

The Virtual Debugging System for Embedded Software
Development

Yi PAN, Norihiro ABE, Kazuaki TANAKA

Kyushu Institute of Technology,
689-4, Kawazu, Iizuka-shi, Fukuoka-ken, 820-8502, JAPAN

panyi@sein.mse.kyutech.ac.jp

Abstract:
The development cycle of an embedded system should
be shortened now. However, in order to perform rapid
product development, there are various problems to be
solved. Especially, in development of the embedded
software which controls embedded machines, as debug-
ging the embedded software cannot be developed until
the system (hardware and mechanism) is completed, loss
of time in development arises and the progress of the
whole product development will be inhibited greatly. In
this research, we build a virtual machine in virtual space,
and create an interface between an embedded software
and virtual machine. It is considered that embedding the
software embedded in the real system into a virtual ma-
chine, and working the virtual machine.

Key Words: embedded system, virtual reality, embed-
ded software,

1. Introduction
Virtual reality is the general term of the artificial world
which is made by computer. It is the system which gen-
erates the temporary information world working on hu-
man feeling and presents the actual image artificially.
Moreover, using this system, various information which
one wants to know can be experienced completely as if it
mere real. Virtual reality as a method of raising presence
is considered in many applicable fields, such as a de-
sign, a simulation or a game, and education.

A computer system which is embedded in various kinds
of apparatus and performs the control is called an em-
bedded system. This embedded system will be applied to
all the household electric appliances, such as not only
industrial apparatus but television, a refrigerator, a mi-
crowave oven, a cellular phone, etc. The development
cycle of an embedded system should be shortened now.
However, in order to perform rapid product develop-
ment, there are various problems to be solved. Espe-
cially, in development of the embedded software which
controls embedded machines, as debugging the embed-
ded software cannot be developed until the system (hard-
ware and mechanism) is completed, loss of time in de-
velopment arises and the progress of the whole product
development will be inhibited greatly. Moreover, if de-

velopment takes time, when software is completed, the
problem may occur that hardware has already shifted to
the architecture of the next generation. In this research,
we build a virtual machine in virtual space, and create an
interface between an embedded software and a virtual
machine.

As an example of embedded apparatus, we take up the
card printer used to print a credit card, a student identifi-
cation card, etc. A virtual machine is constructed, the
control function (virtual driver) which operates each part
is defined, and an embedded software is performed on
the embedded MPU emulator which is prepared before-
hand. And the request from embedded software can be
detected because a virtual driver accesses the memory
and register on an emulator, and the behavior of the ma-
chine according to the request is rendered in virtual
space. Using such a technique, the simulation of the
printing process of a card printer is carried out, and it is
tried to debug an embedded software.

2. System configuration
OpenGL

 In this research, in order to draw (construct) virtual real-
ity space more simply, 3 dimension graphics library
"Open GL" was used.

LightWave3D

LightWave3D is a modeling tool for creating a 3-dimen-
sional object, LigtWave3D modeler application adds sub
division surface modeling technology to the polygon
modeling which edits the polygon and the point (polygo-
nal vertex). Consequently the form creation with high
flexibility is possible. This research creates 3D model of
a virtual machine using LightWave3D.

MFC

Microsoft Foundation Class Library is a class library for
building the Windows application framework which can
be used by Visual C++, and is used for development of
Windows application and a component. Using MFC,
GUI of application can be created easily.

December 4-6, Tokyo, JAPAN

ICAT 2002

3. Introduction of a simple model
As an example of a virtual machine, the card printer
used to print a credit card, a student identification card,
etc. is taken up, and the detailed condition is described.
Unlike the real machinery, since a virtual machine does
not need to model the frame which supports a mecha-
nism, what is necessary is just to mount the mechanism
parts which actually work, the burden of modeling work
is comparatively light.

3.1 The flow of a card printer of operation
The simple model used for this research is a thermal
transfer type card printer, it forces the heated printing
head on the ink ribbon which applies solid ink thinly,
melts ink, and the ink is transferred on paper.(Fig.1) Ink
consists of 5 colors: Cyan, Magenta, Yellow, Black, and
OP (printed surface is protected in transparent meltdown
ink), and each color is printed on a card during 5 times.
Moreover, in case each color is printed, ribbon rolling-
up processing is performed first so that the boundary line
of the color of an ink ribbon may come to the position of
a thermal head (it is called ribbon search).

Fig.1 The sketch of a mechanism model

3.2 the model of mechanism

 Fig.2 The model of mechanism

The sub assembly name of a mechanism model and the
function are shown in Fig.2.

Delivery part: it sends out a card from a card cassette.

Conveyance part: it sends the card to a printing position;
and returns a card to a printing position; send a card dur-
ing printing; discharge a printed card.

Ribbon part: it rolls round the ribbon; detect the color of
a ribbon.

Head up/down part: it makes a head go up and down.

3.3 The model of data flow
The sub assembly name and function of a data flow
model are shown below:(Fig.3)

Image buffer: Large scale RAM which stores image data
(SDRAM is used);

Reception DMA: The image data sent by the host is
transmitted to the Image buffer. CPU (embedded soft-
ware) specifies the head address of the image to be
printed and the number of transmission bytes.

Printing DMA: The specific range of a image buffer
(data for one line) is transmitted to a thermal head. CPU
(embedded software) specifies the head address of the
image to be printed, and the dot range of the thermal
head conducted (a start position and an end position +1).

Thermal head: it prints according to the data of Printing
DMA.

Fig.3 The model of data flow

4. Virtual machine creation
Although OpenGL has all primitives necessary, how-
ever, since creation of a complicated object requires time
and effort using OpenGL, LightWave7.0 that is the ex-
clusive tool of 3D model creation was used, and 3D
model was created for every part of the system to be
modeled. Moreover, since LightWave7.0 is equipped
with the library for accessing an object from an external
program, the created model can be used without adding a
hand as it is. (Fig.4)

 Fig.4 The Virtual Machine model of a card printer

5. Input and output specification of Composition
apparatus with our system:
We assume that the system is memory mapped I/O that
is input and output port and the memory are arranged in
the same address space. In order to distinguish from an
ordinary memory merely, the address currently assigned
to input and output is called I/O register.

5.1 The example of input and output specifica-
tion of Composition apparatus
The card printer is consisting of many composition appa-
ratus, such as a motor and a sensor, the I/O specification
of a stepping motor used for a conveyance motor must
be described in detail.

Table 1. The control register of a stepping motor

Bit： 7 6 5 4 3 2 1 0
 － － － － － Enb Cwb Clk
R/W ： － － － － － R/W R/W R/W
A stepping motor is controlled by the register as shown
above. (Table 1.)

Bit7~3: In reading mode, 0 is always read and rewriting
is invalid.

Bit 2: specifies the excitation state of a stepping motor.

Bit 1: specifies the drive direction of a stepping motor.

Bit 0: the phase clock input of a stepping motor, when
the clock changes from 0 to 1, a motor is go forward one
step

5.2 Creation of the virtual driver class
Referring to the input and output specification of com-
position apparatus, to permit embedded software to
communicate with a stepping motor in a virtual machine,
the stepping motor class is defined to read/write the cor-
responding register. (Fig.5) Therefore, a virtual machine
detects the operation request from the embedded soft-
ware, and a virtual machine will be controlled by the
embedded software.

The created STPMotor class
class STPMotor{
prevate:
 unsigned Enb ; // the excitation state

 unsigned Cwb ; // the drive direction
 unsigned Clk ; // the phase clock
public :
void SetEnb(unsigned en);// specifies the excitation

//state
void SetCwb(unsigned cw);// specifies the drive

//direction
void SetClk(unsigned cl);// specifies the phase clock
unsigned GetEnb(); //acquires the present

//excitation state
unsigned GetCwb(); // acquires the present drive

//direction
void MotorTurn(); //Motor rotation
}

Fig.5 The image of a Virtual Driver

The control class corresponding to the control register
was created for each operation module, such as DC mo-
tor and a sensor, using the same method as the stepping
motor control class.

5.3 The interface between a software and a vir-
tual machine
The card printer consisting of many apparatus, such as a
motor and a sensor, and to make a virtual machine carry
out the same operation as the real system, the virtual
model of these composition apparatus should operate in
the same way as the real one. Then, to make the virtual
model of composition apparatus operate on virtual space,
the control function (virtual driver) for the virtual model
must be made. Moreover, it is necessary to create the
behavior function for realizing the motion of the mecha-
nism interlocked with other parts on the virtual space,
such as motors and sensors. In the real system, according
to software, CPU communicates with the register, gener-
ates various input and output signals, and communicates
with composition apparatus through an interface. In this
research, the emulator of an embedded microcomputer is
created and the embedded software is performed on this
emulator. The embedded software communicates with
the register of an emulator, further, the request of opera-
tion from the embedded software is detected, the virtual
driver of composition apparatus accessing a register op-
erates a virtual machine, and the behavior a virtual ma-
chine is displayed on virtual space. Moreover, the pre-
sent state of a virtual machine written into the register
corresponding to a particular emulator through a sensor

etc., and information required is feedbacked to embed-
ded software. Using this technique, the embedded soft-
ware can control a virtual machine as well as the real
system by creating the interface between a virtual ma-
chine and embedded software. (Fig6.)

Fig.6 The interface between a software and the vir-
tual machine

6. The emulation for embedded MPU
This time, we created experimentally the emulator of the
small one tip microcomputer (PIC16F84) for embedded
system made of Microchip Company. (Fig.7) About the
memory and the I/O of architecture of a tip, the array
variable of the same capacity is used as the real one.
About a processor basic command, the command func-
tion that carries out the same function is created as the
real one. Instead of rewriting the contents of a memory
and I/O by executing a processor command, a memory
array variable is rewritten by performing the command
function equivalent to a processor command. Using the
method described above, MPU is emulated. Fig.8 shows
a class of embedded MPU. In the class, the array of
memory and the processor command function are
defined according to the architecture of the real MPU.
Fig.9 shows a sample of the processor command func-
tion. INCF is a processor command which increments a
value of specified address.

Fig.7 The architecture of PIC16F84

In this research, we create the general-purpose drive
apparatus (i.e. stepping motors), and the program that

controls the virtual model. (Fig.10&Fig.11) When de-
bugging a program that controls the stepping motor us-
ing this debugging system, the same behavior as the real
one was obtained when the same program as that applied
to the real system are applied to the virtual system.

Fig.8 Mpu Class

Fig.9 The sample of processor
command function

Fig.10 An example of debugging a program
which controls the stepping motor

Fig.11 PIC Emulator

7.The application creation by Visual C++ and
the execution result
In order to offer a user friendly debugging environment,
a virtual debugging system application was created. Us-
ing this application, we can not only see the virtual ma-
chine, but also carry out the emulation of the hardware.
We also offer the interface for grasping the status of
debugging in real time, changing the viewpoint arbitrar-
ily, and controlling the advance of debugging using this
application. (Fig.12)

Fig.12 The virtual debugging system application

Fig.13 The situation under debugging (Cyan)

Fig.14 The situation under debugging (Cyan,
Magenta)

Fig.15 The situation under debugging (Cyan, Ma-
genta, Yellow)

Fig.16 One card printing end

8.Consideration
1. When debugging was performed with the application

created this time, execution speed (for animation)
changed from a few frames to ten frames per second
depending on the spec of computer. The number of
polygons of a 3D model and the low rendering per-
formance of a computer make it difficult for a virtual
machine to work in the same speed as the real one. It
is really difficult to work a virtual machine as fast as
the real one. Considering the debugging process of a
virtual machine, it is desirable to permit a programmer
to see the state of the machine working at arbitrary
speed.

2.To make the system construction easy, the friction
coefficient of a machine part, the resistance under op-
eration, etc. are not taken into consideration. In order
to realize the simulation of more realistic printing sys-
tem, it is necessary to consider these influence ele-
ments. This should be tackled as a future subject.

3.Whenever a model changes in virtual machine crea-
tion, we have to perform re-creation. Considering the
efficiency, since the Standards Part is actually used in
many cases in a machine design, constructing such a
3D model database of Standards Part will improve
such problems to some extent.

4. When a part model of a virtual machine is replaced
with a new one, the current system forces a developer
to define a new virtual driver. In order to solve this, it
is necessary to take in the concept of the design pat-
tern and to consider that the created virtual driver
(program) is reusable.

9.Conclusion
In this research, the virtual machine was built and the
virtual driver that controls a virtual machine was created.
As the result, it is known that embedded software de-
bugging using the virtual machine is possible. Not only
debugging of embedded software but debugging the
mechanism composition of a virtual machine can also be
preformed by visualizing debugging process. Moreover,
the embedded software that is completely debugged can
be shifted to the real system smoothly without any
change. However, many problems are still remaining
including the augmentation of flexibility and the con-
struction of virtual space of high reality. Aside from ex-
panding the support range of the MPU emulation, we
want to make a system which helps as debug the compli-
cated embedded system consisting of FPGA and a sys-
tem LSI, etc.

Reference
1. “OpenGL Programming Guide”: Jackie Neider,

Tom Davis, Mason Woo, Addison-Wesley Publish-
ers Japan, Addison Wesley Professional, 1999.

2. Kouichi NAKAMOTO, Hiroaki TAKADA, Kiitirou
TAMARU: “The present condition and the trend of
embedded system technology”, Vol.38, No.10-004,
1997.

3. Michael Barr: “Programming Embedded Systems in
C and C++”, Vol.1, 1999.

4. Data Sheet of PIC16F84 etc., Microchip Technol-
ogy Inc.

5. “PIC practical guidebook”, Tetsuya Gokan, Gi-
jyutsu Hyouron Sya, 2000.

6. Transistor technology, “A guide to one tip micro-
computer practice”, Vol.36, No.5, pp.163-240,
1999.

