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Abstract

A rigid transformation can be estimated by comparing

two laser scan data that are captured at different time in-

stances. Laser scan data consists of a number of distance

values, and usually be considered to be measured simulta-

neously. However for a certain type of laser scanner, it is

not true. Specifically each of the distance in a same data set

is measured in a sequential manner. Due to this reason,

constructing geometry of surroundings from the scanned

data includes a distortion in case that the scanning device

moves. In this paper, we suggest a methodology to compen-

sate the distortion by estimating the velocity of the scanning

device and transforming the scan data. We also present per-

formance and accuracy by demonstrating simulation and

real-world experiment results.

1. Introduction

Tracking is a key issue in many research areas such as

Virtual Reality, Augmented Reality and Robotics. 2D laser

scan sensor is one of the most widely used sensors for the

indoor position tracking. Scan matching problem in the

robotics area was defined as estimating rigid transformation

between two scan data to track the sensor’s motion[1]. And

one of the solutions is using ICP(Iterative Closest Point) al-

gorithm which was originally used for geometric alignment

of three-dimensional data from 3D scanner[2].

In this paper, we introduce an innovative method to track

the position of 2D laser scanning sensor by applying ICP

algorithm. Our contribution is to estimate the velocity of

scan device and compensate the distortion originated from

scanning time difference inside a set of scan data, so that

more accurate and up-to-date position can be tracked as a

result. Next section, we first summarize several previous

research related to scan matching problem. Next, we intro-

duce an original approach to estimating rigid transforma-

tion(Section 3), and present novel method with velocity up-

date(Section 4). After that, the original and the novel meth-

ods are compared in the simulated environment(Section 5)

and in the real environment(Section 6).

2. Related Works

The ICP algorithm has become the dominant method

for aligning three dimensional models based on the

geometry[3]. Rigid transformation between model and data

is acquired by iteratively finding the closest points. ICP al-

gorithm is also used for localization of robot by matching

current scan data with the scan data gained previously[1].

Javier Minguez, et al.[4] suggested a new distance metric

which is suitable for minimizing rotational and translational

error concurrently. Their new metric distance contributes

better convergence rate and more accurate correspondence

matching. A. Diosi and L. Kleeman[5] present improved

scan matching method named Polar Scan Matching(PSM).

Their work is based on the truth that laser scan data does not

use Cartesian coordinate system but polar coordinate sys-

tem natively. PSM improves processing speed and ability

to converge to a correct solution.

Previous researches [1][4][5] are limited to finding clos-

est point pairs effectively with the belief that scan data re-

flects surroundings correctly only with the white noise, al-

though it is not true. Scan data distortion problem was ad-

dressed by O. Bezet and V. Cherfaoui[6] in terms of time

error correction. Their solution was interpolating two val-

ues which are scanned at different frame. They assume that

at a same angle θ, the sensor measures the distance to the

same object. The drawback becomes great in a case that

laser scanner rotates and moves fast so that their assump-

tion becomes false.

3. Estimating Rigid Transformation using ICP

ICP starts with two scan data and an initial guess for

their relative rigid transformation, and iteratively refines

the transformation by repeatedly generating pairs of closest
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(a) Model (b) Data (c) Initial guess

(d) Closest points (e) First step of itera-

tion

(f) Final result

Figure 1. Data(b) iteratively converge to Model(a) through the pro-

cesses in (c), (d) and (e). Finally, translation vector p and rotation

matrix R are figured out with maximal correspondence(f).

points and minimizing an error metric[3] rather than find-

ing corresponding points at once. ICP algorithm converges

monotonically to the nearest local minimum of mean square

distance metric[7]. If the initial guess of transformation is

not close enough to ground truth, ICP algorithm will con-

verge to local minimum which is not global minimum. In

other word, if scanning device moves faster than a certain

threshold so that an initial guess is not reasonable, ICP al-

gorithm will fail to get right answer.

Data is scan data which is captured next to the Model.

The objective of ICP is to find rigid transformation that

transforms Data to be maximally overlaid to Model. Ob-

jective function is defined to minimize the equation (1)(xi

is a point in the Data, yi is a point in the Model and is a cor-

responding point to xi). By solving the objective function,

rotation matrix R and translation vector p is computed.

f(R, p) =
n

∑

i=1

‖Rxi + p − yi‖
2 (1)

T =

[

R p
0 1

]

(2)

Because ICP uses closest points instead of corresponding

points, the result comes from above process might be not

close to ground truth. By applying iterative manner, the

result converges to ground truth[7] as described in Figure 1.

Finally, transformation T = Tn...T1 is estimated through n

times repetition.

Model ≈ TnTn−1...T2T1 · Data (3)

(a) Ground truth

blue

red

(b) Captured data

(c) Estimation from distorted data (d) Estimation from refined data

Figure 2. (a) is a given environment. Blue points in (b) shows

distortion of scan data, and red points in (b) show compensated

scan data. Transformation which is estimated from distorted data

is shown in (c). Transformation which is estimated from compen-

sated data is shown in (d).

4. Novel Method with Velocity Update

4.1. Distortion Appeared in Scan Data

Distance values in a same scan data are not scanned at the

same time so that each distance value has significant time

difference in its nature. Laser scan data might be distorted

when scanning device moves during scanning. Figure 2 ex-

plains how scan data is distorted during scanning device

moves. Blue points at Figure 2(b) is raw scan data from

moving sensor. If we are trying to estimate the transforma-

tion without compensation, tracking is failed as shown in

Figure 2(c). By inversely distorting the raw data, refined

data(red points at Figure 2(b)) is obtained and motion is

tracked well as shown in Figure 2(d).

4.2. Velocity Estimation and Data Compensation

Datai is scan data at time ti. Time difference between

Datai and Datai−1 is ∆t. There exist reference frame

so that Datai has its own transformation to the reference

frame, Ti which is different from notation T in previous

section. Therefore, relation between Datai and Datai−1

is represented in the equation (4) when two scan data are

sorted along their correspondence. Vi is a velocity based on

the body coordinate frame of scanning device at time i.

Datai−1 = T−1
i−1 · Ti · Datai (4)

Velocity is assumed to be constant during a scanning time.

First, Vi is approximated from T−1
i−1Ti as shown in the equa-
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tion (5) which uses backward difference.

Vi = T−1
i · Ṫi ≈

1

∆t
log T−1

i−1Ti (5)

Datai consists of n points, and time difference between ad-

jacent points is ∆ts(=∆t/n). Each point belongs to Datai

has its own transformation T (ti + j∆ts) to reference frame

is illustrated in the equation (6).

T (ti + j∆ts) = Ti · e
j∆tsVi (6)

Reflecting the equation (6) to the equation (4), Datai is

converted into Data∗

i which is compensated scan data with

velocity as described in equation (7).

Data∗

i = {ej∆tsVi · pj | j = 0, ..., n} (7)

Through the equation (6) and (7), Datai is transformed to

be at the moment when the first point of Datai is scanned.

Tracked motion from the compensated data will always be

delayed, because the last point is scanned latest. By chang-

ing the reference time(ti) of Datai as a moment when the

last point is scanned, equation (6) is changed to

T (ti − (n − j)∆ts) = Ti · e
(n−j)∆ts(−Vi) (8)

with negative velocity. Equation (7) is changed to

Data∗

i = {e(n−j)∆ts(−Vi) · pj | j = 0, ..., n} (9)

As a result from the above processes, velocity(Vi) and com-

pensated data(Data∗

i ) are computed. However estimated Vi

is not close to ground truth, because Vi is computed from

distorted scan data. By iteratively update Vi and Data∗

i , Vi

will converge.

4.3. Accelerating Convergence Speed
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Figure 3. Number of iteration inside ICP decreases as the velocity

converges. This data is sampled from the simulation at Figure 4(c).

Compensation process requires nested loop outside ICP

iteration. Fortunately, convergence inside ICP algorithm

is accelerated dramatically by the reason of reusing previ-

ous result as an initial guess of current estimation, accord-

ingly total complexity of novel algorithm increases less than

twice of original one. Moreover, effective outlier rejection

is possible during the iteration of velocity update. At ev-

ery step of the iteration, the estimated rigid transformation

from the previous step is used to be an initial guess of cur-

rent step. By using the initial guess and sensor’s effective

range, the points which are included in Datai and expected

to have no corresponding point in Datai−1 can be rejected.

5. Simulation
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(d) Overlaid result

Figure 4. Scanning device moves along the arc line, equation (10)

and θ = 2π(1 − sinc(t/2)).
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Figure 5. Scanning device moves along the arc line, equation (10)

and θ = 2π(1 − sinc(t)).

The original and the novel algorithms are tested in the

fully simulated environment. Scanning sensor and environ-

ment are implemented virtually, and sensor’s motion is pre-

defined to compare with estimated trajectories. HOKUYO
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Original ICP Novel Method

R. Error T. Error R. Error T. Error

Test1 58.14◦ 2191mm 7.28◦ 177mm

Test2 79.98◦ 2014mm 17.06◦ 65mm

Test3 16.80◦ 1490mm 6.88◦ 408mm

Test4 54.59◦ 2942mm 3.28◦ 210mm

Table 1. Measured drift errors through the tests. (R. Error is rota-

tional error, T. Error is translational error)

URG04-LX[8] scan sensor’s functionality is implemented

with 4 meter range, 240◦ scan angle, 0.36◦ angular res-

olution and 100Hz sampling rate(10 scan data/sec). We

design a simple environment as shown in Figure 4(a).

Sensor moves along the arced line with parametric equa-

tion described in equation (10). Sensor in second sim-

ulation(Figure 5) moves twice faster than first simula-

tion(Figure 4).

T =





sin(θ) cos(θ) 1000 ∗ sin(θ)
−cos(θ) sin(θ) −1000 ∗ cos(θ)

0 0 1



 (10)

By comparing Figure 4 and 5, the faster sensor moves, the

more accurately novel algorithm tracks the motion than the

original algorithm.

6. Experiment

Experiments were made in office-size real environment

with real sensor. Algorithm and framework are imple-

mented in c++ language, and tested in laptop with Intel dual

core 2.0Gz CPU and HOKUYO URG04-LX sensor con-

nected via USB interface. Experiments are accomplished

by returning to start point and measuring the drift errors.

Drift error is accumulated and becomes lager as time passes

because motion is only tracked frame by frame. Sensor and

laptop are carried by cart and driven by person along the

predefined path.

Test1(Figure 6(a)) and Test2(Figure 6(b)) are tested

by going around a room while Test3(Figure 6(d)) and

Test4(Figure 6(d)) are tested by going straight, rotating and

coming back. The novel algorithm shows more stable track-

ing than the original algorithm as listed in Table 1.

7. Conclusion

We suggest an innovative motion tracking method from
planar laser scan data by updating the velocity and com-
pensating the scan data. Our contribution is that the dis-
tortion which comes from scanning time difference during
scanning is compensated by iteratively refining the velocity.
From the results of simulation and experiment, the novel
algorithm provides more accurate and delay-less position
tracking, and is more tolerant for the faster motion than the
original ICP algorithm.
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Figure 6. Experimental Results
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