
simply typing and sending an email message to the "Life
SpaciesII" web site (http://www.ntticc.or.jp/~lifespacies),
one can create an artificial three-dimensional creature.
As soon as the message is sent it creates a creature that
starts to live in the interaction environment at the ICC
Museum in Tokyo [3].

Fig. 2 “Life Spacies” Interaction Setup at the ICC Tokyo

The interaction setup consists of two independent
interaction sites (Fig. 2) that are linked together via a data
line, allowing visitors at remote locations to be displayed
and interact in the same virtual three-dimensional space.
On-site visitors can directly interact with the creatures
through touching and catching them. Once a creature is
caught by the visitor, it will clone itself. However, if two
remotely located people are in the same virtual space,
they can each catch a creature with their hands, which
causes these two creatures to mate and to create an
offspring by genetically exchanging the parents’ codes.

2.1. "Life Spacies’s" text-to-form editor

To create the creatures, we developed a special text-to-
form editor that enables us to translate the written text of
the text messages into the genetic code of a creature. The
text-to-form editor is based on the idea of linking the
characters and syntax of a text to specific parameters in
the creature’s design.

x

attachment point

Fig. 3 Creature with two bodies and one pair of limbs

The default form of a creature is a body composed of a
sphere consisting with 100 vertices, that is, 10 rings with
10 vertices each. All vertices can be modified in x, y and
z axes to stretch the sphere and create new body forms.
Several bodies can be attached to each other provided that
their attachment point is located on the x-axis. If the
attachment point is not on the x axis, a limb is created
instead of a body; this limb is copied and the copy is
attached at a position symmetric to the original position.
Figure 3 show a creature with two spheres as bodies and
one pair of limbs.
According to the sequencing of the characters in the text,
the parameters of x, y and z for each of the 100 vertices
can be stretched and scaled, the color values and texture
values for each body and limb can be modified, the
number of bodies and limbs can be changed and new
locations for attachment points of bodies and limbs can be
created. Since each of the vertex parameters is changeable
and all of the bodies and limbs can be changed as well,
about 50 different functions for the creature’s design
parameters are available. The design functions are
subsumed in a design function table (Fig. 4).

function1 stretch default body/limbs in x
function2 stretch default body/limbs in y
function3 stretch default body/limbs in z
function4 set the next stretch function to global
function5 set the next stretch function to a vertex point
function6 set the next stretch function to a ring
function7 create a new location for an attachment point
function8 copy a new location for an attachment point
function9 compose a new texture for body/limbs
function10 copy texture of body/limbs
function11 change parameters of RED in body/limbs texture
function12 change parameters of GREEN in body/limbs texture
function13 change parameters of BLUE in body/limbs texture
function14 change patterns of body/limbs texture
function15 exchange positions of bodies/limbs
function16 copy body/limbs
function17 create a new body/limbs
function18 add or replace some of the above functions
function19 randomize the next parameters
function20 copy parts of the previous operation
function21 modify life span (default is 24 hours)
function22 add the new parameter to previous parameter
function23 ignore the current parameter
function24 ignore the next parameter
function25 replace the previous parameter by new parameter
.............
function50

Fig. 4 “Life Spacies” design function table

Next, in translating the characters of the text message into
these design function values, we first assign an ASCII
value to each character. This is done according to the
standard ASCII table shown in Figure 5.

33 ! 34 " 35 # 36 $ 37 % 38 & 39 '
40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?64 @ 65
A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~

Fig. 5 ASCII table

Each character refers to an integer. We can now proceed
by assigning this value to a random seed function rseed.
In our text example from Figure 4, T of This has the
ASCII value 84, hence the assigned random seed function
for T becomes rseed(84). This random seed function now
defines an infinite sequence of linearly distributed
random numbers with a floating point precision of 4 bytes
(float values are between 0.0 and 1.0). These random
numbers for the first character of the word This will
become the actual values for the modification parameters
in the design function table. Note that the random number
we use is a so-called “pseudo random,” generated by an
algorithm with 48-bit precision, meaning that if the same
rseed is called once more, the same sequence of linearly
distributed random numbers will be called. Which of the
design functions in the design function table are actually
updated is determined by the following characters of the
text, i.e., his; we then assign their ASCII values (104 for
h, 105 for i, 115 for s ...), which again provide us with
random seed functions rseed(104), rseed(105), rseed(115).
These random seed functions are then used to update and
modify the corresponding design functions in the design
function look-up table, between design function1 and
function50. For example, by multiplying the first random
number of rseed(104) by 10, we get the integer that
assigns the amount of functions that will be updated.
Which of the 50 functions are precisely updated is
decided by the following random numbers of rseed(104)
(as there are 50 different functions available, the
following floats are multiplied by 50 to create integers).
Figure 5 shows in detail how the entire assignment of
random numbers to design functions operates. As
mentioned above, the actual float values for the update
parameters come from the random seed function of the
first character of the word, rseed(84). An example of the
entire procedure is given in Figure 6.

Example word: This

T => rseed(84) => {0.36784, 0.553688, 0.100701,...}
(actual values for the update parameters)

h => rseed(104) => {0.52244, 0.67612, 0.90101,...}
 # 0.52244 * 10 => get integer 5 => 5 different

functions are called within design function table

 # 0.67612 * 50 => get integer 33 => function 33

within design function table will be updated by
value 0.36784 from 1. value of rseed(84)

 # 0.90101 * 50 => get integer 45 => function 45
within design function table will be updated by
value 0.553688 from 2. value rseed(84)
........ until 5. value

Fig. 6 Example of assignment between random functions
and design functions

As explained earlier, the basic “module” is a sphere with
white default color and no texture. When messages are
sent, the incoming text modifies and “sculpts” this default
module by changing its form, size, color, texture, number
of bodies/limbs, copying parts and so forth. Depending on
the complexity of the text, the body and limbs of the
creature become increasingly shaped, modulated and
varied. As there is usually great variation among the texts
sent by different people, the creatures themselves also
vary greatly in appearance, thus providing a personal
creature for each author. Figure 7 shows an example of a
short and simple email message sent to the “Life Spacies”
web site.

Date: Sun, 01 Nov 1998 13:14:32 +0900
From: Christa Sommerer <christa@mic.atr.co.jp>
To: life@lc.ntticc.or.jp
CC: christa@mic.atr.co.jp
Subject: test creature1

This is a test creature.
Fig. 7 Example of email message to “Life Spacies"

2.2. Picture of the “Life Spacies” Creature

Fig. 8 Creature created by email in Fig. 7

As soon as this message is sent to the server in Tokyo,
the creature starts to live in its virtual environment and
the author of the text receives a picture of his or her
creature in return. Figure 8 shows an image of the
creature created by the text message of Fig. 7. Because
the text message was rather short, the corresponding
creature consists just of one body and one pair of limbs,
similar to the default case but with long limbs and a
heart-shaped body.

2.3. Variations in the Creature’s Design

By sending more complex messages with more characters,
words and varied syntax, it becomes possible to create
more elaborate creatures with more bodies, limbs and
variation in body form, texture, size and color. Figure 10
shows an example and Fig. 9 is the corresponding text
message.

Date: Sun, 01 Nov 1998 13:20:32 +0900
From: Christa Sommerer <christa@mic.atr.co.jp>
To: life@lc.ntticc.or.jp
CC: christa@mic.atr.co.jp
Subject: example #4

this is not a sentence, it is a creature, it is now in Tokyo, where
it lives.
it is a creature, this is not a sentence, where it lives, it is now in
Tokyo.
it is now in Tokyo, this is not a sentence, it is a creature, where
it lives.
where it lives, it is a creature, it is now in Tokyo, this is not a
sentence.

Fig. 9 Complex email message

Fig. 10 Creature created by complex email message

3. Behaviour of the Creatures

3.1. Energy and Speed

A creatures behaviour is basically dependent on two
paramters:
a) its Energy level (E)
b) its Speed (S) or ability to move
While the Energy level (E) is a value that constantly
changes as the creatures moves in its environment and
decreases by increased movement, the Speed (S) value is
designed by the creatures body physics. A creature with a
large body and small limbs will typically move slower
than a creature with a small body and long limbs.
Additionally the shape of the creatures body and limbs
have an influence on the ability to move. On the other
hand the Speed (S) value is decided at creation through
the text characters arrangement in the creatures genetic
code that is interpreted and translated by the design
function table as shown in Figure 4.

Speed (S): depends on creatures body and limb size
decides how fast the creature can move

Energy (E): E = 1 at birth
Speed (S) of movement reduces E
E < 0 creature becomes hungry
E > 0 creature can mate

Fig. 11 Creatures behaviour decision parameters

4. Interaction among Creatures

Based on how much Energy (E) a creature has at a given
moment and how fast it can move in the environment
(Speed (S)) the creature's interaction with other creatures
will be determined. If, for example, the creatures Energy

level (E) reaches a certain value of E < 0, the creature
becomes hungry and wants to eat. On the other hand, if
the Energy level has risen to E > 0 the creature wants to
mate with other creatures. Figure 12 shows this
relationship between energy levels, feeding and mating
behaviour.

Feeding: if E < 0 creature wants to eat text characters
it eats the same characters as its genetic code
("John" creature eats: "J', "o", "h", "n")

Mating: E > 0 creature wants to mate, if successful,
parents will exchange their genetic code
-> a child creature can be born

Evolution: Selection on faster creatures, as they can eat and
mate more frequently

Fig. 12 Creatures interaction parameters

4.1. Feeding

A creatures who's Energy level has risen to E < 0
becomes virtually hungry and aims to eat text characters
provided by the user through the text input editor of the
system. What kind of text characters are being released
depends solely on the users decision.
Creatures also have preferences for certain types of food,
the only eat text characters that are contained in their
genetic message. As an example, a creatures who's
genetic code is "John" will only eat "J', "o", "h", "n"
characters. By eating text characters the creature will
manage to add up a certain amount of energy and
eventually its Energy level can rise above E > 0 again.
However it might be necessary for the creature to eat
several text characters as the creatures often moves while
looking for text characters.

4.2. Mating

Given that a creature succeeded to add energy E > 0 it
will become a potential mating partner. It will now look
for a suitable mate, who's energy level also lays above 0.
The two potential parent creatures now will move
towards each other and try to collide. If successful, the
two parents exchange their genetic code through a cross-
over operation and, as a result, a child creature can be
born. This offspring creatures carries the genetic code of
its parents with some mutations. Figure 13 shows an
example of a mating process.

Example of Mating Process

Parent creature (P1) and (P2), child (C)
| area of cross-over
^ ... location of mutation

Parent Creatures P1 and P2

(P1) This is a creature, it lives in Tokyo.
 ^ | |

(P2) This creature is now living in Tokyo.
 | |
Child Creature C

(C) This is ancrea is now l lives in Toky.

Fig. 13 Mating process and birth of child creature

4.3. Growing and Death

A creatures life time is not pre-determined but influenced
by how much a creature eats. Through eating the creature
increases its body size until a maximum size of about four
times the original body size. On the other hand, a creature
will starve when it does not eat enough text characters
and ultimately it will die and sink to the ground.

5. Complex Interaction and Evolution

The constant movements, feeding mating and
reproduction activities of the creatures result in a complex
system of interactions that can display features of
artificial evolution with selection upon faster creatures.
Additionally, the users input decisions on how to write
the text messages and on how to feed the creatures also
adds constant change to the system. As a result, a
complex system is created that features complex
interactions between creatures and creatures and well as
users and creatures. Figure 14 shows a screen shot of
different creatures as they mate and feed on text
characters.

6. Conclusions

We have created an interactive systems that enables
Internet users to create artificial creatures from written
language. By using our text-to-form editors, we can treat
text messages as genetic code and translate the text’s
parameters, such as letters, syntax and sequencing of text,
into three-dimensional structures.
While various artists [5, 6, 7, 8] have been using the
Internet to create web-based interactive art works, "Life
SpaciesII" is the first systems to translate written text into
visual three-dimensional forms that can become alive.
Possible applications of this system outside the artistic
arena could include the encrypting of text messages into
images, or the creation of games for the entertainment
industry.

Fig. 14 Complex behaviour among creatures

7. References

[1] C. Sommerer, and L. Mignonneau, “The application
of artificial life to interactive computer installations,” In:
Artificial Life and Robotics Journal, Springer Verlag
Tokyo, Vol.2, No.4, 1998, pp. 151-156.

[2] N. Chomsky, Language and Mind, New York: Hbj
College & School Div, 1972.

[3] C. Sommerer, and L. Mignonneau, “Life Spacies,” In:
ICC Concept Book, NTT-ICC Tokyo, 1997, pp. 96 -101.

[4] C. Sommerer, and L. Mignonneau, “Life Spacies: a
genetic text-to-form editor on the Internet,” In:
Proceedings AROB 4th’99, Beppu, Oita, 1999, pp. 73-77.

[5] T. Anzai, and R. Nakamura, 1994, "RENGA,"
http://www.renga.com/

[6] M. Fujihata, 1996, "Light on the Net Project,"
http://www.flab.mag.keio.ac.jp/light/

[7] M. Amerika, 1997, "Gammatron,"
http://www.grammatron.com/

[8] K. Goldberg, 1998, "Memento Mori: an Interface to
the Earth," http://memento.ieor.berkeley.edu/

