

Mixing 3D Polygons and Relief Textures for Virtual
Objects
Junae Kim

Virtual Reality Research Center,

Computer and Software Technology Laboratory
Electronics and Telecommunication Research Institute (ETRI),

Daejon, Korea

Gerard J. Kim

Virtual Reality Laboaratory, Dept. of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH),

Pohang, Korea
gkim@postech.ac.kr

Abstract
Most often, a virtual environment is organized as virtual
objects represented and rendered with 3D polygonal
models. Image-based objects have been suggested as a
probable alternative representation for its advantage in
providing constant/acceptable frame rate when the 3D
representation contains too many polygons [7].
However, since it is difficult to provide interaction (a
vital component in virtual environments) through image
based objects, a natural extension is to keep both
representations, 3D and images, and switch between
them depending on the functional requirement of the
object [4]. Still, this may introduce a significant popping
effect when one representation is switched to the other.
This paper thus proposes to subdivide an object, and mix
the two representations within one object (at the cell
level) so that a smooth and gradual transition can be
made. As for the image based representation, we use the
Relief Texture method proposed by [8]. The criteria for
object subdivision are based on the object structure,
visibility, and polygon counts (per cell). The proportion
of representation mixture is determined dynamically by
factors like the viewing distance, angle, total allowable
polygon counts, object importance, etc. The application
of Relief Textures on the subdivision structure is made
efficient with only three texture operations per object.
Overall, the proposed method provides a way to
maintain an acceptable or constant frame rate with
selective perceptual detail and interactivity in a virtual
environment with multitude of virtual objects.

Key words: Image based Objects, Rendering, Relief
Texture, Virtual Objects, Virtual Environments

1. Introduction
Most often, a virtual environment is organized as a
collection of virtual objects represented and rendered
with 3D polygonal models. Image-based objects (or
image based rendering technique in general) have
recently been suggested as a probable alternative to 3D
polygonal models for its advantage in providing constant
frame rate [7][8]. That is, the computation or graphic
processing time required to render image based objects
is proportional largely only to the size and number of the
images (which remains more or less constant) being
manipulated to generate the correct view. The added
bonus of using image based objects is the photorealism,
while providing a roughly equivalent realism would
usually require too many polygons to be rendered in real
time (especially if there are many visible objects at one
time). Rendering one or more image based objects may
be achieved in real time depending on the required
quality (e.g. image or sampling resolution), the specific
algorithm, overall number of objects, etc. However,
image based techniques (like the image based objects)
are not suited for close range or direct interaction (due to
depth inconsistency) or behavior representation (e.g.
motion).

In an application like a virtual museum, for instance,
virtual artifacts usually require reasonably high realism
and interaction with them, and even some behavior. An
interactive frame rate may not be possible when
rendering all the visible objects due to the high number
of polygons (on a desktop PC). A possible approach is
to keep both image based representations and 3D
polygonal models and switch between them (for actual
rendering) depending on, for instance, their distances

December 4-6, Tokyo, JAPAN

ICAT 2002

from the user, while maintaining the right mix of
respective representations among the objects for
interactive rendering of the scene.

One problem still remains: the delay, break, or popping
effect in switching from the image based representations
to the 3D polygonal models due to the overhead in
loading a high number of polygons at once. Such a
popping effect and large variation in the frame rate is
known to degrade the presence and the quality of the
virtual experience [10][11].

In this paper, we first propose to use the Relief Texture,
an image based object technique developed by [7][8],
and 3D polygons to represent a virtual object. We chose
the Relief texture for its efficient and fast
implementation that takes advantage of the texture
mapping hardware available in the today’s graphics
board. We further propose to subdivide an object and
provide the dual representation for each subdivision.
Thus, a virtual object is in part represented using images
and in part by 3D polygons (See Figure 4). We will call
this approach, the “mixed” representation. This allows a
gradual switch between the image based and 3D
polygonal representations. The subdivision technique
also has other advantages in providing better visibility,
behavior representation and improved interactivity.

In the next section we survey previous work in image
based techniques (especially, image based objects) and
other attempts in the “hybrid” representation. We also
give a short review of the Relief Texture [8], its
limitations in providing complete visibility, and
interactive behavior. In Section 3, we give an overview
of our approach in subdividing the virtual object and
applying the mixed representation. It also covers more
detailed topics relevant to the design of a single virtual
object such as the criteria for subdivision, the data
structure and rendering algorithm, and image based
behavior. The next section talks about the design of a
virtual environment using the virtual objects with the
mixed representation. Finally, we conclude the paper
with a summary and plans for future work.

2. Previous Work

2.1. Hybrid Representation
Images and 3D geometric models have been used
together in a virtual environment, separately for partial
scenes or predetermined objects. This approach is
usually referred to as the hybrid representation. A typical
application of hybrid representation is in the treatment of
the background objects, or objects beyond the portal as
images [1][2][3][14]. These approaches generally lack
object-level interactive behavior.

The image based object approach [7] models individual
objects (as opposed to a partial scene) using image based

rendering techniques. Others proposed to regularly
sample object images 360 degrees around the object, and
to generate an arbitrary viewpoint, either by simply
retrieving the image that represented the closest
viewpoint or interpolating among few images with the
closest viewpoints [12][15][16][17]. These approaches
generally require a large number of images. Schaufler
proposed the concept of the Nailboard and Imposter that
replaced a far away 3D object with a texture in real time
[5][6]. The texture would have to be regenerated
intermittently as the user changes one's viewpoint. Yoon
et al. has proposed to switch between image based and
3D representations at a closer distance from the user
based on the human's capability to recognize depth
within the object in a stereoscopic virtual environment
[4]. Oliveira et al has proposed an approach called the
Relief Texture that uses only six images around an
object and efficiently warp them according to the
viewpoint [8]. We adopt and refine the Relief Texture
for our “mixed” representation that employs both images
and 3D polygons within a single object.

2.2. Relief Texture
The two major approaches in the image based rendering
approaches are the image warping [9] and the view
interpolation [12][13]. In the warping approach, a new
pixel value, 2x , for a given new view point, 2C& , is

computed using the pixel from the reference image, 1x ,

taken from view point, 1C& , and the image projection

matrices, 1P and 2P . Below is the image warping
equation given by McMillan [9] (note the equality is
only up to scale).

11
1

221
1

212)()(xPPCCPxx −− +−= &&& δ

This basic equation requires, for each input pixel, a total
of 13 multiplications and 7 additions. On the other
hand, a (correct) view interpolation method [13] requires
a prewarp of two or more reference images to a
reference direction, an interpolation between them, and a
postwarp of the resultant image to the desired view point
(e.g. the image plane is perpendicular to view direction
toward the object/scene). The prewarping of reference
images can be done off-line. These approaches were
originally devised for rendering a scene rather than
individual objects. The Relief Texture mapping works
by, representing an object by a six sided textured
bounding box of the object (See Figure 1). In fact, the
object is created as a six sided Layered Depth Images
[18], whose texture and depth information is derived by
an orthogonal projection of the 3D model onto the six
surfaces. The object textures are warped according to
the changing view point.

Consider applying the view interpolation technique to a
scheme like above. We can try to generate the correct
texture by warping and interpolating two or more
reference images. However, an extra warping would be
needed to account for the orientation of the final image
plane (that contains multiple objects) whose optical axis
would be different from the each view direction toward
the individual object. Plus, a scaling operation is needed
to account for the view distance as well (See Figure 2).

Relief Texture technique has formulated a way to
directly compute the warped texture coordinate, ixr from

the reference pixel sxr , using the corresponding 3D

point, x& ,the reference view point, sC& , and the new

view point tC& . Here, for lack of space, we only show
the final formula.

),(1
),(
),(1
),(

3

2

3

1

ss

sss
i

ss

sss
i

vudisplk
vudisplkvv

vudisplk
vudisplkuu

+
+

=

+
+

=

where (su , sv) and (iu , iv)represent the source and

target pixel, disp(su , sv), the orthogonal displacement

associated with the source pixel. 1k , 2k , and 3k are
constants for the given configuration of source and
target cameras.

The detailed formulation is given in [8], and for each
surface of the object considered, it only requires 6
multiplications and 4 additions, which is considerably
less than the naive approach. Even though in a normal
virtual environment, there would be many number of
objects, and there would be (at most) three textures to
consider for each object, this reduced amount of required
computation at least gives some hope to using image
based techniques for real time virtual environments.

There are some further considerations that need to be
made to apply Relief Texture to real time virtual
environments. The first is the visibility problem. Just

using six orthogonally projected textures (with depth
information) can introduce many “holes” for objects
with concavity. If the view point comes within the
textured bounding box, the object will not be visible any
more. This is usually not a problem unless the bounding
box has large empty spaces (not tight). The aspect of
interaction and behavior must also be considered, as
these are very essential to making an effective virtual
reality experience. It is generally difficult to express
behavior, like motion, or implement some kind of 3D
interaction when the object is represented in images.

3. Mixed Representation for a Single Virtual
Object
To address the problem in just using the image based
approach, like the Relief Texture, or using a naive
hybrid approach, we propose to subdivide the object and
“mix” different representations for different parts of the
object. That is, we maintain a dual representation for
each subdivision, and select the appropriate
representation according to some criteria like invocation
of interactive behavior, maintenance of minimum user
perception level and frame rate. We call this approach,
the “mixed” representation (See Figure 4).

Fig. 3 Oliveira [8] has formulated a way to efficiently
compute ixr , the new texture coordinate when a new
view point is given.

Fig. 1 With Relief Textures, an object is modeled using
a six sided textured box with depth information [8].

Fig. 2 Applying the view interpolation technique to
Relief Texture. In order to compute the warped texture
coordinates, an extra warping and scaling operation are
needed.

3.1. Mixed Object Node: The Data Structure
In order to support the mixed representation, we have
implemented an integrated scene graph node in OpenGL
[19]. The data structure resembles an octree, in which
parent nodes are further subdivided into children nodes
in a recursive fashion. Each intermediate node represents
a particular subdivision and contains the relevant 3D
polygons, six orthogonally projected textures, pixel by
pixel depth values, the normal vector of the six faces,
and other miscellaneous information. The textures and
depth information are easily acquired from the 3D
synthetic object by an orthogonal projection onto the
sides of its bounding box (we do not consider
representing real objects in this paper). We have
ignored the redundantly represented information across
the subdivision boundaries for now

3.2. Subdivision Criteria
The criteria for subdividing an object was as follows. In
the spirit of addressing the visibility and hole problem,
subdivisions were made for parts of the object with
substantial concavity. Ideally, a convex decomposition
can be applied for this purpose, however, we have done
the subdivision manually. This way, holes can be
avoided as much as possible, when the object (or the
particular subdivision cell) is seen from arbitrary angles
with the image representation. The second criterion
considered was behavior and subobject independence.
For instance, if a motion behavior like rotating an arm,
or moving a finger is expected of the object, that part
would be designated as a subdivision (See Figure 7). A
drawer of a desk, or a book in a bookshelf would be
designated as a subdivision (assuming that the 3D model
of the subobject exists). Finally, we have considered the
number of polygons contained in one subdivision. It
would be desirable for the number of 3D polygons
contained in a subdivision to be kept within a certain
limit for preventing the popping effect in switching the
representation.

3.3. Rendering Algorithm
The rendering algorithm for the “subdivided” Relief
Texture is exactly the same as the original one. The only
difference is in that we repeat the process for each
subdivision in a back-to-front order. Note that we only
need to consider at most three textures per subdivision
(i.e. only three surfaces are visible at one time). Figure 5
illustrates the concept. However, if the subdivision
boxes overlap or not placed orthogonal to one another, it
can be difficult to figure out the rendering order. We
come back to issue in Section 3.6.

Fig. 4 Mixed representation of a virtual object. An
object is subdivided and each subdivision is represented
using 3D polygons or Relief Textures. (a) In this
dinosaur model (the full 3D model has about 10,000
polygons), the front part is rendered with 3D polygons,
and the rear parts enclosed with boxes are rendered
using the Relief Textures. (b) The Pokemon's stomach
(rendered with wireframe for illustration purpose) is
composed of polygons while other parts of the body are
rendered using the Relief Texture.

Fig. 5 The subdivision data structure.

3.4. Switching between Representations
Basically, the switching for subdivision should be based
on the human visual or depth perception. That is, for
instance, for a given subdivision, we switch from the
image representation to the 3D polygon model (and vice
versa), when each pixel of the texture projects to more
than one pixel on the viewing plane to avoid the aliasing
effect (we assume that the 3D model of the object is
highly detailed). In [4], we considered switching
between the image and 3D models at a theoretical
distance a human can start to detect depth within the
object. However, maintaining a constant and acceptable
(e.g. 10 ~15 Hz) frame rate is equally important in real
time virtual environments. Given positions, AP and

OP , of a user A and an object O, the angle between the

view direction and direction toward the object, AOθ , the
relative importance of the object is formulated as
follows.

)1,,,0(

)(cos)(),(

≤≤

⋅+⋅+
−

+⋅=

xwvu

OSxw
PP

vOPuOAI AO
OA

θ

)(OP is the number of pixels on the image plane that
corresponds to one texture pixel, and)(OS is the
screen space area of the virtual object. The values of the
weights are determined empirically.

3.5. Object Behavior
One of the goals of mixing (or maintaining) a dual
representation was to allow more flexible
implementation of object behavior. Although one
straightforward way to do it is, when needed, to have the
object representation switched to the 3D geometry and to
apply 3D transformation or vertex moving simulation (in
the case of motion behavior or deformation). This is still
problematic if the changed geometry happens to be
contained in one subdivision, because if it is to be
converted back to the image representations, it would
have to be updated according to the result of the

behavior. This is why careful subdivision would be
needed at the modeling stage.

Sometimes, if the lighting effect can be ignored to some
degree, we can simply apply 3D transformation or
simple behavioral effect (e.g. change color) directly to
the image representation (i.e. Relief Texture box) instead
as shown in Figure 7. This can be most useful when a
remote interactive behavior is needed (e.g. making an
object selection by ray-casting, then activating some
simple behavior).

3.6. Reducing the Overhead in Texture
Processing
If the number of the object subdivision is too high, the
overhead in the required texture operations can
negatively affect the overall frame rate and defeat the
purpose of subdivision in the first place. Figure 8 shows
the change in the frame rates for two objects, one
subdivided into 15 cells, and the other in 64 cells. The
object is initially placed near the user (and exist as 3D
polygonal model), moves away from the user (gradually
transits into the Relief Texture representation), then
comes back (converts back to the 3D representation).
Even though the transition from one representation to
the other is more or less smooth (no significant jumps),
the graph (Figure 8(a)) shows a drop in the frame rate
for the case of 64 subdivision object compared to that of
the 15. To solve this problem, we merge all the textures
of the children subdivisions, project them on the side of
a virtual bounding box that includes all the subdivisions
in consideration, and merge them as one texture (there
would be three merged textures needed as only three
textures are visible at one time). Figure 9 shows the
process. This allows the subdivision bounding boxes to
be overlapped or even placed in angles1.

1 If the subdivision bounding boxes are not orthogonal to
one another, new depth values must be computed to
correctly merge the textures.

Fig. 6 The back-to-front ordering for rendering the
subdivided Relief Textures. The back-to-front order is
(1)-(2)-(3), then (1)'-(2)'-(3)'. The order among (1), (2),
(3), or (1)', (2)', (3)' is unimportant.

Fig. 7 Pokemon's right arm is rotated as a Relief
Texture box.

Actually, this is similar to selecting the right subdivision
level (in the subdivision tree) for a part of an the object,
and representing it as one Relief Textured box. We can
even avoid the merging operation by storing the texture
images for intermediate nodes in the subdivision
hierarchy. Then, the subdivision grouping cannot be
chosen dynamically. Figure 8(b) shows that the frame
rates for the two objects are now similar despite the
difference in the number of subdivisions, after
employing this process. Figure 102 illustrates the result
(the dinosaur model has about 10,000 polygons).

2 All examples in the paper were run on a 700 MHz
desktop Pentium III PC with the NVIDIA GeForce II
graphics board.

Fig. 8 (a) Frame rates for objects with 64 and 15
subdivisions (384 small textures vs. 90 large textures)
when treating them separately. (b) Frame rates for the
same two objects when textures are merged then
warped. The object used is shown in Figure 5 which
originally had about 10,000 polygons.

Fig. 9 Merging all subdivision textures on to a virtual
bounding box to reduce texture operation overhead.
The dinosaur object is seen from the top for illustration.

Fig. 10 A virtual object seen from four different view
points. Depending on the viewing distance and other
parameters, the object uses different mixes of
representations, but no significant visual anomaly can
be detected. The second example shows the same
Pokemon of Figure 4 with its arm represented with
polygons in a different view point.

4. Building a Virtual Environment
This section discusses two issues in incorporating
multiple virtual objects with the mixed representation
into a virtual environment. Normally, a graphics
hardware includes a culling module that traverses the
scene graph and hands 3D polygons to be processed to
the next rendering module. However, as for Relief
Textured objects (or subdivisions), the warping
computation must be carried out before the scene graph
enters the graphics pipeline. Thus, objects (or
subdivisions) must be culled by software from the view
frustum.

The virtual objects may move around and their bounding
boxes may collide with one another (even though the
object themselves are not in collision. In this case, if we
treat the objects separately, a correct view may not be
generated. Figure 11 illustrates the situation. If Object
1 is rendered ahead of Object 2, the part that should be
occluded (at the middle part of the figure) will not come
out right. When the bounding boxes collide, we merge
the two subdivision cells into a virtual bounding box in
the same way explained in the Section 3.6 for reducing
the number of texture operations.

Figure 12 shows a simple virtual environment with many
virtual objects with the mixed representation (also See
the accompanying video). Although indistinguishable
visually, the mixture of the representations among all
subdivision cells is determined by placing a constraint
on the number of polygons that the given system can
handle per second (in this case, 5,000). Within this
constraint, we apply the formula introduced in Section
3.4 at every frame to decide which objects (or cells) are
important enough to be rendered in 3D polygons. Figure
13 shows the variation in the frame rate as a user moves
around the scene. Note that the frame rate never drops
below 10 fps (the variation above the minimum frame
rate is much less problematic).

Fig. 11 Two different subdivision cells belonging to
two different objects in collision. Object 1 occludes
Object 2 in the middle when seen in the arrow direction.

Fig. 12 A virtual environment with multiple virtual
objects with mixed representation.

Fig. 13 The frame rate trend when a user navigates in
the virtual environment of Figure 12. A dynamic
switching of representations is applied to keep a target
frame rate at 10 Hz.

5. Conclusion
In this paper, we presented an approach to mix both
polygonal and image based representations in rendering
a virtual object. The main motivation for doing this is in
achieving real time rendering (with minimal frame rate
variation) of virtual objects and allow some interactivity,
especially when the objects are made of a high number
of polygons relative to the polygon processing capability
of a given graphics hardware. We further proposed to
subdivide the object into cells according to its structure,
polygon count, and visibility and use Relief Textures to
implement the concept as efficient as possible. We
demonstrated its potential in terms of its visual
appearance and property that lends itself to an effective
performance management for real time virtual
environments. Our future work lies in improving the
performance of the proposed method with a clever
management of the potentially large image data counts.
A more practical application of the proposed technique
in an interactive virtual environment is in progress.

Acknowledgements
This project has been supported in part by the Korea
Institute of Science and Technology (KIST), Ministry of
Education’s BK21 Project, and the Korea Science and
Engineering Foundation supported Virtual Reality
Research Center.

References
1. D. Aliaga and A. Lastra: “Automatic Image

Placement to Provide a Guaranteed Frame Rate,”
ACM SIGGRAPH 99 Conference Proceedings, pp.
307-316, (1999).

2. D. Aliaga and A. Lastra: “Architectural
Walkthroughs using Portal Textures,” Proc. of Virtual
Reality Annual International Symposium, pp. 228-233,
(1998).

3. M. Rafferty, D. Aliaga, and A.Lastra: “3D image
Warping in Architectural Walkthroughs,” Proc. of
Virtual Reality Annual International Symposium, pp.
228-233, (1998).

4. J. Yoon and G. Kim: “An Intergrated VR Platform
with 2D Images and 3D Models,” Proc. of the Intl.
Conf. on Virtual Reality and its Application in
Industry, pp 9-14, (2002).

5. G. Schaufler: “Dynamically Generated Imposters,”
Proc. of the Workshop on Modeling Virtual World -
Distributed Graphics, pp. 129-136, (1995).

6. G. Schaufler: “Nailboards: A Rendering Primitive
for Image Caching in Dynamic Scenes,” Proc. of the
Eurographics Workshop on Rendering, pp. 151-162,
(1997).

7. M. Oliveira and G.Bishop: “Image-Based Objects,”
Proc. of ACM Symposium on Interactive 3D Graphics,
pp. 191-198, (1999).

8. M. Oliveira and G.Bishop, David McAllister:
“Relief Texture Mapping,” Proc. of ACM SIGGRAPH
2000 Conference, pp. 359-368, (2000).

9. L. McMillan Jr: “An Image-Based Approach to
Three-Dimensional Computer Graphics,” Ph.D
Dissertation University of North Carolina at Chapel
Hill (Also UNC Computer Science Technical Report
TR01-019), (2001).

10. G. Tharp, A. Liu, L. French, S. Lai, and L. Stark:
“Timing Considerations of Helmet-Mounted Display
Performance,” Proc. of the SPIE - Human Vision,
Visual Processing, and Digital Display III Vol. 1666,
pp. 507-576, (1992).

11. M. Reddy: “The Effects of Low Frame Rate on a
Measure for User Performance in Virtual
Environments,” Technical Report ECS-CSG-36-97,
Department of Computer Science, University of
Edinburgh, (1997).

12. S. Chen and L. Williams: “View Interpolation for
Image Synthesis,” Proc. of ACM SIGGRAPH 1993
Conference, pp. 279-288, (1993).

13. S. Seitz and C. Dyer: “View Morphing,” Proc. of
ACM SIGGRAPH 1996 Conference, pp. 21-30,
(1996).

14. S. Gortler et al: “The Lumigraph,” Proc. of ACM
SIGGRAPH 1996 Conference, pp. 43-54, (1996).

15. M. Levoy and P. Hanrahan: “Light Field
Rendering,” Proc. of ACM SIGGRAPH 1996
Conference, pp 31-42, (1996).

16. W. Dally et al: “The Delta Tree: An Object
Centered Approach to Image based Rendering,” MIT
AI Lab Technical Memo 1604, pp. (1996).

17. J. Shade, S. Gortler, L. He, and R. Szeliski:
“Layered Depth Images,” Proc. of ACM SIGGRAPH
1998 Conference, pp. 231-242, (1998).

18. J. Neider et al: “OpenGL Programming Guide,”
Addison Wesley Publishing Company, (1993).

