
Abstract

Suturing is a basic operative procedure and real-time

interactive simulation of sutures is thus a key component in

virtual surgical simulator. Realistic simulation depends on

the modeling and collision management of sutures. This

paper reports a study on the use of bounding volume

hierarchies to detect collisions of one-dimensional objects.

Experiments are conducted to evaluate the performance of

bounding spheres, axis-aligned bounding boxes and

oriented bounding boxes. Among them, it is found that

axis-aligned bounding box is a more appropriate

abstraction of the straight line segments used for modeling

suture threads. While the primary motivation of the

investigation lies on the simulation of sutures, the finding is

applicable to one-dimensional elastic objects in general.

1. Introduction

Suturing and knot typing are fundamental tasks in

surgery. They are involved in various operations, from

abdominal wall closure, laparoscopic suturing, to accurate

suture placement through vessel wall in vascular surgery.

To master the skills, it is necessary to practice repeatedly

under different situations. A promising approach to

facilitate suturing education is to simulate the procedures

using computer graphics and virtual reality technology so

that training can be conducted conveniently at any time in

programmable virtual environments. The modeling and

simulation of sutures and knots play a major role in the

development process of virtual suturing simulators. The

work can be divided into suture modeling and collision

handing. The dynamics of sutures due to gravity, inter- or

intra-suture interactions, and other forces are taken into

account to compute and simulate their response. In

particular, efficient collision detection algorithms are

critical to real-time performance of the simulators. This

paper concerns the collision detection techniques that are

appropriate for the simulation of one-dimensional object

like sutures. Hierarchical approaches commonly used in

computer graphics, including bounding spheres,

axis-aligned bounding boxes (AABB) and oriented

bounding boxes (OBB), are investigated with experiments

conducted to evaluate their effectiveness specifically in

detecting the collision of one-dimensional objects.

In this paper, modeling of suture and the mathematical

formulation are first described in Section 2. Next, the

techniques used to handle the collisions of suture, i.e. the

detection of collisions and the responses to those detected

collisions, are reviewed in Section 3. Investigations on

various collision detection techniques are then discussed in

Section 4, where experiments are conducted to compare

their performance. Discussion and conclusion are given in

Section 5 and 6 respectively.

2. Suture modeling

A continuous suture thread can be considered a system

of discrete line segments connected by nodes. A purely

kinematic approach that models suture as a chain of mass

points connected by rigid links has been developed to

simulate the motion of a virtual thread [1]. The forces

between successive pairs of nodes are not considered

however. More realistic approaches based on Mass-Spring

Model (MSM) have been developed where elastic springs

are employed to join the discrete segments [2-4]. As shown

in Figure 1, a piece of suture is modeled by a number of

straight line segments connecting nodes ri. Each line

represents a spring. The spring force F
s on the segment

connecting ri and ri+1 is given by

Simulation of Sutures for Virtual Surgery Applications

Hans-Georg Menz Kup-Sze Choi
1

Ctr. for Int. Digital Health, School of Nursing

The Hong Kong Polytechnic University, Hong Kong
hskschoi@inet.polyu.edu.hk

Figure 1: Discretization of continuous thread into segments.

18th International Conference on Artificial Reality and Telexistence 2008

123
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

,0
1

0
1

1

1

1
siiii

ii

iis c
ii

rrrr
rr

rr
F rr (1)

where ri is the current position of the node and ri
0 is the

initial position, cs is the spring constant. The damping force

F
f exerted on the segment can be modeled as

f
f c

iiii 11
rrrr

vvF (2)

where cf is the damping constant and v is the velocity of

corresponding nodes. The resultant force Ft is the vector

sum of F
s and F

f and other external forces like gravity.

Taking into account the equilibrium of forces and energy

conservation, the forces have to be applied at both end

points of the spring, but in opposite directions, i.e.

iiii
rrrr FF

11

 (3)

The velocity and position of the nodes in the thread can be

obtained by solving Equation (4) and (5) with numerical

integration techniques, where mi is the mass of node ri and

h is the integration time step.

t

i

tht

m

h
ii

Fvv rr

 (4)

htt
i

ht
i

i

h rvrr (5)

This approach is straight forward and easy to implement for

one-dimensional object. However, twisting of thread

around the centerline is not considered and the

mathematical representation could be quite complicated

otherwise. Twisting can achieved by joining the nodes with

torsion springs [4, 5].

A a more elegant method is to model one-dimensional

object as a continuum by employing the Cosserat theory of

elasticity, which considers a piece of thread as a thin elastic

deformable object [6] and the orientation of each segment

is represented explicitly with quaternion. The discrete

potential and dissipation energies, both linear and angular,

are computed to determine the dynamic behavior of

threads [7].

3. Suture collision

Collision handling has been an active area in computer

graphics and many methods are available. While most of

them are generic and suitable for arbitrary settings, research

specific to the collision handling of simulated threads is

relatively few. An example is the work of Brown et al. [1]

who proposed specialized contact detection and

management approaches for real-time rope and knot-tying

simulation.

3.1. Detection of collisions

For the collision of virtual objects represented by

triangulated or tetrahedral meshes, it is necessary to

determine the contact point and penetration depth into a

triangle in order to detect collisions. In contrast, since the

primitives of suture thread can be simply considered as

straight line segments, it is appropriate to detect collision

by determining the distance between two lines segments,

which can be obtained readily by solving the parametric

equations of the corresponding line segments.

Real-time suturing simulation cannot afford to perform

one-to-one checking on every segments of simulated thread

for collisions. The process can be accelerated by employing

Bounding Volume Hierarchies (BVH) to abstract the

segments inside bounding volumes and arrange them with a

hierarchical tree structure of various levels of detail. The

process of collision detection begins by searching from a

rough approximation of the thread, recursively down

through the branches to a certain leaf that bounds the exact

segment where collision has occurred, if any. The

effectiveness of BVH on collision detection depends on the

structure of object and the shape of bounding volume. For

suture simulation, it is important to choose a proper

bounding volume that matches the segmented structure of

the discretized thread.

3.2. Response to collisions

After all collisions have been detected, the simulated

thread has to respond accordingly by displacing the

colliding segments in an autonomous manner. Here, a

discretized suture thread is considered as a chain of rigid

cylinders, each with certain radius and height. The

direction of separation is a key factor determining how the

collided threads are separated. It can be approximated by

the shortest vector distance between the collided segments

in the threads, which is indeed a coarse approximation and

might lead to strong artifacts. A better way is to determine

the relative velocity of the colliding segment, which would

just separate the segments exactly at the point where they

collide in the best case.

The interactions among collided threads can be

simulated by employing the penalty method [8] to apply

separation forces to the collided segments; or by using the

impulse-based method [9] to change their velocities

directly in order to move them apart. In the penalty method,

the magnitude of separation forces is usually calculated

based on the penetration depth into the collided segments.

A major problem here lies on the difficulty to estimate the

appropriate magnitude of the penalty forces so that they are

large enough to counteract all the forces exerted on a

collided segment. In some cases, it takes multiple time steps

to separate the collided threads. While the impulse-based

method is relatively more robust and stable than the penalty

method, it may not simulate threads in resting contact

properly due to the lack of analytical force model.

18th International Conference on Artificial Reality and Telexistence 2008

124
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

4. Performance evaluation

As discussed in Section 3.1, collision detection speed

depends on the structure of colliding object and the choice

of appropriate shape of bounding volume. In this paper,

three typical bounding volume hierarchies, including

bounding spheres, axis-aligned bounding boxes and

object-oriented bounding boxes, are investigated to study

their performance specifically in handling the collision

detection of one-dimensional threads. In all the simulation

results presented below, MSM was adopted to model suture

threads as a chain of mass points connected by elastic

springs. The mathematical formulation described in

Section 2 was followed. Implicit Euler method was

employed to solve for the positions and velocities of the

nodes during the simulation, i.e. Equation (4) and (5).

Penalty method was utilized to compute the response of the

collided threads. The simulations were implemented on an

Intel E6600 Core 2 Duo 2.4 GHz personal computer with 2

GB RAM.

In general, the whole BVH is updated at each simulation

step, which is computationally expensive for large

hierarchical trees and may involve unnecessary update to

some of the branches. In this regard, an selective update

method which modifies the parts of a hierarchical tree that

are relevant to the current step is adopted [10]. The method

requires each node in the tree to store the information about

the primitives it covers. If a bounding volume of a tree

intersects with a bounding volume of another tree, all

children in the next layer of the corresponding node are

updated, and thus only the relevant bounding volumes are

modified.

4.1. Bounding volume hierarchies

To study the performance of BVHs, experiments were

conducted to measure the time required to simulate the

collisions between two sets of parallel threads, with one set

placed underneath the other. The situation is depicted in

Figure 2. Both ends were fixed for the set of threads

underneath, while only one end was fixed for the set of

Figure 2: Simulated threads coming into contact. (a) With one

end fixed, the 2 threads above are set to fall under gravity by

releasing the other end. The threads then collide with the 3

threads underneath with both ends fixed. (b) Under the same

settings, the 5 threads above come into contact with the 5 threads

below.

(a)

(b)

Figure 3: Collision detection in a system involving a total of 400 (left) and 800 (right) segments for modeling simulated threads.

18th International Conference on Artificial Reality and Telexistence 2008

125
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

threads above and the other end was set to fall freely under

gravity. That is, the threads above would come into contact

with the threads below. The effect of the total primitive

count on the simulation complexity was investigated by

varying the number of threads involved in the experiment.

Here, each thread was modeled with 40 straight line

segments and different numbers of threads were allowed to

collide with each other. For example, simulation involving

a total of 400 segments was conducted by letting 5 threads

above to come into contact with another 5 threads below. It

was repeated with 10 threads colliding with another 10

threads to simulate the situation where 800 segments were

involved. Figure 3 shows the performance of the three

BVHs when the total number of primitives involved in the

simulation is 400 and 800 respectively. The results indicate

that among the three BVHs, collision detection handled

with AABBs performs better than that managed by

bounding spheres and OBBs, while the performance of the

latter two approaches is at similar levels.

With specific attention to bounding spheres and AABBs,

the corresponding number of collided segments at each

time step of the simulation was recorded for investigation.

From the measurement shown in Figure 4, it is noted that,

in some cases, the number of collided segments reaches a

maximum value and then returns to zero at the end of

simulation, while it stays at some non-zero values in other

cases. The former refers to the situation where the two set

of threads separate again other after having touched each

other; whereas the latter corresponds to the fact that the two

set of threads remains in contact at the end of simulation.

4.2. Knot formation

Besides, experiment was performed by using bounding

spheres and AABBs respectively to simulate the formation

of knot on a thread. The thread had been initially

configured so that a knot could be formed autonomously by

letting the thread falling freely in space under gravity. A

sequence of snapshots during the formation of knot is

shown in Figure 5(a). Simulation was performed by using a

thread modeled with 60 line segments. The timing

performance is shown in Figure 5(b). The result indicates

that the speed of simulation using AABBs for collision

detection is faster than collision detection using bounding

spheres, which agrees with the finding presented in the

previous sub-section. In both cases, the number of collided

primitives increases gradually at the beginning,

corresponding to the initial stages of knot formation where

self-collision is relatively few. The number then increases

more sharply at later stages when the knot is being formed

and the segments representing the knots collide among

themselves.

5. Discussion

Among the BVHs experimented for suture simulation,

collision test of bounding spheres is most convenient and

efficient. A leaf bounding sphere is simply defined by a

circumscribing sphere that touches the endpoints of a

segment and is centered at the mid-point of that segment.

Only one single test is required to check whether two

bounding spheres intersect, i.e. to test if the distance

between two spheres is less than the sum of their radii.

Despite the simplicity and efficiency, approximating

straight line segments with spheres is the worst case

scenario for this kind of bounding volume, leading to

frequent "false-positive" indications of segment collisions

although the bounding spheres do intersect between

themselves. This agrees with the finding shown in Figure 3

that bounding sphere hierarchy is not the fastest collision

detection approach for simulating virtual sutures.

Like bounding spheres, collision detection using AABBs

Figure 4: Number of primitives collided for a system containing 400 (left) and 800 (right) segments.

18th International Conference on Artificial Reality and Telexistence 2008

126
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

is also simple and efficient but the latter is a better

approximation to straight line segments (see the first row of

Figure 6). Aligned with the coordinate axes, AABBs are

further defined by having the endpoints of a segment

touching two diagonally opposite corners of an AABB

[11]. To check whether two AABBs intersect, it is

necessary to make six tests by comparing the corner

coordinates for the two AABBs. On the other hand, OBB

fits a line segment most tightly among the bounding

volumes used in the other BVHs (see the second row of

Figure 6). The update of hierarchical tree is, however,

complicated by the need to determine new box orientation

based on that of the parent and children OBBs.

Furthermore, the intersection test is also more complicated,

which is the generalization of the intersection test for

AABBs, e.g. Separating Axis Theorem [12]. It requires

fifteen tests for collision detection, involving 6 face

normals of OBBs and 9 cross products of the edge vectors.

Although OBBs provides the most accurate approximation

to the underlying thread, the intersection test and the update

process are more complex. On the other hand, from the

perspective of memory storage, six scalars are required to

define an AABB while fifteen scalars are used to represent

an OBB. Hence, OBB tree consumes more memory than

AABB tree for the same number of bounding volumes, and

AABB is advantageous over OBB in terms of memory

storage. From the experimental results and the analyses

discussed above, it is suggested that AABB is an optimal

solution to handle the collisions of one-dimensional suture

threads.

6. Conclusion

The paper concerns the simulation of suture threads for

virtual surgery application. After the discussions on the

modeling of one-dimensional objects, the collision

detection and response handling approaches, the paper

Figure 5: (a) Sequence of snapshots captured during the process of knot formation. (b) Timing performance of knot formation by using

bounding spheres and AABBs for collision detection.

(a)

(b)

18th International Conference on Artificial Reality and Telexistence 2008

127
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

focuses specifically on the study of collision detection

techniques that are suitable for suture thread simulation. In

particular, three kinds of BVHs – bounding spheres,

AABBs and OBBs – are investigated and compared in

order to evaluate their performance and efficiency.

Experimental results suggest that the use of AABBs is a

more appropriate approach for detecting the collision of

objects modeled with a chain of straight line segments.

Based on the finding on collision detection methods, a

virtual-reality based suturing training system is being

developed using a pair of haptic devices as user interface.

While the motivation of the study lies on the simulation of

sutures, the finding is applicable to one-dimensional elastic

objects in general.

Acknowledgement

This work was supported in part by the Research Grants

Council of the HKSAR (No. PolyU 5147/06E and PolyU

5145/05E). The authors would like to thank Dr. K. Sylvain

and Dr. A.W. Siu for their support to the projects.

References

[1] J. Brown, J.-C. Latombe, and K. Montgomery, "Real-time

knot-tying simulation," The Visual Computer, vol. 20, pp.

165-179, 2004.

[2] P. Marshall, S. Payandeh, and J. Dill, "Suturing for surface

meshes," presented at Proceedings of 2005 IEEE Conference

on Control Applications, 2005, CCA 2005, pp. 31-36, 2005.

[3] J. Phillips, A. Ladd, and L. E. Kavraki, "Simulated knot

tying," presented at IEEE International Conference on

Robotics and Automation 2002, ICRA '02, pp. 841-846

vol.1, 2002.

[4] F. Wang, E. Burdet, A. Dhanik, T. Poston, and C. L. Teo,

"Dynamic thread for real-time knot-tying," presented at First

Joint Eurohaptics Conference, 2005 and Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator

Systems, 2005, pp. 507-508, 2005.

[5] F. Wang, E. Burdet, R. Vuillemin, and H. Bleuler,

"Knot-tying with Visual and Force Feedback for VR

Laparoscopic Training," presented at 27th Annual

International Conference of the Engineering in Medicine and

Biology Society, 2005, IEEE-EMBS 2005. , pp. 5778-5781,

2005.

[6] D. K. Pai, "STRANDS: Interactive Simulation of Thin Solids

using Cosserat Models," Computer Graphics Forum, vol. 21,

pp. 347-352, 2002.

[7] J. Spillmann and M. Teschner, "CORDE: Cosserat Rod

Elements for the Dynamic Simulation of One-Dimensional

Elastic Objects," presented at Proc. ACM SIGGRAPH, pp.

209-217, 2007.

[8] J. Lenoir, P. Meseure, L. Grisoni, and C. Chaillou, "Surgical

Thread Simulation," presented at Proceedings of ESAIM'02,

Modelling and Simulation for Computer-aided Medicine and

Surgery, pp. 102-107, 2002.

[9] J. Bender and A. Schmitt, "Constraint-based collision and

contact handling using impulses," presented at Proceedings

of the 19th international conference on computer animation

and social agents, pp. 3-11, 2006.

[10] T. Larsson and T. Akenine-Möller, "A dynamic bounding

volume hierarchy for generalized collision detection,"

Computers & Graphics, vol. 30, pp. 450-459, 2006.

[11] G. v. d. Bergen, "Efficient collision detection of complex

deformable models using AABB trees," J. Graph. Tools, vol.

2, pp. 1-13, 1997.

[12] S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree: A

Hierarchical Structure for Rapid Interference Detection,"

Computer Graphics, vol. 30, pp. 171-180, 1996.

Figure 6: Using AABB (top row) and OBB (bottom row) to detect collision of simulated thread. The root and the leaf boxes are shown

on the left and right column respectively.

18th International Conference on Artificial Reality and Telexistence 2008

128
ICAT 2008
Dec. 1-3, Yokohama, Japan
ISSN: 1345-1278

