

December 5-7, Tokyo, JAPAN

ICAT 2001

Detailed Shape Representation with Parallax Mapping
Tomomichi KANEKO1, Toshiyuki TAKAHEI2, Masahiko INAMI1,

Naoki KAWAKAMI1,Yasuyuki YANAGIDA3, Taro MAEDA1 and Susumu TACHI1

1Information Physics and Computing,
School of Information Science and Technology, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
{kaneko,minami,kawakami,maeda,tachi}@star.t.u-tokyo.ac.jp

2 The Institute of Physical and Chemical Research (Riken)
2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan

 takahei@atras.riken.go.jp
3ATR Media Information Science Laboratories

2-2 Hikaridai, Seika-cho, Souraku-gun, Kyoto 619-0288, Japan
yanagida@atr.co.jp

Abstract

Although texture mapping is a common technique for
adding apparent surface detail to 3-D objects, it lacks the
capability to represent the motion parallax effect. So the
mesh to which it is applied limits its realism. In this
paper, we propose Parallax Mapping, a simple method to
motion parallax effects on a polygon. This method has
very fast per-pixel shape representation and can be
performed in real-time with current hardware.

Key words: Displacement Mapping, Image-Based
Rendering, Texture Mapping, Real-time Rendering, 3D
Computer Graphics

1. Introduction

Among the domain of research in real-time computer
graphics, there are two main approaches to render
images of a scene: geometry-based rendering and
image-based rendering. The former can generate images
from different viewpoints with 3-D data sets, such as
polygon meshes and their surface properties. However a
complex scene may involve large data sets that can be
prohibitive to process in real-time. So the developer
must take care to maintain manageable data sets. On the
other hand, for the latter approach, rendering time does
not depend on the scene’s complexity. It renders images
from different viewpoints by interpolating between
photographic images, so it is easy to generate photo-
realistic output. However this approach tends to require
larger data sets, and it sometimes restricts the viewpoint
and scene structure. Further, its calculations tend to be
slow because of the lack of graphics hardware
acceleration.

Texture mapping [1][2] is a nice combination of the
two approaches. You can easily represent the apparent
detail of surfaces with simple image data, without
increasing geometric primitives. It is processed

extremely rapidly on today’s graphics hardware, and its
rendering cost is independent of the complexity of its
pattern.

Although it is suitable for many cases, there are
inadequacies. The quality of its output image depends
on the geometric primitives it is applied upon. Of
particular note, a texture image mapped onto curved or
bumpy surfaces does not have curvature within a single
polygon. This problem is magnified when inspecting a
texture-mapped surface with stereoscopic vision,
because the lack of binocular disparity between each
mapped polygon is a depth cue that the surface it
represents is flat.

There are two main reasons for this problem. First,
texture mapping lacks the capability to represent a
motion parallax effect – an apparent effect of relative
movement of objects due to a viewpoint. So you cannot
represent view-dependent unevenness or change of
silhouettes. Second, while texture mapping works as a
per-pixel table lookup, mapping coordinates are defined
per-vertex from the geometry it is applied on. So even if
you apply a texture image to a curved surface, the result
looks flat from the linear interpolation of texture
coordinates on each polygon.

To solve this problem, we proposed a Parallax
Mapping method[3][4]. This method represents the
motion parallax effect on a single polygon surface using
per-pixel texture coordinate addressing. So you can get
per-pixel level representation of view-dependent surface
unevenness and silhouette change for each polygon. It
uses a per-pixel image distortion process like image-
based rendering, but it has a capacity to be accelerated
by graphics hardware. So it is fast enough to be used
with many polygons in geometry-based rendering.

2. Related Work

Texture Mapping is the addition of separately defined
image data to a surface. Texture mapping hardware is

common today, and it works extremely fast even on
affordable consumer graphics cards. However,
traditional texture mapping only affects the color of
surfaces, like painting on the wall. Silhouettes still
depend entirely upon the geometry of the object as
shown in Fig. 1.

Today, geometry-based rendering hardware is

becoming cheaper and faster than ever, and we can
render complex polygonal objects with texture mapping
in real-time. However, from nearby viewpoints, it is
evident from the rough, per-vertex-computed silhouette
that the textures are only paintings on flat surfaces. To
improve this appearance, there are many techniques to
represent additional per-pixel details.

In real-time geometry-based rendering, Gouraud
shading [5] is usually used for shading the surfaces,
which computes lighting at each vertex, and interpolates
vertex results across pixels. Recently there are some
researches on real-time Phong shading [6], which
computes the lighting at every pixel on the surfaces.
These real-time techniques represent smoothness of the
surfaces by hardware accelerated per-pixel lighting
computations.

Bump Mapping [7] adds per-pixel relief shading to
represent small unevenness of surfaces by perturbing the
surface normal directions. It is useful to represent rough
or etched surfaces, and today’s some graphics hardware
can compute it in real-time [8]. This technique,
however, is only a shading effect, and the bumps are
illusory. So it can’t describe large unevenness, and the
silhouettes of the applied polygons are still flat.

Displacement Mapping [9] actually displaces the
surface in 3-D space. Although it can modify the
silhouette and realize parallax effects, it needs many
polygons to generate a transformation through height
map data. It is a kind of modeling technique that is
unsuitable for real-time rendering.

3. Parallax Mapping

In this paper we present Parallax Mapping, a real-time
parallax distortion to represent detail shape on a single
polygon. It uses per-pixel texture coordinate addressing
to enhance its rendering quality and to enable the
execution of per-pixel computations with graphics
hardware. With this method, motion parallax is realized
by mapping a texture that is distorted dynamically to
correspond to the destination represented shape.
Although the dynamic distortion of texture has been
investigated in the domain of Image Based

Rendering[10], techniques for real-time rendering have
gone unreported. We realize this texture generation
process not by distorting the actual texture, but by
shifting texture coordinates of each drawn pixels as the
texture is mapped to the polygon online. This process is
accelerated by utilizing a graphics API supported by
commonly used graphic hardware. Hereafter, the
arguments for implementation are described.

3.1 Calculation of Texture Coordinate Shift
In our approach, used in geometry-based rendering, a
scene consists of many polygons, and Parallax Mapping
adds to them some additional details such as the
displacement mapping in real-time. So the entire
perspective distortions are processed in normal
geometrical fashion, and the perspective correctness in
the parallax is relatively less important. Especially for
surfaces relatively small in a rendered image, or on
billboard-type objects that always face the viewer, he
can’t distinguish between a parallax effect with
perspective projection and one with orthogonal
projection. So we introduce orthogonal projection to
calculate the texture coordinate shift corresponding to
motion parallax.

Fig.1 Per-vertex shape (left) and per-pixel shape (right)

v u

The left side of Fig.2 is the schematic of a texture
coordinate system of an oblong polygon defined by the
u, v axes. In this figure, n and e are the vectors of
observation orientation, and the surface normal of the
polygon, respectively. This polygon is supposed as a
consistent of a part of curvature, and the curvature
floated from polygon with depth named depth(u,v). The
right figure is the image of projected left figure to the
plane defined by u,n axes. Now, to express point A as on
expected curvature, it is necessary that the texture
coordinate of point A’ is put on point A’’. We set the
angel θu between the texture axis u and the visual axis
e, the translation of the shifted texture coordinates are
described as followed.

u ’= u + tanθu × depth(u,v)
u : source texture coordinate of u axis
u’: resulting texture coordinate of u axis

The angle which texture axis v and visual axis make is
set θv, it is the same also about v axis.

e

n

θu

depth(A’’)

depth(A’’)×tanθu

A’’

n A’

A

ue

Fig.2 Geometry of texture coordinate shift

v’ = v + tanθv×depth(u,v)
v : source texture coordinate of v axis
v’: resulting texture coordinate of v axis

3.2 Depth Approximation
By the way, in the stage of rasterization, texture
coordinate of point A’’ is used to render point A. At this
time, it need the depth value of point A’ to calculate the
texture coordinate of point A’ , but we could get the
depth value of A’’. So, we suppose the expressed
curvature is smooth and the angle which the normal of
polygon and visual axis make is small, followed
approximation is introduced.

depth(u,v) = depth(u’,v’)

3.3 Per-pixel texture Coordinate Addressing
In our Parallax Mapping method, we address texture
coordinates at each pixel. For this implementation, we
use Environment Mapped Bump Mapping (EMBM)
supported on Microsoft® Direct3D® API [11]. The
texture coordinate address of each pixel is computed by
following equation:

u'

v'
=

u

v
+

M 00 M 01

M 10 M 11

Du

Dv

where u, v are the source texture coordinates, and u’,
v’ are the resulting texture coordinate address. M is a
user-defined 2x2 matrix for scaling and rotating the
texture coordinates, and Δu, Δv are delta values of
texture coordinates defined in a second texture map
(referred to here as a distortion map), applied on the
same surface, to distort the source texture coordinates.
EMBM was originally used to represent bump mapping
effects by perturbing specular or diffuse environment
maps. Some types of consumer graphics cards can
accelerate this feature significantly, just like standard
texture mapping.

The simplest implementation using per-pixel texture
coordinate addressing does not create a new texture
image by painting pixels in it, but sets the source texture
coordinates in its distortion map. For example,

M : identity matrix
Δu = u - u’, Δv = v – v’.

It needs some extra processing, but it can enhance
quality of resulting image. Because the distortion map is
treated as a kind of texture image, when the distortion
map is magnified in the rasterization process, it can be
filtered with bilinear or trilinear interpolation. This
interpolation filtering can be hardware accelerated, and
processed at each pixel in the resulting image.

3.4 Implementation
From the argument so far, we implemented Parallax
Mapping by introducing the following values into the
equation of EMBM.

M00 = tanθu
M01, M10 = 0
M11 = tanθv
Δu = depth(u, v)
Δv = depth(u, v).

4.Estimating approximation distortion

Suppose that we make a texture mapped cylinder object
with a rough prism using Parallax Mapping. Fig.3
shows the top view of this object. In this figure, the
doted curved line is the side of the supposed cylinder,
the gray blocks are polygonal prisms which surrounded
by polygons, and the bold curves are the results distorted
by our approximation. Here you can see that the rougher
the polygonal object base, and the greater angle between
the distorted texture mapped surfaces and the viewer, the
more distortion occur.

60 deg

30 deg

0 deg

Fig.3 Distortion caused by depth approximation
Observation orientation

5.Results

We used a desktop PC with Pentium® III 500MHz and
ATI RADEONTM DDR 32MB graphics card. The
resolution of the texture image was 128 x 128, 24-bit
color depth. The corresponding depth data was 128 x
128, 8-bit depth. The output size was 640 x 480, 32-bit
color depth. Fig.4 shows the rendering results of a
Parallax Mapped single polygon compared to one with
standard texture mapped. The result of Parallax Mapping
shows the modification corresponding to motion
parallax, and the expression of the smooth solid shape of
the bricks. Furthermore, the drawing speed (434.50fps)
is more than 80% of that of texture mapping
alone(530.52fps).

An example that applied Parallax Mapping to the
facial expression using a color picture and actual depth

information acquired with three-dimensional scanner is
shown in Fig.5. The opposing pictures on the right and
left are the results of drawing from the different
observation angles, respectively. The upper set is the
result of ordinary texture mapping and the lower set is
result of Parallax Mapping. With an uncross-eyed stereo
match to these pictures, a smooth form of a nose is
perceivable from the results of Parallax Mapping. So it
was shown that Parallax Mapping can express the per-
pixel binocular disparity correctly.

Fig.6 is an example of applying parallax mapping to
solid model using a cylindrical expression with 8-sided
prism model. For comparison, the top part of each
cylinder shows the result of texture mapping with a 32-
sided prism model. This example shows the result for the
case that the polygon is set to the interior of the cylinder.
The left image is the result of ordinary texture mapping
and the right image is the result of Parallax Mapping.
There is mismatching of the texture pattern at the
boundary of top and bottom parts of the left image. In
contrast, the texture pattern is matched for a wide range
on the right side. So by using Parallax mapping, it is
shown that the shape of cylinder is represented correctly
by per-pixel texture coordinate shift corresponding to
motion parallax.

 Fig.6 Examples of solid model
Texture Mapping(left) and Parallax Mapping(right)

6.Conclusion

We present Parallax Mapping to represent motion
parallax on a single polygon in real-time. It simplifies
the image-based approach in order to be fast enough to
use with complex polygonal objects. It also enhances
the quality of the rendering result by using per-pixel
texture coordinate addressing. Attention must be given
to the undesirable distortion from its approximation, but
for the general case it performs extremely rapidly with
today’s graphics hardware acceleration.

Fig.4 Results of Texture Mapping(left)
 and Parallax Mapping(right).

References

[1]Ed Catmull: “A Subdivision Algorithm for Computer
Display of Curved Surfaces”, Ph.D. thesis, University
of Utah, 1947.

[2]Paul S. Heckbert: “Survey of texture mapping”,
IEEE Computer Graphics and Applications, 6(11),
56-67, November 1986.

[3]T. Takahei, M. Inami, Y, Yanagida, T. Maeda and S.
Tachi: “Real-time texture mapping method for stereo
viewing”, Proc. of VRSJ 5th Annual Conference,
189-192, September 2000 (in Japanese).

[4]T. Takahei, T. Kaneko, M. Inami, N. Kawakami, Y.
Yanagida, T. Maeda and S. Tachi: “Real-time 3D
rendering method by using texture maping”, Proc. of
VRSJ 6th Annual Conference, 315-318, September
2001 (in Japanese).

Fig.5 Examples for stereo matching
Upper: Texture Mapping, Lower: Parallax Mapping

[5]Gouraud, H.: “Continuous shading of curved
surfaces”, IEEE Transactions on Computers, 1971,
20, 623-628.

[6]Sim Dietrich: “Dot Product Lighting”, Technical
report, NVIDIA Corporation, www.nvidia.com,
November 2000.

[7]James F. Blinn: “Simulation of wrinkled surfaces”,
Computer Graphics (Proc. of SIGGRAPH’78),
volume 12, 286-292.

[8]Mark J, Kilgard: “A Practical and Robust Bump-
Mapping Technique for Today’s GPUs”, Technical
report, NVIDIA Corporation, www.nvidia.com,
February 2000.

[9]Cook, R.: “Shade trees”, Computer Graphics (Proc. of
SIGGRAPH’84), 13(3), 223-231.

[10]Oliveira, M., Bishop, G. and McAllister, D.: “Relief
Texture Mapping”, ACM SIGGRAPH2000, 359-368.

[11] Microsoft DirectX , www.microsoft.com, 2000.

