
ICAT ’99

Representation of Force in Object Manipulation

Koichi Hirota∗, Masaki Hirayama∗, Atsuko Tanaka∗∗, Toyohisa Kaneko∗

∗Department of Information and Computer Sciences,
Toyohashi University of Technology

hirota@tutics.tut.ac.jp
∗∗Central Research and Development Laboratory,

OMRON Corporation

Abstract

Manipulation of objects is a most fundamental operation

in the virtual environment. In the computation of feed-

back force in object manipulation, we need to simulate

the status of contact between the user’s finger and the

object. In this paper, we propose a method to simulate

physical manipulation of objects with force feedback. The

interaction force is computed based on the constraint that

is caused by the object on the user’s finger.

Key words: physical simulation, manipulation, virtual

object, force feedback, virtual environment

1. Introduction

Manipulation of the object is a most fundamental op-

eration in the virtual environment [1]. Various approaches

have been proposed to implement manipulation. We can

categorize these approaches into gesture based, geometric,

and physical manipulations.

The gesture based manipulation is often employed for

rough handling of objects using glove type devices. In this

approach, the intention of the user to grasp or to release

is conducted to the system by gestures (i.e. the posture

of hands and fingers). However, it is difficult to apply this

approach for the precise manipulation using fingers.

In the geometric approach, collision between fingers

and the object is detected and the status of grasp and

release is determined based on the status of geometric

contact [2, 3]. In this approach, we need to artificially

define criteria to interpret whether the object is grasped

or not [4]. Also, we need to define the motion of the

object according to the motion of fingers while the ob-

ject is grasped. For example, the configuration of fingers

may change while grasping an object, and the position

and orientation of the object must be updated according

to the change. However, in spite that these criteria and

definitions have important effect on naturalness of manip-

ulation, the discussion on the issue is not made enough.

From the aspect of physical phenomenon, we can not

clearly define the status of grasp and release. When an ob-

ject is manipulated by a hand, the force appears between

the object and the hand or fingers, and the object moves

based on the dynamics. We are just regarding that an ob-

ject is grasped when the object moves with the hand. In

the physical approach, this physical phenomenon is sim-

ulated. A merit of this approach is that we can simulate

the slipping contact, which is frequently observed in real

manipulation. There is an investigation on the physically

based manipulation [5]. However, in the study, only ob-

jects of simple shapes such as sphere are dealt.

In both the geometric and physical approaches, it is

essentially important to haptically feedback the constraint

on the motion of fingers [6]. In the geometric approach,

such constraint has effect to avoid the change of finger

configuration. Also, in the physical approach, the feed-

back force informs the physical constraint directly to the

user.

Representation of contact force is one of most basic

issue in the study of haptic rendering[7]. For the com-

putation of contact force for haptic representation, the

idea of the god-object method[8, 9] is frequently used. In

the computation of interaction in virtual environment, we

usually define the model of user’s hands or fingers. How-

ever, since the user’s action is directly reflected on the

model, it is inevitable that the model violate constraints

defined in the environment. In the god-object method,

we define another model of user’s hands or fingers, and

simulate the constrained behavior of the model in the en-

vironment.

In the implementation of the god object method for

haptic interaction, we usually regard that the interaction

occurs on a haptic interface point (HIP). In this case, the

constrained motion of HIP is simulated by defining ideal

haptic interface point (IHIP). For example, even when

the HIP penetrates a surface, the IHIP is bound on the

surface. Also, in this approach, the interaction force on

the HIP is computed from the disparity between the HIP

and IHIP.

In this paper, we propose a method to simulate phys-

ical manipulation of objects with force feedback. The in-

teraction force is computed based on the constraint that

is caused by the object on the user’s finger. The behavior

of the object is simulated by solving the equation of mo-

tion. To compute the distribution of force on the surface

of fingers, we define plural HIPs on the surface. We ex-

pand the concept of the god-object method so that we can

simulate physical constraints during the spatial motion of

HIPs.

Table 1: State Transition

Before After
Tet. Sur. Edg. Ver. Out.

Tet. o o x x x

Sur. o o o x o

Edg. o o o x o

Ver. o o o o o

Out. x o x x o

(o: possible, x: impossible)

2. Simulation of Constraint

2.1 Object Model

The interaction force between the user’s finger and the

object is derived from physical constraints on the finger

caused by the object. Such physical constraint changes

according to the spatial position. For example, the air

around the object cause little constraint force except the

viscous drag, while the material of the object requires

larger force for the finger to enter into or move in the vol-

ume. To represent the spatial difference of the material,

we dived the space into tetrahedral cells, and defined the

property of materials on each cell. We also examined the

division of space by voxels or other polyhedra. However,

in the case of voxel model, it is a serious problem that the

boundary of the material becomes uneven. In the case of

polyhedron, the increase in the number of surface poly-

gons also increase the complexity of geometric computa-

tion. From the discussion, we applied the tetrahedron cell

that has surface polygons of minimum number.

2.2 Computation Algorithm

In the simulation, the HIP moves in the tetrahedron

model, and the constrained motion of the IHIP in the

model is simulated. The simulation algorithm consists of

both the computation of IHIP’s motion in a cell and the

transition of the constraint state among cells. The motion

of IHIP in a cell is defined by a function (i.e., motion

function). The function determines the position of IHIP

based on the position of HIP, material of the space, the

state of constraint (discussed below).

Since we assume that the material in each cell to be

homogeneous, the position of IHIP computed by the func-

tion is valid so long as the IHIP is in an identical cell.

However, if the IHIP step out of the cell, we need to

put back the IHIP on the boundary of the cell, and to

re-compute the IHIP position using the material of the

neighboring cell. If the IHIP can not enter the neighbor-

ing cell (i.e., the IHIP do not move from the boundary), we

need to explore the possibility that the IHIP moves con-

strained on the boundary surface. Similarly, it is possible

that the IHIP moves constrained on edges and vertices.

To systematically implement the change of the constraint

state, we introduce the concept of state transition. The

possible transition of state is summarized in Table 1.

Before describing the details of the state transition,

we declare the motion function as follows:

q
′ = move(q, con,p,pc, mat, matc, fric);

where p and q are the position of HIP and IHIP, respec-

tively. The constraint state of IHIP is passed to the func-

tion through con, which is one of tetrahedron, surface,

edge, vertex constraints (abbreviated to Tet, Sur, Edg,

V er, respectively). Also, mat indicate the material of the

space in which the IHIP moves. In the case where the

IHIP is constrained on the surface or edge, the IHIP tries

to move not toward the HIP but toward a point closest

to the HIP on the constraining plane or line, respectively.

Such a goal of the IHIP is passed to the function using

pc. Also, in this case, the IHIP travels on the boundary

of two or more different materials. For example, when

the user is tracing on the surface of an object, the IHIP

moves in the volume of air on the boundary between the

air and the object’s material. The material that cause

constraint on the IHIP is passed to the function through

matc. Finally, fric indicates the contact state, which is

used to simulate friction (discussed later).

This function is generally used to test if IHIP can move

under various constraint conditions. Using the motion

function, the transition from each state is computed as

follows:

(1) Tetrahedron Constraint

Firstly, we test if IHIP moves in the cell:

q
′ = move(q, T et,p,p, matp,−, fric);

where, matp indicates the material of the belonging cell.

If the resulting position q
′ is inside of the cell, the position

of IHIP is moved to q
′, and the constraint state is kept

unchanged.

If the resulting position q
′ step out of the cell, the

cross point on the surface of the cell is computed, position

of IHIP is moved to the cross point, and the constraint

state is changed to the constraint on the surface in the

present cell (i.e., the belonging cell).

(2) Surface Constraint

If the position of HIP is interior side of the surface

plane of the belonging cell, we test if the IHIP can move

into the cell:

q
′ = move(q, T et,p,p, matp,−, fric);

where matp is the material of the cell. If IHIP can move,

the position of IHIP is kept unchanged and the constraint

state is changed to the tetrahedron constraint in the present

cell.

Similarly, if the position of HIP is outer side of the

surface plane of the belonging cell, we test if the IHIP

can enter into the neighboring cell. If no cell is found

as a neighbor, the position of IHIP is kept unchanged

and the constraint state is changed to outside constraint.

Otherwise, the motion of IHIP into the neighboring cell

is tested:

q
′ = move(q, T et,p,p, matn,−, fric);

where matn indicate the material of the neighboring cell.

If IHIP can move, the position of IHIP is kept unchanged

and the constraint state is changed to the tetrahedral con-

straint in the neighboring cell.

If both of the above test fail, we test the motion of

IHIP on the surface plane:

q
′ = move(q, Sur,p,pf , matp, matn, fric);

where pf is the foot of the perpendicular from HIP to the

constraining surface plane. Also, matp and matn indicate

the material of the belonging and neighboring cells.

If the resulting q′ is inside of the triangle surface area,

the position of IHIP is moved to q
′ and the constraint

state is kept unchanged. If q′ step out of the triangle

area, the cross point on the boundary edge of the area is

computed, position of IHIP is moved to the cross point,

and the constraint state is changed to the constraint on

the edge in the present cell.

(3) Edge Constraint

Firstly, we test if IHIP can move toward HIP. For

this purpose, we find the cell in the orientation of HIP

from cells sharing the edge. If no cell is found, the posi-

tion of IHIP is kept unchanged and the constraint state

is changed to outside constraint. Otherwise (i.e., a cell in

the orientation of HIP is found), the motion of IHIP into

the cell is tested:

q
′ = move(q, T et,p,p, math,−, fric);

where math indicates the material of the cell found above.

If IHIP can move, the position of IHIP is kept unchanged

and the constraint state is changed to the tetrahedral con-

straint in the found cell.

If the test fail, we test the possibility to move into

other cells sharing the edge. In this case, the IHIP moves

along a boundary surface of cells sharing the edge. On

each of the boundary surfaces of each cell, we compute

pi as the foot of the perpendicular from the HIP on the

plane. If the foot is on a half-plane bounded by the edge,

we regard the pi as a valid goal of IHIP, and test if the

IHIP can move on the surface:

q
′ = move(q, Sur,p,pi, mati, matni, fric);

where mati and matni indicate the material of remak-

ing cell and the neighboring cell on the other side of the

boundary surface, respectively. Among all the cases where

the IHIP can move, we apply the case that maximize the

distance |pi − q| (i.e., the case where the orientation of

motion is closest to the orientation of HIP) as the result.

In this case, the position of IHIP is kept unchanged and

the constraint state is changed to the surface constraint

on the boundary surface in the applied cell.

Otherwise (i.e., the IHIP does not move in all of the

cases), the motion of IHIP on the edge is tested:

q
′ = move(q, Edg,p,pf , matp, math, fric);

where matp indicates the material of the present belong-

ing cell. If the resulting q
′ is inside of the edge (i.e., q′

do not step out of the end point), the position of IHIP is

moved to q
′ and the constraint state is kept unchanged.

If q′ step out of an end point, position of IHIP is moved

to the end point, and the constraint state is changed to

the constraint on the vertex in the belonging cell.

(4) Vertex Constraint

In the beginning, we test if IHIP can move toward

HIP. For this purpose, we find the cell in the orientation

of HIP from cells sharing the vertex. If no cell is found

in the orientation, the position of IHIP is kept unchanged

and the constraint state is changed to outside constraint.

Otherwise, the motion of IHIP into the found cell is tested:

q
′ = move(q, T et,p,p, math,−, fric);

where math indicates the material of the found cell. If

IHIP can move, the position of IHIP is kept unchanged

and the constraint state is changed to the tetrahedral con-

straint in the cell.

If the test fail, we test the possibility to move into

other cells sharing the vertex. In this case, the IHIP moves

along a boundary surface or an edge of cells sharing the

vertex.

On each of the boundary surfaces of each cell, we com-

pute the foot of the perpendicular from the HIP on the

plane (pi). If the foot is on a half-plane bounded by two

edges of the triangle surface sharing the vertex, we regard

pi as a valid goal, and test if the IHIP can move on the

surface:

q
′ = move(q, Sur,p,pi, mati, matni, fric);

where mati and matni indicate the material of remak-

ing cell and the neighboring cell on the other side of the

boundary surface. Also, on each of the boundary edges of

each cell, we compute the foot of the perpendicular from

the HIP on the edge line (pj). If the foot is on a half-line

bounded by the vertex, we regard pi as a valid goal, and

test if the IHIP can move on the edge:

q
′ = move(q, Edg,p,pfj , matj , math, fric);

where matj indicate the material of remaking cell. Among

all the cases where the IHIP can move, we apply the case

that maximize the distance |pi − q| or |pj − q| (i.e., the

case where the orientation of motion is closest to the ori-

entation of HIP) as the result. In this case, the posi-

tion of IHIP is kept unchanged and the constraint state is

changed to the surface or edge constraint on the boundary

surface or edge in the applied cell.

Otherwise (i.e., the IHIP does not move in all of the

cases), the position of IHIP and the constraint state is

kept unchanged.

(5) Outside

We test intersection between the trajectory of the HIP

and all of surface triangle planes of the model. The trajec-

tory is defined by linearly connecting the past and present

positions of the HIP. If a cross point is found, the posi-

tion of IHIP is moved to the cross point and the constraint

state is changed to surface constraint in the cell that owns

the surface triangle. Otherwise, the IHIP is moved to the

HIP and the constraint state is kept unchanged.

2.3 Definition of Motion Function

As is described above, the motion function defines the

rule of the IHIP’s motion. By changing the definition

of the function, various constraints on the IHIP is repre-

sented. A most simple geometric constraint is represented

by the definition as follows:

q
′ =




if mat = 0 :
pc

if mat = 1 :
q

(1)

According to the function, the IHIP moves freely in

material 0, while it never moves in material 1. Since the

test to enter into material 1 always fails, IHIP is con-

strained on the boundary, although it can move without

friction on the boundary.

If we define the force on the IHIP, it is possible to

represent physical constraint on the IHIP. Suppose the

force on the IHIP is defined by the following equation:

f = k(q − p). (2)

where k is a coefficient that is understood as the stiff-

ness of the finger. As is described above, it it a common

approach in previous studies to compute the interaction

force proportionally to the disparity between the HIP and

the IHIP. Based on this relationship, we can represent the

frictional force using the motion function as follows:

q
′ =




if mat = 0 :
p
′

if mat = 1 :


if k|pc − q| < F :
q

if k|pc − q| ≥ F :

pc + F
k

(q−pc)

|q−pc|

(3)

In material 1, the position of IHIP is kept unchanged if

the force affecting on IHIP is smaller than a given thresh-

old (F). Otherwise, the IHIP approaches to HIP until

the force becomes equal to the threshold. Consequently,

a constant frictional force is fed-back when IHIP is moving

in the material.

2.4 Computation Process

As is obvious from the state transition processes, the

motion of the IHIP from a cell to another neighboring

cell requires at least three transitions of state (e.g., from

tetrahedron constraint in a cell to surface constraint on

the boundary, to tetrahedron constraint of the neighbor-

ing cell on the boundary, and to the volume constraint in

the neighboring cell). To enable plural transition of state

in one cycle, the state transition is repeated for each IHIP

until both the constraint state and the position become

kept unchanged. At the end of each cycle, the flag on

the motion of each IHIP is updated. The flag indicates

whether the IHIP has been moved in the cycle or not.

Fig.1: Haptic Interface Device

Fig.2: Tetrahedral Elements in the Model.

The flag is passed to the motion function through fric

parameter.

Also, in the implementation discussed below, to re-

duce the computation time, the normal and orientation

vectors of all surfaces and edges are computed in advance.

Also, the information of neighboring cells and the table

of cells sharing vertices and edges are initially created.

2.5 Implementation

We implemented the algorithm in a virtual environ-

ment. We used a PC (Pentium Pro 200MHz×2, Windows

NT) for all of the computation, and two PHANToM force

feedback devices (SensAble Technologies)[10] for haptic

feedback (Figure 1). Also, we used the GHOST program-

ming library to control the device. The library provides

the function of executing haptic and visual processes con-

currently. It also schedules the execution of the haptic

process at every 1[ms].

Figure 2 shows an example of the structure of of tetra-

hedron cells, where inside and outside spaces of a spherical

object is divided into cells. The surface of the spherical

object consists of 80 and 320 triangle polygons, respec-

tively. The material of cells inside of the sphere is 1 and

and outside 0. We applied the motion functions defined

by Equation 1 and 3 on these two models. Figure 3 shows

the result of the constraint force computed by the pro-

posed algorithm, where fifty HIPs are placed on a line

Fig.3: Representation of Constraint Force.

Table 2: Computation Time of State Transition

Before After
Tet. Sur. Edg. Ver. Out.

Tet. 2.7 10.4 — — —

Sur. 0.6 2.6 7.2 — 0.5

Edg. 0.8 45.7 45.6 45.2 1.0

Ver. 4.0 207.7 209.3 194.4 6.2

Out. — 15.2 — — 20.9

(unit:µs)

with the interval of 1mm, and the simulation of constraint

is executed on each HIP. In this example, the coefficient

k is 0.1[N/mm]. Also, the parameter F in Equation 3 is

0.1[N].

We also measured the computation time of the pro-

posed algorithm. Table 2 shows the computation time of

all state transition. The computation time for the transi-

tion from the edge and the vertex state varies according

to the number of tetrahedron cells sharing the edge and

vertex, respectively. In the measurement, we supposed

that an edge is shared by twelve cells, and that a ver-

tex is shared by twenty cells. Since the computation time

increases almost linearly to the number of cells, we can

estimate the computation time even in the case where

larger number of cells are concerned. Also, the compu-

tation time for the transition from outside state depends

on the number of surface polygons in the model. In the

measurement, the number of the surface triangle is sup-

posed to be twelve, which is equal to the number of surface

when the model has a boundary of rectangular box. As is

observed from the result, the transition from nodes and

edges requires relatively large time.

It is an important feature of the proposed algorithm

that the computation time of state transition is indepen-

dent of the number of cells and nodes in the whole model.

The computation time depends on the number of bound-

aries of the cell that the IHIP passes in a cycle. In this

sense, the computation time increases proportionally to

the velocity of the user’s finger. In the feedback of force,

it is known that the update rate of force have serious ef-

fect on the sensation of force presented to the user[11]. In

case of PHANToM, it is recommended to keep the haptic

update rate to at least 1[kHz]. One of the worst case is

edge-node-edge transition while tracing a concave shape,

and the computation time required for the transition is

estimated to be about 300 [µs]. In a cycle time of 1[ms],

we can simulate the motion of one IHIP over three bound-

aries.

3. Object Manipulation

3.1 Representation of Friction

The friction on the surface has important effect on

the manipulation of objects. One of the most simple ap-

proximation of friction is defined by a model in which the

coefficients of static and kinetic frictions are defined in-

dependent of the velocity. To simulate the gripping force,

we define the friction using the model. The constraint on

the IHIP’s motion caused by the friction on the surface is

defined in a motion function as follows:

q
′ =




if con = Tet :
pc

if con �= Tet and matc = 1 :


if |fn| < µ|f t| :
q

if |fn| ≥ µ|f t| :

pc + µ|p− pc| q−pc
|q−pc|(

if fric = 0 : µ = µs

else : µ = µk

)
(4)

where fn and f t are normal and tangential components

of force, and they are computed as follows:

fn = k(pc − p), f t = k(pc − q). (5)

As is described above, fric indicates whether the IHIP is

moving in the model (fric = 1) or not (fric = 0). Also,

µs and µk are coefficients of static and kinetic frictions.

Figure 4 shows a result of representing friction using

Equation 4. In the figure, the tangent/normal ratio of

the force affecting on a IHIP is plotted. In the passage of

time, the state of friction changes form ’grip’ to constant

’slip’, and consequently, the ratio is changing from almost

1.0 (= µs) to 0.5 (= µk). Also, we can observe a kind of

stick-slip oscillation in the transition.

3.2 Computation of Distributed Force

It is difficult to compute the distribution of force on

the contact area between the finger and the object in real-

time. For the precise computation of the distributed force,

we need to define deformable model of the finger and to

simulate the deformation of the finger. On the other hand,

Fig.4: Representation of Friction

the distribution of force is essentially important in manip-

ulation. Because, in case of point contact model, we can

not affect torque around the normal axis of the contact

surface. To avoid the problem, we approximately com-

pute the distribution of force by defining multiple HIPs

on the surface of finger. On each HIP, the simulation of

constraint is performed independently.

3.3 Motion of Object

Based on the force obtained in the simulation of con-

straint, the motion of an object is computed using the

equations of motion. In our model, we define the shape

of a object in a local coordinate system (i.e., object co-

ordinate system), and describe the relationship between

object and world coordinate systems by a transformation

matrix. We also define a gravity-center coordinate sys-

tem, in which the equations of motion of the object is

described.

Firstly, the force and torque around the gravity center

of the object is computed. Next, the acceleration and an-

gular acceleration of the object is obtained using Newton’

and Eular’s equations of motion. The effect of gravity

and the effect of viscosity in translation and rotation are

also considered in this computation. The velocity, angu-

lar velocity, translation and rotation angle are obtained

by integrating the acceleration during each cycle time.

Finally, the transformation matrix is updated.

In advance to the simulation of motion (i.e., in the

initialization process), the position of gravity center, the

inertia tensor, and the mass of the object is computed

from the geometry and the material of the model. Also,

the viscosity in translation and rotation is artificially de-

termined.

3.4 Implementation

We implemented the algorithms of friction and mo-

tion in the virtual environment described above. In the

experiment, eleven HIPs are defined on each of the fin-

gertip (i.e., around the tip of stylus). The acceleration of

gravity is 0.98 [m/s2] downward, and the density of the

material 0 and 1 are 0 and 500 [kg/m3], respectively. Fig-

ure 5 shows an example of force distribution on the HIPs

while holding a rectangular object. In the figure, the grav-

ity center of the object is at the center of the rectangle

Fig.5: Manipulation of object using friction

shape, while the finger is holding the object near the edge.

The twisting moment to support the object horizontally

and the force to cancel the gravity are appearing on the

contact points as the tangent component of force vectors.

Although we have twenty two HIPs in the simulation, the

computation is completed almost within 1[ms], probably

because it scarcely occurs that the HIP is constrained on

nodes in the interaction with convex shapes.

Figure 6 shows examples of manipulating objects of

more complex shapes. The model consists of 1064 and

1534 cells inside and outside of the shape, respective, and

the surface consists of 232. triangle polygons. Also, in

this case, the computation is executed almost within a

cycle time of 1[ms].

4. Conclusion

In this paper, we proposed a method to physically

simulate the manipulating operation in the virtual envi-

ronment. The interaction force is computed by simulating

the constraint on HIPs caused by the object. By intro-

ducing physical laws in the simulation of IHIP’s motion,

the physically based force such as friction is represented.

One of the future work is to apply the proposed al-

gorithm to feedback tactile sensations on the surface of

fingertips. The proposed algorithm is capable of comput-

ing slip and grip state on each HIP, it is expected that

the information is effectively fed-back to the user if tac-

tile devices are integrate to the system.

Also we are interested in the manipulating operation

using a whole hand. Figure 7 shows our current proto-

type of manipulation environment, where the model of a

hand with three fingers are implemented using a spatial

position sensor (Fastrak, 3SPACE). For the computation

of constraints on whole hand, we need to represent the

whole shape of a hand by large number of HIPs.

References

1. Hirose, M.: Virtual Reality; Sangyo-tosho (1993).

Fig.6: Manipulation with force feedback

2. Kitamura, Y., Smith, A., Takemura, H. and Kishino,

F.: A Real-Time Algorithm for Accurate Collision

Detection for Deformable Polyhedral Objects; PRES-

ENCE , Vol. 7, No. 1, pp. 36–52 (1998).

3. Kitamura, Y., Higashi, T., Masaki, T., Kishino,

F., Virtual Chopsticks: Object Manipulation using

Multiple Exact Interactions; Proc. VR99, pp.198-203

(1999)

4. Funahashi, K., Yasuda, T., Yokoi, S., Toriwaki, J.,

A Model for Manipulation of Objects with Virtual

Hand in 3-D Virtual Space; Trans. IEICE, Vol. J81-

D-II, No. 5, pp.822-831 (1998)

5. Yoshikawa, T., Ueda, H., Display of 3-Dimensional

Operating Feel of Dynamic Virtual Objects with Fric-

tional Surface; Progress in Human Interface, Vol.2,

pp.49-54 (1995)

6. G. Burdea: Force & Touch Feedback for Virtual Re-

ality , A Wiley-Inter-Science Publication (1996).

7. Salisbury, K., Brock, D., Massie, T., Swarup, N.,

Zilles, C.: Haptic Rendering: Programing Touch In-

teraction With Virtual Objects; Proc. Symp. Interac-

tive 3D Graphics, pp.123-130 (1995).

8. Zilles, C. B. and Salisbury, J. K.: A Constraint-based

God-object Method For Haptic Display; IROS’95 ,

pp. 145–151 (1995).

Fig.7: Manipulation using a Hand

9. Ho, C., Basdogan, C. and Srinivasan, M. A.: Hap-

tic Rendering: Point- and Ray-Based Interactions;

PUG’97 (1997).

10. Massie, T. H.: Initial Haptic Explorations with the

Phantom: Virtual Touch Through Point Interaction;

Master’s thesis, M.I.T. (1996).

11. Shimoga, K.: A study of perceptual feedback issues

in dextrous tele-manipulation: Part I. Finger force

feedback; VRAIS’93 , pp. 263 – 270 (1993).

