
Abstract

Suturing is a basic operative procedure and real-time 

interactive simulation of sutures is thus a key component in 

virtual surgical simulator. Realistic simulation depends on 

the modeling and collision management of sutures. This 

paper reports a study on the use of bounding volume 

hierarchies to detect collisions of one-dimensional objects. 

Experiments are conducted to evaluate the performance of 

bounding spheres, axis-aligned bounding boxes and 

oriented bounding boxes. Among them, it is found that 

axis-aligned bounding box is a more appropriate 

abstraction of the straight line segments used for modeling 

suture threads. While the primary motivation of the 

investigation lies on the simulation of sutures, the finding is 

applicable to one-dimensional elastic objects in general. 

1. Introduction

Suturing and knot typing are fundamental tasks in 

surgery. They are involved in various operations, from 

abdominal wall closure, laparoscopic suturing, to accurate 

suture placement through vessel wall in vascular surgery. 

To master the skills, it is necessary to practice repeatedly 

under different situations. A promising approach to 

facilitate suturing education is to simulate the procedures 

using computer graphics and virtual reality technology so 

that training can be conducted conveniently at any time in 

programmable virtual environments. The modeling and 

simulation of sutures and knots play a major role in the 

development process of virtual suturing simulators. The 

work can be divided into suture modeling and collision 

handing. The dynamics of sutures due to gravity, inter- or 

intra-suture interactions, and other forces are taken into 

account to compute and simulate their response. In 

particular, efficient collision detection algorithms are 

critical to real-time performance of the simulators. This 

paper concerns the collision detection techniques that are 

appropriate for the simulation of one-dimensional object 

like sutures. Hierarchical approaches commonly used in 

computer graphics, including bounding spheres, 

axis-aligned bounding boxes (AABB) and oriented 

bounding boxes (OBB), are investigated with experiments 

conducted to evaluate their effectiveness specifically in 

detecting the collision of one-dimensional objects.  

In this paper, modeling of suture and the mathematical 

formulation are first described in Section 2. Next, the 

techniques used to handle the collisions of suture, i.e. the 

detection of collisions and the responses to those detected 

collisions, are reviewed in Section 3. Investigations on 

various collision detection techniques are then discussed in 

Section 4, where experiments are conducted to compare 

their performance. Discussion and conclusion are given in 

Section 5 and 6 respectively. 

2. Suture modeling 

A continuous suture thread can be considered a system 

of discrete line segments connected by nodes. A purely 

kinematic approach that models suture as a chain of mass 

points connected by rigid links has been developed to 

simulate the motion of a virtual thread [1]. The forces 

between successive pairs of nodes are not considered 

however. More realistic approaches based on Mass-Spring 

Model (MSM) have been developed where elastic springs 

are employed to join the discrete segments [2-4]. As shown 

in Figure 1, a piece of suture is modeled by a number of 

straight line segments connecting nodes ri. Each line 

represents a spring. The spring force F
s on the segment 

connecting ri and ri+1 is given by 
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Figure 1: Discretization of continuous thread into segments.
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where ri is the current position of the node and ri
0 is the 

initial position, cs is the spring constant. The damping force 

F
f exerted on the segment can be modeled as  
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where cf is the damping constant and v is the velocity of 

corresponding nodes. The resultant force Ft is the vector 

sum of F
s and F

f and other external forces like gravity. 

Taking into account the equilibrium of forces and energy 

conservation, the forces have to be applied at both end 

points of the spring, but in opposite directions, i.e.  
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The velocity and position of the nodes in the thread can be 

obtained by solving Equation (4) and (5) with numerical 

integration techniques, where mi is the mass of node ri and 

h is the integration time step. 
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This approach is straight forward and easy to implement for 

one-dimensional object. However, twisting of thread 

around the centerline is not considered and the 

mathematical representation could be quite complicated 

otherwise. Twisting can achieved by joining the nodes with 

torsion springs [4, 5].  

A a more elegant method is to model one-dimensional 

object as a continuum by employing the Cosserat theory of 

elasticity, which considers a piece of thread as a thin elastic 

deformable object [6] and the orientation of each segment 

is represented explicitly with quaternion. The discrete 

potential and dissipation energies, both linear and angular, 

are computed to determine the dynamic behavior of 

threads [7]. 

3. Suture collision 

Collision handling has been an active area in computer 

graphics and many methods are available. While most of 

them are generic and suitable for arbitrary settings, research 

specific to the collision handling of simulated threads is 

relatively few. An example is the work of Brown et al. [1] 

who proposed specialized contact detection and 

management approaches for real-time rope and knot-tying 

simulation. 

3.1. Detection of collisions 

For the collision of virtual objects represented by 

triangulated or tetrahedral meshes, it is necessary to 

determine the contact point and penetration depth into a 

triangle in order to detect collisions. In contrast, since the 

primitives of suture thread can be simply considered as 

straight line segments, it is appropriate to detect collision 

by determining the distance between two lines segments, 

which can be obtained readily by solving the parametric 

equations of the corresponding line segments.  

Real-time suturing simulation cannot afford to perform 

one-to-one checking on every segments of simulated thread 

for collisions. The process can be accelerated by employing 

Bounding Volume Hierarchies (BVH) to abstract the 

segments inside bounding volumes and arrange them with a 

hierarchical tree structure of various levels of detail. The 

process of collision detection begins by searching from a 

rough approximation of the thread, recursively down 

through the branches to a certain leaf that bounds the exact 

segment where collision has occurred, if any. The 

effectiveness of BVH on collision detection depends on the 

structure of object and the shape of bounding volume.  For 

suture simulation, it is important to choose a proper 

bounding volume that matches the segmented structure of 

the discretized thread. 

3.2. Response to collisions 

After all collisions have been detected, the simulated 

thread has to respond accordingly by displacing the 

colliding segments in an autonomous manner. Here, a 

discretized suture thread is considered as a chain of rigid 

cylinders, each with certain radius and height. The 

direction of separation is a key factor determining how the 

collided threads are separated. It can be approximated by 

the shortest vector distance between the collided segments 

in the threads, which is indeed a coarse approximation and 

might lead to strong artifacts.  A better way is to determine 

the relative velocity of the colliding segment, which would 

just separate the segments exactly at the point where they 

collide in the best case. 

The interactions among collided threads can be 

simulated by employing the penalty method [8] to apply 

separation forces to the collided segments; or by using the 

impulse-based method [9] to change their velocities 

directly in order to move them apart. In the penalty method, 

the magnitude of separation forces is usually calculated 

based on the penetration depth into the collided segments. 

A major problem here lies on the difficulty to estimate the 

appropriate magnitude of the penalty forces so that they are 

large enough to counteract all the forces exerted on a 

collided segment. In some cases, it takes multiple time steps 

to separate the collided threads. While the impulse-based 

method is relatively more robust and stable than the penalty 

method, it may not simulate threads in resting contact 

properly due to the lack of analytical force model. 
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4. Performance evaluation 

As discussed in Section 3.1, collision detection speed 

depends on the structure of colliding object and the choice 

of appropriate shape of bounding volume. In this paper, 

three typical bounding volume hierarchies, including 

bounding spheres, axis-aligned bounding boxes and 

object-oriented bounding boxes, are investigated to study 

their performance specifically in handling the collision 

detection of one-dimensional threads. In all the simulation 

results presented below, MSM was adopted to model suture 

threads as a chain of mass points connected by elastic 

springs. The mathematical formulation described in 

Section 2 was followed. Implicit Euler method was 

employed to solve for the positions and velocities of the 

nodes during the simulation, i.e. Equation (4) and (5). 

Penalty method was utilized to compute the response of the 

collided threads. The simulations were implemented on an 

Intel E6600 Core 2 Duo 2.4 GHz personal computer with 2 

GB RAM. 

In general, the whole BVH is updated at each simulation 

step, which is computationally expensive for large 

hierarchical trees and may involve unnecessary update to 

some of the branches. In this regard, an selective update 

method which modifies the parts of a hierarchical tree that 

are relevant to the current step is adopted [10]. The method 

requires each node in the tree to store the information about 

the primitives it covers. If a bounding volume of a tree 

intersects with a bounding volume of another tree, all 

children in the next layer of the corresponding node are 

updated, and thus only the relevant bounding volumes are 

modified.  

4.1. Bounding volume hierarchies 

To study the performance of BVHs, experiments were 

conducted to measure the time required to simulate the 

collisions between two sets of parallel threads, with one set 

placed underneath the other. The situation is depicted in 

Figure 2. Both ends were fixed for the set of threads 

underneath, while only one end was fixed for the set of 

Figure 2: Simulated threads coming into contact. (a) With one 

end fixed, the 2 threads above are set to fall under gravity by 

releasing the other end. The threads then collide with the 3 

threads underneath with both ends fixed. (b) Under the same 

settings, the 5 threads above come into contact with the 5 threads 

below.

(a)

(b)

Figure 3: Collision detection in a system involving a total of 400 (left) and 800 (right) segments for modeling simulated threads.
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threads above and the other end was set to fall freely under 

gravity. That is, the threads above would come into contact 

with the threads below. The effect of the total primitive 

count on the simulation complexity was investigated by 

varying the number of threads involved in the experiment. 

Here, each thread was modeled with 40 straight line 

segments and different numbers of threads were allowed to 

collide with each other. For example, simulation involving 

a total of 400 segments was conducted by letting 5 threads 

above to come into contact with another 5 threads below. It 

was repeated with 10 threads colliding with another 10 

threads to simulate the situation where 800 segments were 

involved. Figure 3 shows the performance of the three 

BVHs when the total number of primitives involved in the 

simulation is 400 and 800 respectively. The results indicate 

that among the three BVHs, collision detection handled 

with AABBs performs better than that managed by 

bounding spheres and OBBs, while the performance of the 

latter two approaches is at similar levels.  

With specific attention to bounding spheres and AABBs, 

the corresponding number of collided segments at each 

time step of the simulation was recorded for investigation. 

From the measurement shown in Figure 4, it is noted that, 

in some cases, the number of collided segments reaches a 

maximum value and then returns to zero at the end of 

simulation, while it stays at some non-zero values in other 

cases. The former refers to the situation where the two set 

of threads separate again other after having touched each 

other; whereas the latter corresponds to the fact that the two 

set of threads remains in contact at the end of simulation. 

4.2. Knot formation 

Besides, experiment was performed by using bounding 

spheres and AABBs respectively to simulate the formation 

of knot on a thread. The thread had been initially 

configured so that a knot could be formed autonomously by 

letting the thread falling freely in space under gravity. A 

sequence of snapshots during the formation of knot is 

shown in Figure 5(a). Simulation was performed by using a 

thread modeled with 60 line segments. The timing 

performance is shown in Figure 5(b). The result indicates 

that the speed of simulation using AABBs for collision 

detection is faster than collision detection using bounding 

spheres, which agrees with the finding presented in the 

previous sub-section. In both cases, the number of collided 

primitives increases gradually at the beginning, 

corresponding to the initial stages of knot formation where 

self-collision is relatively few. The number then increases 

more sharply at later stages when the knot is being formed 

and the segments representing the knots collide among 

themselves. 

5. Discussion

Among the BVHs experimented for suture simulation, 

collision test of bounding spheres is most convenient and 

efficient. A leaf bounding sphere is simply defined by a 

circumscribing sphere that touches the endpoints of a 

segment and is centered at the mid-point of that segment. 

Only one single test is required to check whether two 

bounding spheres intersect, i.e. to test if the distance 

between two spheres is less than the sum of their radii. 

Despite the simplicity and efficiency, approximating 

straight line segments with spheres is the worst case 

scenario for this kind of bounding volume, leading to 

frequent "false-positive" indications of segment collisions 

although the bounding spheres do intersect between 

themselves. This agrees with the finding shown in Figure 3 

that bounding sphere hierarchy is not the fastest collision 

detection approach for simulating virtual sutures. 

Like bounding spheres, collision detection using AABBs 

Figure 4: Number of primitives collided for a system containing 400 (left) and 800 (right) segments.
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is also simple and efficient but the latter is a better 

approximation to straight line segments (see the first row of 

Figure 6). Aligned with the coordinate axes, AABBs are 

further defined by having the endpoints of a segment 

touching two diagonally opposite corners of an AABB 

[11]. To check whether two AABBs intersect, it is 

necessary to make six tests by comparing the corner 

coordinates for the two AABBs. On the other hand, OBB 

fits a line segment most tightly among the bounding 

volumes used in the other BVHs (see the second row of 

Figure 6). The update of hierarchical tree is, however, 

complicated by the need to determine new box orientation 

based on that of the parent and children OBBs. 

Furthermore, the intersection test is also more complicated, 

which is the generalization of the intersection test for 

AABBs, e.g. Separating Axis Theorem [12]. It requires 

fifteen tests for collision detection, involving 6 face 

normals of OBBs and 9 cross products of the edge vectors. 

Although OBBs provides the most accurate approximation 

to the underlying thread, the intersection test and the update 

process are more complex. On the other hand, from the 

perspective of memory storage, six scalars are required to 

define an AABB while fifteen scalars are used to represent 

an OBB. Hence, OBB tree consumes more memory than 

AABB tree for the same number of bounding volumes, and 

AABB is advantageous over OBB in terms of memory 

storage. From the experimental results and the analyses 

discussed above, it is suggested that AABB is an optimal 

solution to handle the collisions of one-dimensional suture 

threads.

6. Conclusion

The paper concerns the simulation of suture threads for 

virtual surgery application. After the discussions on the 

modeling of one-dimensional objects, the collision 

detection and response handling approaches, the paper 

Figure 5: (a) Sequence of snapshots captured during the process of knot formation. (b) Timing performance of knot formation by using

bounding spheres and AABBs for collision detection.

(a)

(b)
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focuses specifically on the study of collision detection 

techniques that are suitable for suture thread simulation. In 

particular, three kinds of BVHs – bounding spheres, 

AABBs and OBBs – are investigated and compared in 

order to evaluate their performance and efficiency. 

Experimental results suggest that the use of AABBs is a 

more appropriate approach for detecting the collision of 

objects modeled with a chain of straight line segments. 

Based on the finding on collision detection methods, a 

virtual-reality based suturing training system is being 

developed using a pair of haptic devices as user interface. 

While the motivation of the study lies on the simulation of 

sutures, the finding is applicable to one-dimensional elastic 

objects in general. 
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