

 1

Fast and Accurate Spacio-temporal Intersection
Detection with the GJK Algorithm

Kevin Vlack, Susumu Tachi
University of Tokyo, Graduate School of Information Science and Technology

Department of Information Physics and Computing
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

vlack@star.t.u-tokyo.ac.jp, tachi@star.t.u-tokyo.ac.jp

Abstract
This paper discusses an extrusion technique to quickly
and robustly tackle the four-dimensional problem of
spacio-temporal intersection detection for rigid bodies
with arbitrary motion. We combine the GJK algorithm
with Brent’s method to determine non-collision or time-
of-impact (TOI) for an object pair over a complete time
interval. Experimental results show this method capable
of supporting accurate rigid body simulation of large
scale and highly dynamic environments at interactive
frame rates on a common PC.

Key words: collision detection, GJK algorithm,
extrusion, rigid body simulation, real-time animation

1. Introduction
It is common knowledge that solid objects do not
interpenetrate in reality. The representation of this basic
principle is paramount to the feasibility of a model of the
physical world. Further, the non-penetrability constraint
is quite intuitive, so it can appeal to our spatial cognition
processes to improve our sense of presence in virtual
reality applications, as well. Enforcing this constraint
requires the identification of when and where objects
begin to interpenetrate, and in the setting of physical
simulation, this is known as the problem of collision
detection.

Collision detection research has advanced significantly
in recent years, motivated primarily by the interest in
physically based modeling of virtual environments. It’s
an intricate endeavor, because collisions are
discontinuous events, and special care must be taken to
find them when modeling an otherwise continuous
world. We can calculate these events analytically for
relatively simple environments such as a racing track or
a billiards table, but these methods are traditionally
confined to highly constrained applications such as
video games, and an analytical solution is intractable for
the general case. A more robust physical simulation will
typically detect collisions numerically through the
evaluation of pair-wise intersection tests over time.
Cameron [1] classifies these intersection tests into three
distinct categories: static, sweeping, and extrusion.

Static intersection tests check for intersection at specific

instances in time. These tests are relatively simple and
fast, and never report false alarms. However, they often
miss collisions, especially for small or flat objects† ,
because although an object pair might not intersect at
two separate times, they may have actually passed
straight through each other (Fig 1 center). These misses
are blatant errors that lead to infeasible simulation
behavior. When objects are interdependent, the problem
worsens as these errors accumulate – the simulation
becomes increasingly unrealistic, commonly resulting in
eventual breakdown due to unrecoverable failures.

Sweeping intersection tests detect the intersection
between the sweeping volumes of objects over time, or
an approximation thereof. Although these tests never
miss, they also conservatively report false alarms that
never actually occur, because they do not account for the
displacement of objects as they move (Fig. 1 right). This
overshooting can be resolved by recomputing the
sweeping volumes for intermediate time steps to verify
whether there was an actual collision, but the
computation required to do so may be prohibitive.
Consider a stack of blocks in freefall – even over
miniscule time intervals their swept volumes intersect,
although the blocks themselves never come into contact.

Extrusion intersection tests take a four-dimensional

† For brevity, “object” refers to a geometric primitive such as a box,
sphere, triangle, convex polyhedra, etc.

December 5-7, Tokyo, JAPAN

ICAT 2001

Fast object falling
onto thin table

Stack of objects
 falling together

Static Test Sweeping Test

Miss Hit

Correct Rejection False Alarm
Fig. 1 Examples of intersection tests over time

 2

approach to detect spacio-temporal intersection directly,
without misses or false alarms. The mathematical basis
of extrusion is straightforward, consisting of distributive
set operations on points in space-time, but the actual
boundaries of these 4-D sets can be quite complex,
especially when objects rotate. Fortunately, the
intersection of two object extrusions can be detected
without ever constructing their boundaries explicitly, as
we will discuss below in section 3.

A fourth consideration consists of detecting intersection
in configuration space[2], but this generally concerns
the much harder problem of collision avoidance, and
will not be addressed further in this paper.

2. Overview of the GJK Algorithm
We begin with an overview of the GJK algorithm, which
is a classic method to find the closest distance between
two convex polyhedra. This is a very brief sketch, and
the reader is referred to [3, 4, 5, 6] for a more in-depth
discussion, and several techniques to optimize its
performance. We introduce how GJK can be used for the
spacio-temporal case in the next section.

2.1 Supporting Vertex
For a convex polyhedron X and a vector 3ℜ∈s

r
, assume

there exists a routine SX(s
r

) that returns the supporting
vertex of X in the direction s

r
, defined as:

SX(s
r

)∈vert(X) where s
r

·SX(s
r

)=max{ s
r

·x: x∈vert(X)}

Typically, this vertex is unique, but not necessarily. It
can be found efficiently with a technique called hill
climbing, which uses adjacency information of each
vertex to search for a local (and also global) maximum
[5]. Further improvements such as using hash tables to
achieve nearly constant search time are explained in [6].

2.2 Calculating closest distance
Begin GJK with two convex polyhedra P and Q, an
arbitrary nonzero vector 0s

r
, and two vertex sets VP and

VQ, initially empty. At each iteration i, append the
vertices SP(is

r
) and SQ(is

r
−) to VP and VQ, respectively.

Then calculate the feature of the Minkowski sum VZ=VQ-
VP (note the minus sign) which is closest to the origin.
Refine VZ to contain only this feature, and since it must
be either a vertex, edge, or triangle (in 3D), VP and VQ
will always contain three vertices or less. The length of
the vector z from the origin to the closest point shall be
referred to as the Minkowski distance (MD), and GJK
reiterates with 1+is

r set to z until this distance no longer
decreases. If P and Q are disjoint, convex analysis
proves that the Minkowski distance will converge
monotonically to the global closest distance, and the
closest features can be interpreted directly from the final
sets VP and VQ. Figure 2 illustrates an example execution
of GJK, with sets VP and VQ on the left, and the
corresponding Minkowski sum VQ-VP on the right.

Empirically, GJK completes within a constant number of
iterations (generally less than eight), nearly independent
of the geometrical complexity of P and Q. Further, if the
states of P and Q do not change much between queries,
the work from the previous query (e.g. VP and VQ), can
be used to reinitialize the current query in order to
exploit temporal coherence. This enhanced version of
GJK executes extremely quickly, typically completing
within one or two iterations on the average, and ranks
among the most competitive closest feature algorithms
reported to date. GJK is especially attractive for its
simplicity, since it only requires simplex object data,
which is very scalable and easy to build. [7]

2.3 Supporting distance and static intersection
GJK also serves as an efficient static intersection test
when it calculates the supporting distance between P
and Q in the direction is

r at each iteration (see fig. 3).
This is conceptually different from the Minkowski
distance mentioned above, and is defined as:

SD(P, Q, s
r

) = s
r ·SQ(- s

r) – s
r ·SP(s

r)

which is the signed distance between the supporting
planes of P and Q in opposing directions of s

r . Unlike
the Minkowski distance, the supporting distance
sporadically increases and decreases at each iteration of

Z=Q-PP Q
O

s =0

V = S (s)P 0 P 0

V =Q 0 0S (-s)Q

O
s =1

VP 1

VQ 1

O
s =2

VP 1

VQ 1VP 2

VQ 2

O
s =3

VP 1

VQ 1
VP 3

VQ 3

O
s =4

VQ 4
VP 3,4

VQ 3

(halts)

MD= 1.799

MD= 1.590

MD= 1.546

MD= 1.546

MD= 6.051
V = V - VZ 0 Q 0 P 0

VZ 1

VZ 1

VZ 2

VZ 2

VZ 3

VZ 3

VZ 4

Fig. 2 Example 2D execution of GJK

 3

GJK. If this distance is positive, then is
r is called a

separating vector because it defines a plane in space that
separates P and Q. In the example above, 1s

r through 4s
r

are all separating vectors. A boolean query can stop once
it finds the first such vector, because it proves P and Q
are disjoint. If the GJK algorithm finds a local minimum
for the Minkowski distance and halts before a separating
vector can be found, then such a vector provably doesn’t
exist, and P and Q therefore must either intersect, or be
so close together that round-off error dominates the
computation. GJK is numerically sensitive for this
reason, but the inherent problems can be alleviated in
most cases by enforcing separation between objects by a
nonzero collision tolerance based on floating point
precision.

3. Separating Hyperspace Test
Consider the space defined by all separating vectors
between P(t0) and Q(t0). Geometrically speaking, if P
and Q intersect at t0, this space is null, otherwise it is an
open pyramid extending away from the origin. The
spacio-temporal method we introduce here is an
extrusion test over the time interval t0 to t1, but instead of
calculating the extrusions of P(t) and Q(t), we analyze
the extrusion of their separating space over time,
referred to here as their separating hyperspace. To
detect intersection over t0 and t1, we determine whether
the separating space ever vanishes in the interim by
testing whether the spaces at t0 and t1

 are disjoint.

This is based on the fact that in the case of linear motion,
i.e. no rotation or acceleration, P and Q never intersect if
and only if the their separating hyperspace is a convex
set. In the case of nonlinear motion it is only semi-
convex, and if P and Q intersect, the separating space at

t0 may vanish undetected, and a subset of which could
reappear at t1. However, these errors are the result of

second order motion, which is practically negligible for
sufficiently small time steps, such as for animations of
objects that do not rotate or accelerate too quickly.

With this in mind, our proposed method is the following.
Assuming by induction that P(t0) and Q(t0) do not
intersect, we execute the GJK algorithm at t0. At each
iteration, we compute SD(P(t0), Q(t0), is

r
). If this

distance is positive, is
r

 is a separating vector at t0, so we
compute SD(P(t1), Q(t1), is

r
). If this distance is also

positive, then is
r

 is a separating vector for both t0 and t1
and their separating spaces intersect, so the test returns
non-collision for the entire time interval.

This extrusion test fails if the GJK algorithm halts before
it finds a separating vector for both t0 and t1, but that
does not necessarily imply collision for two reasons:
GJK might not have encountered such a vector in the
relatively few iterations before halting, and the
separating space for P and Q may have evolved over
time without ever vanishing. So, like the sweeping test,
we must further investigate with intermediate time
intervals, as described in section 5. However, this
extrusion test combines the complementary merits of
both static and sweeping tests, and performs better for a
broad scope of rigid body motion (Fig. 4).

4. Maximum Supporting Distance and TOI

Consider the maximum SD(P, Q, s
r) at a particular

instant in time for all vectors s
r on the unit sphere. A

positive value is equivalent to the closest distance when
P and Q are disjoint, and a negative value is the
penetration distance when they intersect (Fig 3). If we
represent the maximum supporting distance between P(t)
and Q(t) as a continuous scalar function of time, we can
identify collisions by checking whether or not this
function drops below zero, and then determine their

exact TOI with a root solver.

Unfortunately, this is a difficult task in practice.

P

Q

s

-s

negative supporting distance

P

Q

s

-s

positive supporting distance

P

Q
s

-s

maximum supporting distance
(positive closest distance)

P

Q

maximum supporting distance
(negative penetration distance)

s -s

(-)

(-)

(+)

(+)

Fig. 3 Examples of Supporting Distance

Fast object falling
onto thin table

Stack of objects
 falling together

Separating Hyperspace Test

Hit

Correct Rejection

s =

s =

(+)

(+) (-)

(+)

Fig. 4 Extrusion tests robustly give correct results

 4

 This function’s behavior is fairly complex in general,
especially because its first derivative is discontinuous for
objects such as polyhedra, whose closest features change
instantaneously. In addition, although a closest feature
algorithm such as GJK finds the maximum supporting
distance efficiently if P(t) and Q(t) are disjoint, global
optimization based on convex analysis breaks down if
P(t) and Q(t) intersect, and an exhaustive search may be
required to compute its exact value.

One popular way to avoid these issues combines a
closest distance algorithm with an analytical TOI
estimator, which calculates the earliest possible time of
impact for object pairs, based on their current closest
distance and general equations of motion [8]. Objects are
advanced forward at time steps that guarantee non-
intersection, until the closest distance between an object
pair falls below the collision tolerance. This ensures
accurate collision detection, and works well for simple
environments, but there are three major drawbacks.

First, these equations are complicated and must consider
a multitude of variables, such as linear and angular
velocity, acceleration, and object dimensions. Overly
conservative predictions will converge poorly, and a
robust implementation has a steep learning curve that
could confound all but the most diligent developer.

Second, tracking the closest distance between two
objects is a wasteful procedure if we only care about if
and when they collide. As described earlier, a boolean
intersection test may execute several times faster than a
complete closest distance query, and with less overhead.
Finding the closest distance for nonconvex objects is
even more difficult, and quickly degrades performance.

Third, when we consider more than two objects whose
collisions are interdependent, this one-sided approach
requires a “TOI heap,” which maintains the earliest time
in which object pairs might collide. For environments
consisting of hundreds of objects, this could result in a
very large number of pairs, even after they are pruned by
bounding volumes. Heap operations aren’t free, and the
effort required to update the heap could create a
computational bottleneck.

5. GJK Extrusion Test with Brent’s Method
The method proposed here takes a two-sided approach to
compute the TOI retroactively, by approximating the
(negative) penetration distance at t1 as the maximum
value of SD(P(t1), Q(t1), is

r
) among those we calculated

before the GJK query halted. Since we only calculate
SD(P(t1), Q(t1), is

r
) when is

r
 is a separating vector at t0,

this heuristic effectively estimates the time that the
subset of separating vectors found at t0 will vanish.

Our implementation uses Brent’s method, which is a root
solver that cleverly combines bisection, the secant
method, and inverse quadratic interpolation to guarantee

superlinear convergence [9]. If the initial extrusion test
at t0 and t1 fails, we use the closest distance at t0 and the
approximate maximum supporting distance at t1 to
calculate an intermediate time tx using Brent’s method.
We then repeat the extrusion test for the interval t0 to tx,
but since the work for executing GJK at t0 is identical,
we can speed up this intermediate query by storing all
the separating vectors is

r
 we found at t0, and use this set

(a constant number, generally less than seven) to
recalculate SD(P(tx), Q(tx), is

r
) and obtain a new

approximate maximum supporting distance at tx. If this
distance is negative, we continue normally with further
iterations of Brent’s method. However, if this distance is
positive, we assume P and Q are disjoint from t0 to tx, so
we recompute a complete GJK extrusion test for tx and t1
in order to determine the exact closest distance at tx
before we proceed.

The solver returns either the TOI tx if its maximum
supporting distance is positive and smaller than the
collision tolerance, or noncollision if it finds a "photo
finish", in which the extrusion test fails for the complete
time interval t0 to t1 but succeeds when performed on the
sequence of intervals t0 to tx1, tx1 to tx2, ... txn, to t1. As
mentioned in section 3, this could happen fairly often for
two reasons: a separating vector for both t0 and t1 may
exist but the GJK algorithm halted prematurely before
finding it, or the separating space for P(t0) and Q(t0)
evolved over time without ever vanishing.

The ability to determine non-collision or time of impact
for a complete time interval is most convenient when we
are considering multiple objects whose collisions are
interdependent, because we can apply this extrusion
intersection solver to all object pairs with a single pass,
and then use Mirtich’s very clever Timewarp algorithm
[10] to efficiently resolve collisions in the proper order.

6. Experimental Results
This algorithm has been implemented and initial
experiments have been conducted on a 500 MHz
Pentium III with an NVIDIA TNT to analyze its
effectiveness for large-scale rigid body dynamics
simulation on a common PC. The static environment
consisted of an aquatic plant fixed in space with 8640
triangles, and the dynamic environment consisted of a
skeletal model of a human torso separated into its
individual bones and vertebrae, with 80 nonconvex rigid
bodies and 24,790 triangles in total.

We used the techniques in [11, 12] to decompose each
nonconvex surface into convex polyhedra and generate a
hierarchical representation of bounding volumes known
as k-dops[13], with k = 14. Bounding volume tree
queries used k-dop extrusion intersection tests to prune
primitive pairs, and generalized frontal tracking [14] to
exploit temporal coherence. We used Mirtich’s approach
[8] with RK5-4-7FM, a fifth order accurate Runge-Kutta
method with adaptive step-size control, to numerically

 5

integrate an impulsive collision response, with dynamic
friction coefficient µd = 0.4 and collision restitution
coefficient e = 0.7. Static contact was modeled through
microcollisions, and a more robust hybrid
implementation remains as future work.

The simulation began by dropping the torso from a
random position. The collection of bones fell freely with
constant acceleration until it shattered onto the plant.
(Fig. 5) The simulation completed once all of the bones
had fallen through the plant or settled to a steady state.

The simulation advanced 1/24 seconds at each frame,
and the actual execution time for each step is presented
in figure 6, including the time for Euler integration,
bounding volume computation, collision detection at the
polygonal level with the GJK extrusion test, impulse
integration, collision ordering with Timewarp, and
image display with OpenGL. The peak at t ≈ 2 sec
indicates the point when the number of interdependent
collisions within the skeletal model was maximized due
to the crash. The bones then scattered, and eventually
settled into steady contact with the plant with an
increasing number of microcollisions, indicated by the
steady rise in execution time until the simulation’s
completion. The ratio of execution time to simulation
time ranged between 1.0 and 7.9 for the entire
simulation. For a collision tolerance of ε1/2 ≈ 0.0003,
where ε is the 4-byte floating point epsilon, we found the
TOI solver completed in 2.2 iterations on the average,
with a worst case of 43 iterations, and an average
“photo-finish” false alarm rate of 70%.

Admittedly, this omnibus benchmark is not a very useful
measure of collision detection efficiency. Regardless,
from this preliminary investigation on a middle-grade
PC by today’s standards, we are optimistic that the
method proposed here is an improvement over current
methods of its kind by a significant margin, and a more
rigorous comparative study is very near future work.

7. Conclusion
The physical feasibility of rigid body dynamics depends
on accurate collision detection, which is challenging to
compute in the precious milliseconds between
successive animation frames if we are using physically
based modeling to improve the sense of presence in
virtual reality applications. However, after
experimentation with the GJK extrusion method
proposed here, our observation is that the prospects of
accurate collision detection in real-time for large scale
virtual environments are very good, and we eagerly
encourage others to help continue the progress in this
exciting field of research.

References
1. S. Cameron: “Collision Detection By Four

Dimensional Intersection Testing,” IEEE transactions
on Robotics and Animation, 6(3): pp. 291-302 (1990).

2. T. Lozano-Perez. “Spatial planning – a
configuration space approach”, IEEE Transactions on
Computers, C-32(2): pp.108-120 (1983).

3. E. Gilbert, D. Johnson, D. Keerthi. “A Fast
procedure for computing the distance between objects
in three-dimensional space”, IEEE Journal on
Robotics and Automation, vol 4: pp. 193-203 (1988).

4. G. Van Den Bergen. “A Fast and Robust GJK
Implementation for Collision Detection of Convex
Objects”, Journal of Graphics Tools (1999).

5. S. Cameron: “Enhancing GJK: Computing
Minimum and Penetration Distances between Convex
Polyhedra”, IEEE International Conference on
Robotics and Automation, pp. 22-24 (1997).

6. K. Chung, “An Efficient Collision Detection
Algorithm for Polytopes in Virtual Environments”, M.
Phil Thesis, University of Hong Kong (1996).

7. E. Levey, C. Peters, C. O’Sullivan. “New Metrics
for Evaluation of Collision Detection”, Proceedings of
the 8th International Conference in Central Europe on
Computer Graphics, Visualization and Interactive
Digital Media (2000).

8. B. Mirtich. “Impulse-based Dynamic Simulation of
Rigid Body Systems”, PhD Thesis, University of
Berkeley (1996).

9. R. P. Brent. Algorithms for Minimization without
Derivatives (Englewood Cliffs, NJ: Prentice-Hall),
Chapters 3, 4 (1973).

10. B. Mirtich. “Timewarp Rigid Body Simulation”,
Proceedings of SIGGRAPH 00, pp. 193-200 (2000).

11. K. Vlack. “Real-Time Collision Detection for
Nonconvex Polyhedra Using Convex Surface
Decomposition”, Proceedings of the 6th Virtual Reality
Society of Japan Annual Conference (2001).

12. K. Vlack. “An Efficient Bottom-Up Method to
Construct Bounding Volume Trees for Real-Time
Collision Detection”, Proceedings of the 6th Virtual
Reality Society of Japan Annual Conference (2001).

13. J. Klosowski, M. Held, J.S.B. Mitchell. “Efficient
Collision Detection Using Bounding Volume
Hierarchies of k-DOPs”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 4 (1998).

14. S. A. Ehmann, M. C. Lin. “Accurate and fast
proximity queries between polyhedra using convex
surface decomposition”. Tech. Report TR01-012,
Department of Computer Science, University of North
Carolina (2001).

 6

Fig. 5 Skeletal torso in freefall crashing into aquatic plant

0

0.1

0.2

0.3

0.4

0 2 4 6 8
Simulation Time (s)

Fr
am

e
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fig. 6 Running Time for Torso-Plant Simulation

t = 1.0 sect = 0.0 sec

t = 2.0 sec t = 5.0 sec

