
ICAT 2001
 December 5-7, Tokyo, Japan

pwm: Using 2-Dimensional Applications in an Immersive
Multiscreen Display

Yoshisuke Tateyama1, Tetsuro Ogi1,2 & Michitaka Hirose2

1Gifu MVL Research Center, Telecommunications Advancement Organization of Japan, Techno-Plaza 211,
4–179–1, Sue, Kakamigahara, Gifu, 509–0108, Japan

2University of Tokyo
tateyama@acm.org

Abstract

This paper describes the pwm (plate window manager; Fig-

ure 1) system which enables a user to manipulate existing

2D GUI applications in the virtual 3D space projected

by an immersive multiscreen display, in terms of both its

significance, and its method of implementation. Also we

show the ability of currently avaliable hardware to im-

plement the pwm, and evaluated its performance. We have

compared five different users with respect to their 2D GUI

pointing performance at the pwm with a normal 2D GUI

manipulation environment, which consists of a 2D display

and a mouse. With our current pwm implementation, it

takes 50 % more time for a user to complete a pointing

task than in a 2D environment.

Key words: 2D GUI, VR, IPT, the X Window System,

6 DoF dragging

1. Introduction

Using recently developed 3D display technologies, a

user can now experience an artificial, but very realistic

3D world. These displays are currently relatively scarce,

but in the future, we will use 3D displays as standard

display devices in the same way that we use 2D displays

today. Compared with 3D displays, 2D displays are less

expressive, but 2D window systems have many useful ap-

plications, and these are now so widespread that we have

come to consider them as indispensable “tools”. It is a

very simple concept to use our 2D window system appli-

cations in immersive virtual 3D space without applying

any modifications to their source codes, but it opens up

a wealth of possibilities for both 3D application program-

mers and users.

For instance, in a scientific visualization system, pro-

grammers can concentrate on the task in hand while im-

plementing existing 2D tools, such as graphing packages,

parameter editing and so on. On the other hand, users

can make use of facilities that may not have been con-

sidered by the programmers, such as sketching pictures

of some of their ideas, writing text, obtaining informa-

tion by browsing the web, table calculations, statistical

calculations, and so on.

The human race has always liked to record a large

amount of information onto 2D planes, such as rock walls,

Fig. 1: A user operating 2D applications with the pwm
in the COSMOS.

stones, paper, and so on. Today, we are nearly all familiar

with tools like text editors, web browsers, drawing tools,

multimedia authoring tools and so on. These are all essen-

tially based in only two dimensions. Even when advanced

3D interaction techniques and usable true-3D applications

are readily available in virtual 3D space, there will still be

a need to handle some 2D objects within them.

There are some systems that can render 2D GUI plates

as if they are in virtual 3D space[1][2]. Many of these

use a 2D display, and they are usually based on a mouse

and a keyboard. However, 2D GUI plates systems work

extremely well in an immersive multiscreen display (IMD)

such as CAVE[3], CABIN[4], and COSMOS[5].

Without a stereo display, any plates that do not face to

the plane of the display will simply appear deformed, and

it is very difficult for a user to visualize any information

that is on them. With a stereo display, a user can see a

slanted plate, because we can see a picture on a slanted

picture frame easily in the real world so in a large field of

view 3D stereo display, a user can see more plates within

a limited resolution.

In addition, the user’s head position must be tracked.

When there is a necessity to look at different areas of

a plate, the user will tend to gaze around the plate un-

consciously and instinctively. Without head tracking, the

user becomes conscious of the difference, and has to make

window system
client 1

window system
client 2

window system
client 3

window system
server 2D display

mouse

Fig. 2: A 2D window system employing a client-server
architecture.

window system
client 1

window system
client 2

window system
client 3

window system
server

3D display

mouse ?

Fig. 3: A 3D window display server can provide util-
ities for existing applications.

an effort to manipulate that plate into a better orienta-

tion.

Therefore, each plate must be manipulated in a highly

interactive manner. In 2D display-based systems, the user

must manipulate plates in 3D space using a mouse. It is

very difficult to manage 6 DoF with 2D input devices, and

therefore 2D GUI plates in 3D space must be manipulated

by 6 DoF input devices.

Our 2D GUI applications can be operated using a 2D

GUI pointer. With a 2D display, there is a desk in front

of the user, so it is easy to maniupulate a 2D GUI pointer

with a mouse[1][6][2]. In an IMD, the user is usually

standing up, so a mouse is not so easily available (Fig-

ure 1). The IMD user usually manipulates virtual objects

with an input device which has a 6 DoF position sensor.

In the pwm, a user can manipulate plates and can move

a 2D GUI pointer device using a 6 DoF dragging tech-

nique. An appropriate input device has a 6 DoF sensor

and more than one button. Using a 6 DoF dragging tech-

nique, while the “dragging” button is pressed, a target

object can change it’s orientation relative to its previous

orientation. Compared with control techniques based on

6 DoF absolute positioning, this dragging technique re-

quires less working space and less effort.

With this implementation of the pwm, a user can ma-

nipulate client applications of the X Window System with-

out applying any modifications to their source codes.

Fig. 4: An Immersive six-screen display: COSMOS.

2. A 3D Window Display Server

Existing window systems, like the X Window System

[7], employ a client/server architecture. One or more

display screens are managed by a display server, and a

server also manages the input devices, such as the key-

board and the mouse. All window system applications

work as clients, which request to display their contents,

and receive actions from the user (Figure 2). A 3D dis-

play server is basically a 2D window system display server

that displays a window image on the surface of an object

floating in a 3D space, instead of on a 2D display screen

(Figure 3). Most applications will work without any mod-

ifications. Pwm is an example of a simple 3D window dis-

play server, with one or more rectangular plates floating

in its 3D space. Each plate has the image of a 2D win-

dow. A user can manually place plates where she or he

wants them within this virtual 3D space, and can simul-

taneously manipulate the window with a moving mouse

pointer, or by clicking the mouse buttons.

3. An Input Device for a pwm

Pwm is intended for use in an immersive multiscreen

display like COSMOS [5] (Figure 4), and an example of

a pwm user is shown in Figure 1. In an immersive multi-

screen display environment there is usually no provision

for either desks or chairs. More importantly, in an im-

mersive multiscreen display that has both a ceiling and

floor screen, such as COSMOS or CABIN, desks should

not be used at all, because they could easily break a ceil-

ing screen. The user is therefore usually standing up, so

using a keyboard or a mouse becomes very difficult.

In our system we use a proprietary NINTENDO 64

games controller (Figure 5) as the input device for the

pwm . This has 14 different buttons, so applications pro-

grammers can easily add functions to their applications,

bind functions to particular buttons, test them and so on.

It also has a joystick, but the pwm does not make use of

it. To produce the correct stereo images, the position of

the viewer’s eyes must be tracked. Usually, an immer-

sive multiscreen display system incorporates one or more

positioning sensors with 6 degrees of freedom (DoF), 3

Fig. 5: A NINTENDO 64 controller.

DoF for position sensing and 3 DoF to monitor orienta-

tion. We attached one of these sensors to a NINTENDO

64 controller to work as a 6 DoF pointing device.

4. Interaction Techniques

In the pwm, a user can position plates manually, but

not automatically. When a user manipulates 2D windows

plates in 3D space, they can carry out at least three kinds

of interactions:

(1) placement of each plate (including orientation)

(2) user-positioning in virtual space

(3) 2D GUI manipulations

In the pwm, the user can simultaneously move the po-

sition of a plate and its orientation, which we call a 6

DoF position. To move a plate to a new 6 DoF posi-

tion, the user employs a 6 DoF drag technique, as shown

in Figure 6. By using the 6 DoF dragging function on

the controller, the user highlights the relative difference

between the plate’s new 6 DoF position and its previous

one. The controller’s Z button is designated as the “drag”

button, that is, when a user presses that button, a plate

starts moving. While he/she is pressing the drag button,

a plate is moving continuously. When the user releases

the button, the plate position is fixed to a new position in

virtual space. To process this 6 DoF drag interaction, pwm

handles the orientations of each object represented by us-

ing the relevant rotation quaternion [8][9]. Let the time

when the drag button is pressed be t0, the controller posi-

tion at time t be pc(t), the controller orientation rotation

quaternion be qc(t), the target window plate position be

pw(t) and the target window plate orientation rotation

quaternion be qw (t). While the user is dragging, the tar-

get window position:

(pw(t), qw(t))

is calculated by the following equations;

pw(t) = pw(t0) + α(pc(t) − pc(t0))

qw (t) = qc(t)q
−1
c (t0)qw (t0)

where α is the acceleration constant. Currently we set

α = 5.0.

When the user want to view a plate’s content more

precisely, he/she can pull the plate closer, or move his/her

Fig. 6: A 6 DoF drag technique.

head closer to the plate. This hands-free interaction tech-

nique is available in 3D displays where it is possible to

track the position of the viewer’s head, such as immersive

multiscreen display environments, head mounted displays

and so on. These types of interaction are so natural for

humans that a novice user would instinctively carry them

out immediately when he/she wants to look at the plate,

without the need for any explanation of the system.

A 2D GUI mouse pointer has 2 DoF, but the pwm

uses a 6 DoF pointing device. Although the 3 DoF relat-

ing to rotation information can be ignored without any

problems, the pwm must convert the remaining 3 DoF po-

sitioning information to a 2 DoF pointer position. The

controller’s 3 DoF position on a global coordinate system

is mapped to the window plate’s local coordinate system.

Let the mouse pointer position on the plate coordinate

system be pp(t), the translation matrix for position p

be T(p) and the rotation matrix for the quaternion q be

R(q). While the user is dragging, pp(t) is calculated by

the following equation;

pp(t) = pp(t0)

+ β · T−1(pw(t)) R−1(qw(t)) (pc(t) − pc(t0))

where β is the acceleration constant. Currently we set

β = 1500.0 (pixels/meter).

In addition to these three kinds of interactions, the

pwm has two other kinds of possible interaction. One is the

process of selecting a plate, and the other is selecting the

appropriate operation mode from “moving plate” mode

and “moving a 2D GUI pointer” mode.

5. Current Implementation

The pwm uses the X Window System as it’s 2D GUI

window system. There are two ways in which this can be

implemented:

• a real 3D display server that recognizes the X Window

System protocols.

• a proxy display system that retrieves windows’ images

that are stored on an X server.

The pwm is implemented in the latter way (Figure 7).

A proxy display system has no direct way of recognizing

changes of a window’s contents, but this has some merit.

Xvfb
Virtual X server

()

get window image

display to
IPT display

control X pointer

Input device
(Nintendo Controller)

pwm

3D virtual space
(produced by IPT display)

X application 1

X application 2

X application 3

user input

Fig. 7: Current pwm implementation: a proxy display
system.

Firstly, implementation is easy. Secondly, many systems

can display the same images that a display server provides

at the same time. Thirdly, if the X protocol is revised,

real 3D display servers will need to be revised, but proxy

displays will not.

The pwm has two remarkable functions. One is its

ability to retrieve the latest window images from a real

display server. The pwm uses Xvfb as a real X display

server. Xvfb is an X display server that is available in

a sample implementation distribution package from The

Open Group X Project Team (X Version 11, Release 6.4).

Xvfb does not have any screens that users can see, but

it has a virtual screen that it uses to display its contents.

The pwm periodically retrieves windows images from Xvfb

because it cannot sense changes of window contents.

The other function is to fake user inputs against the

X display server. To achieve this function, the pwm uses

an XTEST extension. XTEST is one of the extensions

of an X display server that enables X clients to move a

mouse pointer, to press mouse buttons, to release mouse

buttons, to press keyboard keys and to release keyboard

keys.

The pwm is based on the glCABIN library, which was

developed at the University of Tokyo. It is based on the

OpenGL API. COSMOS, where the pwm is implemented,

contains the Polhemus ULTRATRAK as its 6 DoF po-

sition tracking system. COSMOS has a total volume of

3 cubic meters, in which it has six screens, and uses an

SGI Onyx2 InfiniteReality as the main computer system.

This has 16 CPUs (MIPS R10000 250 MHz), a 4 Gbyte

main memory, 6 graphics pipes and an IRIX 6.5 OS. This

computer system can handle a large 2D image whose size

is 1024 × 1024 pixels in RGBA mode as a single texture

image.

The pwm is working at over 35 Hz rendering refresh

rate at COSMOS when it displays 10 plates, each of which

displays a window that consists of 800 × 600 pixels. Each

plate is displayed at a size of 0.8 × 0.6 meters. In this

pwm implementation, the rendering refresh rate has little

relation to the number of plates, because there is only

ever one special plate that has a live window image. The

content of the special plate is refreshed by retrieving the

image from its corresponding window twice every second.

Fig. 8: A window image of a picking experiment ap-
plication.

In addition, when a user presses a virtual mouse button,

and after waiting 300 milliseconds, the pwm retrieves and

refreshes the window image. In this implementation of the

pwm, this special window is the “default root window.”

In this configuration a user can read any character by

looking at an individual plate more closely. The pwm is

described by only about 3500 lines (without the glCABIN

library) in C++ programming language. This pwm imple-

mentation supports the pressing and releasing of three

kinds of mouse buttons, and a user can operate any X

application just as he/she could do with a mouse. The

pwm is also functional at other immersive multiscreen dis-

plays, namely CABIN [4] at the University of Tokyo and

at CAVE [3] in Yokohama, which was built temporarily

for iGrid 2000 at INET 2000. During this demonstration,

the pwm was working constantly for more than 2 hours.

6. A Picking Experiment

With the pwm, a user can manipulate 2D applications

in a 3D display, but the user may feel some difficulty in

manipulation when compared with a usual 2D environ-

ment consisting of a display and a mouse. To compare a

user’s picking performance at the pwm in COSMOS with

that in a 2D environment, we use a modified Fitts’ law

model.

According to [13], when the index of task difficulty of

the task is

ID = log2(A/W + 1)

where A is the distance from the starting point to the end

point, and W is the width of the target, the movement

time (MT) to select the target is

MT = a + b ID

where a and b are constants. We use an experimental

application (Figure. 8) which proceeds as follows:

(1) Choose a point randomly.

(2) Draw a circle there.

(3) When clicked by the user, go to (1).

The same application was used for the pwm (Figure. 9)

and in a 2D environment (Figure. 10). The five subjects

were all familiar with using a mouse. The values for the

radii of the circles, R, were 10, 25, or 40 pixels (2R = W).

The distance, A, were between 20 and 627 pixels, so the

values of ID were between 1.0 and 5.01. Each subject

Fig. 9: A picking experiment at COSMOS.

Fig. 10: A picking experiment at a normal 2D envi-
ronment.

clicked more than 299 times in each environment. The

duration of the movement time, MT , is measured from

the time when a user starts to move a pointer until the

time when he/she presses a button.

A scatter plot graph of the MT – ID relationship for

each subject in each environment is fitted by a linear re-

gression line (Table 1). For each of the subjects, MT in

the 2D environment is less than in the pwm .

We gathered the data for all of the subjects into each

scatter plot graph at each environment, and fitted them

to each linear regression line:

MTpwm = 6.9 × 102 + 2.1× 102 × ID

MT2D = 4.3 × 102 + 1.5× 102 × ID

From these equations, the values of MT were calcu-

lated when ID = 1 or ID = 5 (Table 2). These results

show that a user in teh pwm completes a pointing task

within 155 % time of the time that it takes a user in a 2D

environment.

7. Related Work

Fisher et al. [14] described the idea of a display en-

vironment in which the data manipulation and system

monitoring tasks are organized in virtual display space

around the operator. Seven years after this, Dykstra [1]

and Feiner et al. [6] implemented the X Window System

Table 1: Measured motion time comparing the pwm
with a 2D environment which consists of a 2D display
and a mouse.

Subjects 2D (×10−1 sec) pwm (×10−1 sec)

A 4.7 + 1.0 × ID 4.9 + 2.3 × ID

B 4.7 + 1.2 × ID 8.1 + 1.9 × ID

C 4.5 + 1.8 × ID 9.9 + 1.2 × ID

D 4.7 + 1.6 × ID 6.5 + 2.2 × ID

E 3.3 + 2.0 × ID 9.4 + 1.9 × ID

Table 2: Comparing the pwm with a 2D environment
at ID = 1 or ID = 5.

ID = 1 ID = 5

MTpwm (ms) 910.4 1750.0

MT2D (ms) 589.4 1189.0

MTpwm − MT2D (ms) 321.4 560.0
MTpwm

MT2D
× 100 (%) 154.6 147.2

display servers, which displayed windows on a plate float-

ing in a virtual 3D space. Dykstra’s implementation is

based on a 2D display, and does not work with a stereo-

scopic display. The significance of this technology is defi-

nitely different whenever a stereoscopic view is available.

We initially implemented a 2D display version of the pwm

rather like Dykstra’s system, but when we used it with a

mouse, we found that manipulation was too difficult, and

we decided that it would not become a viable replacement

of normal 2D display servers. Both a stereoscopic display

and a 6 DoF pointing device are essential requirements.

The implementation provided by Feiner et al. is based on

a “desktop” augmented reality system. They use a tradi-

tional keyboard and mouse as the input devices and they

do not use 6 DoF “pointing” devices to move the plates

or to move the mouse pointer.

The Task Gallery [2] also basically assumes a 2D en-

vironment such as [1], but proposes some sophisticated

interaction techniques.

8. Discussions

In the pwm, a user must move plates around manually.

Fisher et al. described an idea where plates are placed

automatically around a user, and the user can manipu-

late them by speech and by gesturing interaction. Feiner

et al. implemented a system where a plate is mapped

onto a portion of a sphere, which is positioned about the

user’s head. In usual 2D GUI environments, windows are

initially placed automatically, but we sometimes prefer to

control the position of the windows manually. Therefore,

both approaches must be integrated.

There is some research, such as that by Heath[10] who

made a 3D widgets toolkit that gives a 3D look to 2D GUI

widgets. Such an approach is good for users, because they

will appear as seamless in 3D space. However since the

widgets’ working principals are basically 2D, their depth

information has less meaning. From the user’s viewpoint,

and according to the availability of the application’s func-

tions, these 3D widgets appear to offer little difference

from 2D widgets.

In a a genuine 2D GUI manipulation environment, the

combination of a 3D display and a 6 DoF pointing device

would not always be better than a combination of 2D dis-

plays, a keyboard, and a mouse. From the standpoint of

3D application development researchers, the importance

of this technology lags behind the development of 3D vir-

tual space technologies. However, as we described earlier,

pwm techniques will be used with “real” 3D applications

in a single 3D Display at the same time. The 2D GUI

manipulation in 3D-space technology is necessary if we

are to make 3D displays our main display technology.

9. Future Work

We must overcome the serious limitation that a user

can only manipulate one plate for 2D GUI operations.

Ideally, all the pwm plates must be “clickable”, and when

a window is created, a plate must rise automatically at

the appropriate position and orientation. In the proto-

type system described in this paper, all but one of the

plates are a snapshot image of the special plate made

when the user give the order to create it. A user can

create a snapshot of the special plate whenever he wants,

just by pressing a button. When this “multi-clickable-

plates” version of the pwm is implemented, we will be able

to experiment with the effectiveness of current interaction

techniques, and to investigate more sophisticated interac-

tion techniques. We must also investigate other potential

interaction techniques, for example, re-sizing the window,

selecting a plate using a virtual beam pointer and chang-

ing the user’s position in virtual space as if he/she is on a

flying magic carpet. Keyboard input must be supported.

If a user operates the pwm, it is likely that he/she will also

soon want to input one or more data strings.

10. Conclusions

We propose a method of using a 2D GUI window sys-

tem of the type that is currently widely used, in the virtual

3D-space environment produced by an immersive multi-

screen display. In the pwm, a user can use existing X ap-

plications without any modifications, can “click” windows

on a special plate, create plates as the snapshot image of

a special plate and move any plate with a “6 DoF drag”

technique. We showed the ability of currently avaliable

hardware to implement the pwm, and evaluated its per-

formance. We have compared five different users with

respect to their 2D GUI pointing performance at the pwm

with a normal 2D GUI manipulation environment, which

consists of a 2D display and a mouse. With our current

pwm implementation, it takes 50 % more time for a user

to complete a pointing task than in a 2D environment.

Acknowledgements

The authors would like to thank the Gifu prefecture

for offering us the use of COSMOS, and Toshio Yamada

for his efforts to maintain CABIN and COSMOS.

References

1. Dykstra, P.: “ X11 in Virtual Environments: Com-

bining Computer Interaction Methodologies,” pro-

ceedings of IEEE 1993 Symposium on Research Fron-

tiers in Virtual Reality, (1993).

2. Robertson, G., Dantzich, M., Robbins, D., Czer-

winski, M., Hinckley, K., Risden, K., Thiel, D.,

Gorokhovsky, V.: “The Task Gallery: A 3D Window

Manager,” proceedings of CHI 2000, (2000).

3. Cruz-Neira, C., Sandin, D. J. & DeFanti, T. A.:

“Surround-Screen Projection-Based Virtual Reality:

The Design and Implementation of the CAVE,” in

COMPUTER GRAPHICS Proceedings, Annual Con-

ference, pp.135 – 142 (1993).

4. Hirose, M., Ogi, T., Ishiwata, S. & Yamada, T.: “De-

velopment and Evaluation of Immersive Multi-screen

Display CABIN,” Systems and Computers in Japan,

Scripta Technica 30(1), pp. 13 – 22 (1999).

5. Yamada, T., Hirose, M. & Iida, Y.: “Development

of Complete Immersive Display: COSMOS,” in Pro-

ceedings of VSMM 98, pp.522 – 527 (1998).

6. Feiner, S., MacIntyre, B., Haupt, M. & Solomon, E.,:

“Windows on the World: 2D Windows for 3D Aug-

mented Reality,” in UIST ’93 (1993).

7. Scheifler, R. W. & Gettys, J.: “The X Window Sys-

tem,” ACM Transactions on Graphics 5(2), 79 – 109

(1986).

8. Shoemake, K.: “Animating Rotation with Quater-

nion Curves,” in SIGGRAPH ’85, pp. 245 – 254

(1985).

9. Hearn, D. & Baker, M. P.: “Computer Graphics —

C version,” Prentice Hall (1997).

10. Heath, D.: “Virtual User Interface (VUI) – A win-

dowing System for VR,” in Second International Im-

mersive Projection Technology Workshop (1998).

11. Rohlf, J. & Helman, J.,: “IRIS Performer: A High

Performance Multiprocessing Toolkit for Real-Time

3D Graphics,” in SIGGRAPH ’94, pp.381 – 394

(1994).

12. Strauss, P. S.: “IRIS Inventor, A 3D Graphics

Toolkit,” in OOPSLA ’93, pp.192 – 200 (1993).

13. MacKenzie, I. S.: “Movement Time Prediction

In Human-Computer Interfaces,” Graphics Interface

’92, pp. 140 – 150, (1992).

14. Fisher, S. S., McGreevy, M., Humphries, J. & Robi-

nett, W.: “Virtual Environment Display System,” in

Interactive 3D Graphics (1986).

