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Abstract

Real-world objects exhibit rich physical interaction be-
haviours on contact. Such behaviours depend on how heavy and
hard it is when hold, how its surface feels when touched, how it
deforms on contact, etc. Recently, there are thus growing needs
for haptic exploration to estimate and extract such physical ob-
ject properties as mass, friction, elasticity, relational constraints
etc.. In this paper, we propose a novel paradigm, we call hap-
tic vision, which is a vision-based haptic exploration approach
toward an automatic construction of reality-based virtual space
simulator, by augmenting active vision with active touch. We
apply this technique to mass, elasticity and relational constraints
estimation, and use these results to construct virtual object ma-
nipulation simulator. Experimental results show that feasibility
and validity of the proposed approach.

1.Introduction

Recently, haptic interface has been intensively studied ([2]-
[4]) for providing a sense of touch in virtual environments, which
is an essential modality to explore, recognize andunderstand the
real world. Real-world objects exhibit rich physical interaction
behaviours on contact. Such behaviours depend on how heavy
and hard it is when hold, how its surface feels when touched,
how it deforms on contact, and how it moves when pushed, etc.
These aspects of visual and haptic behaviour provide important
interaction cues for manipulating and recognizing objects in vir-
tual environments. There are thus growing needs for haptic ex-
ploration to estimate and extract physical object properties such
as mass, friction, elasticity, relational constraints etc.

Thus, we ahve proposed a novel paradigm, we call haptic vi-
sion, which is a vision-based haptic exploration approach toward
an automatic construction of reality-based virtual space simula-
tor. As Figure 1 shows, Haptic vision is an augmentation of
active vision with active touch, which designs and controls a
contact to an object so that object’s behaviours are caused most
effectively, based on 3D shape and posture analysis by active
vision. Physical object properties are then estimated through
motion analysis on real-time range and color images observing
object’s behaviours against a known contact.

The work on physical object properties from interaction with
robots had first introduced in the early 1980 [1]. While recent
progress in haptic exploration with dextrous robot hands([2]-
[6]), which requires complex robot control and grasping tech-
nique, we believe this is the first non-contact vision-based auto-

matic approach for haptic exploration to model both geometrical
and physical properties of real-world objects.

We apply this technique to mass, elasticity, and relational con-
straints ([11]) estimation, and use these results to construct vir-
tual object manipulation simulator. Experimental results show
that feasibility and validity of the proposed approach.
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Fig. 2: Haptic Vision System

2.Haptic Vision

Haptic vision paradigm is motivated by recent development of
a real-time handy laser range finder [8] which provides a func-
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tion equivalent to human tactile sensing. That is, it acquires both
static and dynamic geometrical information, i.e., it acquires 3D
shape and deformation from real-time images, without contact-
ing to the object and thus without dextrous robot hands.

Figure 2 shows our haptic vision system. Our haptic vision
sensor, mounted on a robot hand, consists of a CCD camera and
a real-time range finder where a CCD camera plays a roll of
an ”eye” to obtain a wide view of the scene, and a real-time
range finder plays a roll of a ”hand” to obtain 3D geometrical
information by exploring surfaces of objects within a reach of a
human hand. The other robot hand with a force-feed back sensor
(a Load Cell Unit) makes a contact to cause object’s behaviours.

Figure 3 shows our haptic vision approach.
In step1, we first observe an object by active vision to extract

and model its geometrical properties such as 3D shape, surface
texture and a posture using our haptic vision sensor.

In step 2, we design and then make a contact to an object by
active touch based on 3D shape and posture analysis by active
vision. Such contact causes object’s behaviours most effectively
and stably. We call this dynamic scene of object’s response as a
pilot event where a prototypical behaviour due to the objective
physical property is exhibited on response to a known contact
force. We then estimate a next viewpoint from which the pilot
event is observed most efficiently and stably, and move a haptic
vision sensor to observe the pilot event by active vision, in step
3.

In step 4, physical object properties and relational constraints
among objects are then estimated and extracted through motion
analysis on real-time range and color images observing object’s
behaviours.

In step 5, we generate a scene representation as a relational
constraint graph where each node represents an object with both
geometrical and physical properties, and each arc represents

adjacency relation with a degree of freedom in both rotation
(� � � � �) and translation (� � � � �).
　 Above steps are repeated for each object in the scene until the
scene representation for a reality-based virtual object manipula-
tion will be completed.

3.Haptic Exploration

We first observe an man-made object in an indoor scene us-
ing our active shape inferring algorithm [9]. Our active vision
system automatically acquires a set of principal views as shown
in Fig. 4 based on the symmetry in stable postures, which are
mostly orthographic and are efficiently used for 3D shape recon-
struction.

3.1 Estimating Mass

Our approach to mass estimation is as follows. In the current
stage, we assume that both static and dynamic friction coeffi-
cients,�� and��, of an object are given.

In step 1, we first estimate the plane of symmetry� passing
through the center of gravity(COG), from a set of principal views
acquired by our active vision system, as shown in Fig. 4.

In step 2, we design and make a contact by ”Push” operation
by a robot hand, at a point�� of the intersection of its surface
and�, with the direction of a contact force� parallel to the
horizontal plane and also included in the plane of symmetry, as
shown in Fig. 5. Such contact force exerts on a center of fric-
tion and causes a pilot event for mass extraction where an object
moves straight in the direction of� with no rotation and with no
change in its posture.

In step 3, we measure transition of� during ”Push” contact
using a force-feedback sensor mounted on a robot hand. In gen-
eral, a friction force� starts to increase at a contact point��, and
rises up sharply until it reaches to the maximum friction��� at



��, at which the objects starts to move. Then, it drops a little,
and goes into a steady state at���, as shown in Fig. 6. We also
track an object from a top view point during contact to confirm
its straight movement, as shown in Fig. 7.

In step 4, we then estimate a mass� from ��� and���
respectively as,

��� � ���� (1)

��� � ���� (2)

where� is a gravity force.
Fig. 8 and Table 1 shows mass estimation results of a ceramic

coffee cup on a base surface of three material types, wood, rub-
ber, and steel, respectively. Error rates show that mass estima-
tion with �� are performed with reasonable accuracy except on
a rubber surface of large friction coefficient.

Since we estimate a mass from eq.(1) and (2) assuming that
friction coefficients�� and�� are known, the mass estimation
accuracy thus depends on the stability of�� and�� in various
environments where they are measured. We first estimate both
�� and�� from eq.(3) and (4) by measuring an angle	, a time

 and a length� while an object is sliding, as shown in Fig. 9.

�� � ��
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Fig. 4: Principal Views and Silhouettes of a Cup Aquired
by Our Active Vision System
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Fig.5: Contact for Mass Estimation
We then evaluate the estimated�� and�� to confirm their sta-

bilities against changes in both temperature and humidity. Fig.
10 and 11 show Values the measurement results of�� and��
v.s. temperature and humidity changes, respectively. The results
show that�� is more stable than��. Table 2 shows the mea-
surement of�� and�� using a sliding method as shown in Fig.
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Fig. 7: Trajectory of straight movement

9. Fig. 9 Table 3 and Table 4 show the results of mass estima-
tion on a ceramic cap, an aluminum block and a ceramic cup
with craft tapes stuck on its bottom surface for static (��) and
dynamic (��) friction coefficient. The stability evaluation of��,
and�� in Fig. 10 and in Fig. 11,and the mass estimation results
in both Table 3 and 4 show that mass estimation with�� is more
stable, with maximum error of 7.4010%.
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Fig. 8: Contact Force Transition for a Cup on Wood, Rub-
ber and Steel Plate Surfaces

3.2 Estimating Elasticity

Our approach to elasticity estimation by ”Push” is as follows.
When estimating elastic coefficient of an object using Push op-
eration of the robot hand, we have to apply a contact force that
deforms the it but does not make it move nor rotate since we
have to know the deformation of elastic object. So, we have to
apply a contact force perpendicular to the support plane that goes
through the object’s the center of gravity(COG) while keeping it
on the support plane in the stable posture. If we limit the candi-
date support plane that is taken through the scene observation to
level or horizontal one, we can define the contact force as per-
pendicular to the object and its the direction of a contact force
goes through the 2D mass center of the top view contour image.
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Table 1: Mass Estimation Results with��
Base Contact Static Fric. Estim- Real Error

Surface Force(gw) Coeff.:�� ated(g) (g) (%)

Wood 46.8 0.217 215.7 221 2.4
Rubber 94.9 0.533 178.0 221 19.5

Steel Plate 64.2 0.306 209.8 221 5.1

16.00 ℃
temperature

73.00 ％
humidity

L

θ

Fig.9: Measurement of friction coefficient

Table 2: Result of friction coefficient measurement

Base Surface Angle Time Distance Stasic Dynamic

(Real Mass) (�) T(s) L(m) Fric. �� Fric. ��

Aluminum 15 14.25 0.38 0.26709 0.26742

(282g)

Ceramic 11.8 9.71 0.4 0.209 0.203

(290g)

Craft tape 11 73.81 0.4 0.19438 0.19436

(378g)

Table 3: Mass Estimation Results with��

Object Contact Static Fric. Estim- Real Error

Force (gw) Coeff.:�� ated(g) (g) (%)

Aluminum 174.9 0.2679 261.09 282 7.413

Ceramic 146.2 0.208 279.92 290 3.473

Craft tape 201.7 0.1943 403.59 378 6.77

Table 4: Mass Estimation Results with��

Object Contact Fo- Dynamic Fr- Estima- Real Error

rce:� (gw) ic. Coeff.�� ted� (g) (g) (%)

Aluminum 175.6 0.2674 262.52 282 6.905

Ceramic 110.5 0.203 212.47 290 26.73

Craft tape 197.2 0.19435 394.79 378 4.44



Note that the�� and�� components of the 2D mass center of
the top view contour image (��, ��, ��) should coincide with��
and�� components of the center of gravity (�� , ��, ��). Thus,
the elastic object to be observed should be plane symmetry and
should have at least one plane of symmetry that is perpendicular
to the support plane. We have adopted a cylindrical object for
the elastic coefficient estimation, since cylinder is the shape that
satisfies these condidions.

In step 1, Take a top view of the object by observing it from
a perpendicular point. Then estimate the 2D mass center of the
top view contour image and the plane of symmetry that includes
the the center of gravity.

In step 2, Apply an external force to the object by the Push
operation of the robot hand. The speed of the Push operation is
constant and the point of contact is at the intersection�� of the
object surface and a line perpendicular to the object that goes
through the 2D mass center of the top view contour image����

estimated from the top view shown in figure 12 (a). The direction
of the force is downward, that is the action line of the force goes
through the contact point�� and the center of gravity that is
perpendicular to the support plane.

In step 3, Apply an external force as shown in figure 13 while
monitor its strength using a force feedback sensor attached onto
the robot hand. Figure 13 is a graph that shows the transition
of contact force when the object deforms by the external force
� applied to the object. The period from�� to �� corresponds
to the operation gradually applying downward force by pulling
the force feedback sensor down. The period from�� to �� is the
waiting time in which we are waiting until the elastic oscillation
calms down while keeping the pressure constant.�� is the time
when the external force is removed.

In step 4, Observe the deformation using a camera and a range
finder as shown in figure 12 (b). We have observed the disposi-
tion of the point�	, that is the intersection of object surface and
a line parallel to the support plane which goes through the 2D
mass center�	 of the 2D side view image, while placing the
camera to the position (Pos.��) shown in figure 12 (b). What
we have to know is the disposition of the point�	 in the z-axis
direction in the world coordinate system (�
, �
,�
) shown in
figure 12 (b). The disposition (�) can be obtained by subtracting
� from �����, where����� is the original height of the object
before applying force and� is the height observed in the image
under pressure by converting the number of pixels that shows the
extent of the object in�	 direction in the side view image.

� �
���

���
� (5)

� � ������ ��� (6)

In step 5, Estimate the elastic coefficient E from the disposi-
tion (�) and force� from the force feedback sensor using the
following equation.

� � �� (7)

Figure 14 is a graph that shows the relation between the exter-
nal force� and time�, and between the disposition (�) and time

� where�� is the time when the external force� is started to be
applied, the period from�� to ��is the period of constant pres-
sure waiting the elastic oscillation calms down and�� is the time
when the external force is removed. Table 5 shows the result
of experiment using two springs of different elastic coefficient.
Through this experiment, we have confirmed that the elastic co-
efficient can be estimated stably within the error of 5 percent or
so.
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Table 5: Elastic Coefficients Estimation Results

Outside Dia- Height Estimated Real Error

meter (mm) (mm) (kgf/mm) (kgf/mm) (%)

Spring 1 32.0 65.0 0.390 0.37 5.41
Spring 2 45.0 80.0 0.794 0.76 4.57
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4.Reality-based Virtual Object Manipulation

We construct a virtual object manipulation simulator from a
scene graph representation generated by haptic vision, with the
number of objects, their 3D shape, mass, elasticity and relational
constraints.[11] Figure 15 (a), (b) show a system configuration
of our VR simulator and some scene of ”Pick Up” manipulation
with a Cyber Glove. Given the scene graph, our ”Pick Up” sim-
ulation of the upper part causes no change in both rotation and
translation of the lower part for two separate objects. Conversely
the same ”Pick Up” bring up the lower part together for a single
(glued) object.

5.Conclusion

We have proposed a haptic vision paradigm for a vision-based
haptic exploration as an augmentation of active vision with ac-
tive touch which causes object’s prototypical behaviours to be
observed by active vision. Preliminary experimental results, on
mass estimation, elasiticity estimation, relational constraints es-
timation, presented in companion paper [11], and automatic con-
struction of virtual object manipulation simulator shows the fea-
sibility and validity of the proposed approach.
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