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Abstract 
Most often, a virtual environment is organized as virtual 
objects represented and rendered with 3D polygonal 
models. Image-based objects have been suggested as a 
probable alternative representation for its advantage in 
providing constant/acceptable frame rate when the 3D 
representation contains too many polygons [7]. 
However, since it is difficult to provide interaction (a 
vital component in virtual environments) through image 
based objects, a natural extension is to keep both 
representations, 3D and images, and switch between 
them depending on the functional requirement of the 
object [4]. Still, this may introduce a significant popping 
effect when one representation is switched to the other. 
This paper thus proposes to subdivide an object, and mix 
the two representations within one object (at the cell 
level) so that a smooth and gradual transition can be 
made. As for the image based representation, we use the 
Relief Texture method proposed by [8]. The criteria for 
object subdivision are based on the object structure, 
visibility, and polygon counts (per cell). The proportion 
of representation mixture is determined dynamically by 
factors like the viewing distance, angle, total allowable 
polygon counts, object importance, etc. The application 
of Relief Textures on the subdivision structure is made 
efficient with only three texture operations per object. 
Overall, the proposed method provides a way to 
maintain an acceptable or constant frame rate with 
selective perceptual detail and interactivity in a virtual 
environment with multitude of virtual objects.  

Key words: Image based Objects, Rendering, Relief 
Texture, Virtual Objects, Virtual Environments 

1. Introduction 
Most often, a virtual environment is organized as a 
collection of virtual objects represented and rendered 
with 3D polygonal models. Image-based objects (or 
image based rendering technique in general) have 
recently been suggested as a probable alternative to 3D 
polygonal models for its advantage in providing constant 
frame rate [7][8]. That is, the computation or graphic 
processing time required to render image based objects 
is proportional largely only to the size and number of the 
images (which remains more or less constant) being 
manipulated to generate the correct view. The added 
bonus of using image based objects is the photorealism, 
while providing a roughly equivalent realism would 
usually require too many polygons to be rendered in real 
time (especially if there are many visible objects at one 
time).  Rendering one or more image based objects may 
be achieved in real time depending on the required 
quality (e.g. image or sampling resolution), the specific 
algorithm, overall number of objects, etc.  However, 
image based techniques (like the image based objects) 
are not suited for close range or direct interaction (due to 
depth inconsistency) or behavior representation (e.g. 
motion). 

In an application like a virtual museum, for instance, 
virtual artifacts usually require reasonably high realism 
and interaction with them, and even some behavior.  An 
interactive frame rate may not be possible when 
rendering all the visible objects due to the high number 
of polygons (on a desktop PC).  A possible approach is 
to keep both image based representations and 3D 
polygonal models and switch between them (for actual 
rendering) depending on, for instance, their distances 

 
December 4-6, Tokyo, JAPAN 

ICAT 2002 



 

from the user, while maintaining the right mix of 
respective representations among the objects for 
interactive rendering of the scene. 

One problem still remains: the delay, break, or popping 
effect in switching from the image based representations 
to the 3D polygonal models due to the overhead in 
loading a high number of polygons at once. Such a 
popping effect and large variation in the frame rate is 
known to degrade the presence and the quality of the 
virtual experience [10][11]. 

In this paper, we first propose to use the Relief Texture, 
an image based object technique developed by [7][8], 
and 3D polygons to represent a virtual object.  We chose 
the Relief texture for its efficient and fast 
implementation that takes advantage of the texture 
mapping hardware available in the today’s graphics 
board. We further propose to subdivide an object and 
provide the dual representation for each subdivision.  
Thus, a virtual object is in part represented using images 
and in part by 3D polygons (See Figure 4).  We will call 
this approach, the “mixed” representation.  This allows a 
gradual switch between the image based and 3D 
polygonal representations. The subdivision technique 
also has other advantages in providing better visibility, 
behavior representation and improved interactivity. 

In the next section we survey previous work in image 
based techniques (especially, image based objects) and 
other attempts in the “hybrid” representation.   We also 
give a short review of the Relief Texture [8], its 
limitations in providing complete visibility, and 
interactive behavior.  In Section 3, we give an overview 
of our approach in subdividing the virtual object and 
applying the mixed representation. It also covers more 
detailed topics relevant to the design of a single virtual 
object such as the criteria for subdivision, the data 
structure and rendering algorithm, and image based 
behavior.  The next section talks about the design of a 
virtual environment using the virtual objects with the 
mixed representation.  Finally, we conclude the paper 
with a summary and plans for future work. 

 

2. Previous Work 

2.1. Hybrid Representation 
Images and 3D geometric models have been used 
together in  a virtual environment, separately for partial 
scenes or predetermined objects. This approach is 
usually referred to as the hybrid representation. A typical 
application of hybrid representation is in the treatment of 
the background objects, or objects beyond the portal as 
images [1][2][3][14]. These approaches generally lack 
object-level interactive behavior. 

The image based object approach [7] models individual 
objects (as opposed to a partial scene) using image based 

rendering techniques. Others proposed to regularly 
sample object images 360 degrees around the object, and 
to generate an arbitrary viewpoint, either by simply 
retrieving the image that represented the closest 
viewpoint or interpolating among few images with the 
closest viewpoints [12][15][16][17]. These approaches 
generally require a large number of images.  Schaufler 
proposed the concept of the Nailboard and Imposter that 
replaced a far away 3D object with a texture in real time 
[5][6]. The texture would have to be regenerated 
intermittently as the user changes one's viewpoint. Yoon 
et al. has proposed to switch between image based and 
3D representations at a closer distance from the user 
based on the human's capability to recognize depth 
within the object in a stereoscopic virtual environment 
[4]. Oliveira et al has proposed an approach called the 
Relief Texture that uses only six images around an 
object and efficiently warp them according to the 
viewpoint [8].  We adopt and refine the Relief Texture 
for our “mixed” representation that employs both images 
and 3D polygons within a single object. 

 

2.2. Relief Texture 
The two major approaches in the image based rendering 
approaches are the image warping [9] and the view 
interpolation [12][13]. In the warping approach, a new 
pixel value, 2x , for a given new view point, 2C& , is 

computed using the pixel from the reference image, 1x , 

taken from view point, 1C& , and the image projection 

matrices, 1P and 2P . Below is the image warping 
equation given by McMillan [9] (note the equality is 
only up to scale). 
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This basic equation requires, for each input pixel, a total 
of 13 multiplications and 7 additions.  On the other 
hand, a (correct) view interpolation method [13] requires 
a prewarp of two or more reference images to a 
reference direction, an interpolation between them, and a 
postwarp of the resultant image to the desired view point 
(e.g. the image plane is perpendicular to view direction 
toward the object/scene). The prewarping of reference 
images can be done off-line.  These approaches were 
originally devised for rendering a scene rather than 
individual objects. The Relief Texture mapping works 
by, representing an object by a six sided textured 
bounding box of the object (See Figure 1). In fact, the 
object is created as a six sided Layered Depth Images 
[18], whose texture and depth information is derived by 
an orthogonal projection of the 3D model onto the six 
surfaces.  The object textures are warped according to 
the changing  view point. 

 



 

 

Consider applying the view interpolation technique to a 
scheme like above.  We can try to generate the correct 
texture by warping and interpolating two or more 
reference images.  However, an extra warping would be 
needed to account for the orientation of the final image 
plane (that contains multiple objects) whose optical axis 
would be different from the each view direction toward 
the individual object. Plus, a scaling operation is needed 
to account for the view distance as well (See Figure 2). 

Relief Texture technique has formulated a way to 
directly compute the warped texture coordinate, ixr  from 

the reference pixel sxr , using the corresponding 3D 

point, x& ,the reference view point, sC& , and the new 

view point tC& .  Here, for lack of space, we only show 
the final formula. 
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where ( su , sv ) and ( iu , iv )represent the source and 

target pixel, disp( su , sv ), the orthogonal displacement 

associated with the source pixel. 1k , 2k , and 3k  are 
constants for the  given configuration of  source and 
target cameras. 

The detailed formulation is given in [8], and for each 
surface of the object considered, it only requires 6 
multiplications and 4 additions, which is considerably 
less than the naive approach. Even though in a normal 
virtual environment, there would be many number of 
objects, and there would be (at most) three textures to 
consider for each object, this reduced amount of required 
computation at least gives some hope to using image 
based techniques for real time virtual environments. 

There are some further considerations that need to be 
made to apply Relief Texture to real time virtual 
environments. The first is the visibility problem. Just 

using six orthogonally projected textures (with depth 
information) can introduce many “holes” for objects 
with concavity.  If the view point comes within the 
textured bounding box, the object will not be visible any 
more. This is usually not a problem unless the bounding 
box has large empty spaces (not tight).  The aspect of 
interaction and behavior must also be considered, as 
these are very essential to making an effective virtual 
reality experience.  It is generally difficult to express 
behavior, like motion, or implement some kind of 3D 
interaction when the object is represented in images. 

 

3. Mixed Representation for a Single Virtual 
Object 
To address the problem in just using the image based 
approach, like the Relief Texture, or using a naive 
hybrid approach, we propose to subdivide the object and 
“mix” different representations for different parts of the 
object.  That is, we maintain a dual representation for 
each subdivision, and select the appropriate 
representation according to some criteria like invocation 
of interactive behavior, maintenance of minimum user 
perception level and frame rate. We call this approach, 
the “mixed” representation (See Figure 4). 

 

 
Fig. 3  Oliveira [8] has formulated a way to efficiently 
compute  ixr , the new texture coordinate when a new 
view point is given. 

 
Fig. 1  With Relief Textures, an object is modeled using 
a six sided textured box with depth information [8]. 

Fig. 2  Applying the view interpolation technique to 
Relief Texture.  In order to compute the warped texture 
coordinates, an extra warping and scaling operation are 
needed. 



 

 

3.1. Mixed Object Node: The Data Structure 
In order to support the mixed representation, we have 
implemented an integrated scene graph node in OpenGL 
[19].  The data structure resembles an octree, in which 
parent nodes are further subdivided into children nodes 
in a recursive fashion. Each intermediate node represents 
a particular subdivision and contains the relevant 3D 
polygons, six orthogonally projected textures, pixel by 
pixel depth values, the normal vector of the six faces, 
and other miscellaneous information.  The textures and 
depth information are easily acquired from the 3D 
synthetic object by an orthogonal projection onto the 
sides of its bounding box (we do not consider 
representing real objects in this paper).  We have 
ignored the redundantly represented information across 
the subdivision boundaries for now 

 

 

3.2. Subdivision Criteria 
The criteria for subdividing an object was as follows. In 
the spirit of addressing the visibility and hole problem, 
subdivisions were made for parts of the object with 
substantial concavity. Ideally, a convex decomposition 
can be applied for this purpose, however, we have done 
the subdivision manually.  This way, holes can be 
avoided as much as possible, when the object (or the 
particular subdivision cell) is seen from arbitrary angles 
with the image representation.  The second criterion 
considered was behavior and subobject independence.  
For instance, if a motion behavior like rotating an arm, 
or moving a finger is expected of the object, that part 
would be designated as a subdivision (See Figure 7). A 
drawer of a desk, or a book in a bookshelf would be 
designated as a subdivision (assuming that the 3D model 
of the subobject exists). Finally, we have considered the 
number of polygons contained in one subdivision.  It 
would be desirable for the number of 3D polygons 
contained in a subdivision to be kept within a certain 
limit for preventing the popping effect in switching the 
representation. 

 

3.3. Rendering Algorithm 
The rendering algorithm for the “subdivided” Relief 
Texture is exactly the same as the original one.  The only 
difference is in that we repeat the process for each 
subdivision in a back-to-front order.  Note that we only 
need to consider at most three textures per subdivision 
(i.e. only three surfaces are visible at one time). Figure 5 
illustrates the concept.  However, if the subdivision 
boxes overlap or not placed orthogonal to one another, it 
can be difficult to figure out the rendering order.  We 
come back to issue in Section 3.6. 

 
 

  
Fig. 4  Mixed representation of a virtual object. An 
object is subdivided and each subdivision is represented 
using 3D polygons or Relief Textures.  (a) In this 
dinosaur model (the full 3D model has about 10,000 
polygons), the front part is rendered with 3D polygons, 
and the rear parts enclosed with boxes are rendered 
using the Relief Textures.  (b) The Pokemon's stomach 
(rendered with wireframe for illustration purpose) is 
composed of polygons while other parts of the body are 
rendered using the Relief Texture. 

Fig. 5  The subdivision data structure. 



 

3.4. Switching between Representations 
Basically, the switching for subdivision should be based 
on the human visual or depth perception.  That is, for 
instance, for a given subdivision, we switch from the 
image representation to the 3D polygon model (and vice 
versa), when each pixel of the texture projects to more 
than one pixel on the viewing plane to avoid the aliasing 
effect (we assume that the 3D model of the object is 
highly detailed). In [4], we considered switching 
between the image and 3D models at a theoretical 
distance a human can start to detect depth within the 
object.  However, maintaining a constant and acceptable 
(e.g. 10 ~15 Hz) frame rate is equally important in real 
time virtual environments.  Given positions, AP  and 

OP , of a user A and an object O, the angle between the 

view direction and direction toward the object, AOθ , the 
relative importance of the object is formulated as 
follows. 
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)(OP  is the number of pixels on the image plane that 
corresponds to one texture pixel, and )(OS  is the 
screen space area of the virtual object.  The values of the 
weights are determined empirically. 

3.5. Object Behavior 
One of the goals of mixing (or maintaining) a dual 
representation was to allow more flexible 
implementation of object behavior. Although one 
straightforward way to do it is, when needed, to have the 
object representation switched to the 3D geometry and to 
apply 3D transformation or vertex moving simulation (in 
the case of motion behavior or deformation). This is still 
problematic if the changed geometry happens to be 
contained in one subdivision, because if it is to be 
converted back to the image representations, it would 
have to be updated according to the result of the 

behavior. This is why careful subdivision would be 
needed at the modeling stage. 

Sometimes, if the lighting effect can be ignored to some 
degree, we can simply apply 3D transformation or 
simple behavioral effect (e.g. change color) directly to 
the image representation (i.e. Relief Texture box) instead 
as shown in Figure 7.  This can be most useful when a 
remote interactive behavior is needed (e.g. making an 
object selection by ray-casting, then activating some 
simple behavior). 

3.6. Reducing the Overhead in Texture 
Processing 
If the number of the object subdivision is too high, the 
overhead in the required texture operations can 
negatively affect the overall frame rate and defeat the 
purpose of subdivision in the first place.  Figure 8 shows 
the change in the frame rates for two objects, one 
subdivided into 15 cells, and the other in 64 cells. The 
object is initially placed near the user (and exist as 3D 
polygonal model), moves away from the user (gradually 
transits into the Relief Texture representation), then 
comes back (converts back to the 3D representation). 
Even though the transition from one representation to 
the other is more or less smooth (no significant jumps), 
the graph (Figure 8(a)) shows a drop in the frame rate 
for the case of 64 subdivision object compared to that of 
the 15. To solve this problem, we merge all the textures 
of the children subdivisions, project them on the side of 
a virtual bounding box that includes all the subdivisions 
in consideration, and merge them as one texture (there 
would be three merged textures needed as only three 
textures are visible at one time). Figure 9 shows the 
process. This allows the subdivision bounding boxes to 
be overlapped or even placed in angles1.  

                                                           
1 If the subdivision bounding boxes are not orthogonal to 
one another, new depth values must be computed to 
correctly merge the textures. 

 
Fig. 6  The back-to-front ordering for rendering the 
subdivided Relief Textures.  The back-to-front order is 
(1)-(2)-(3), then (1)'-(2)'-(3)'.  The order among (1), (2), 
(3), or (1)', (2)', (3)' is unimportant. 

 
Fig. 7  Pokemon's right arm is rotated as a Relief 
Texture box. 



 

Actually, this is similar to selecting the right subdivision 
level (in the subdivision tree) for a part of an the object, 
and representing it as one Relief Textured box.  We can 
even avoid the merging operation by storing the texture 
images for intermediate nodes in the subdivision 
hierarchy.  Then, the subdivision grouping cannot be 
chosen dynamically.  Figure 8(b) shows that the frame 
rates for the two objects are now similar despite the 
difference in the number of subdivisions, after 
employing this process.  Figure 102 illustrates the result 
(the dinosaur model has about 10,000 polygons). 

 

 

                                                           
2 All examples in the paper were run on a 700 MHz 
desktop Pentium III PC with the NVIDIA GeForce II 
graphics board. 

 

Fig. 8  (a) Frame rates for objects with 64 and 15 
subdivisions (384 small textures vs. 90 large textures) 
when treating them separately. (b) Frame rates for the 
same two objects when textures are merged then 
warped.  The object used is shown in Figure 5 which 
originally had about 10,000 polygons. 

 
Fig. 9  Merging all subdivision textures on to a virtual 
bounding box to reduce texture operation overhead.  
The dinosaur object is seen from the top for illustration. 

 
 

  
Fig. 10  A virtual object seen from four different view 
points.  Depending on the viewing distance and other 
parameters, the object uses different mixes of 
representations, but no significant visual anomaly can 
be detected.  The second example shows the same 
Pokemon of Figure 4 with its arm represented with 
polygons in a different view point. 



 

4. Building a Virtual Environment 
This section discusses two issues in incorporating 
multiple virtual objects with the mixed representation 
into a virtual environment.  Normally, a graphics 
hardware includes a culling module that traverses the 
scene graph and hands 3D polygons to be processed to 
the next rendering module.  However, as for Relief 
Textured objects (or subdivisions), the warping 
computation must be carried out before the scene graph 
enters the graphics pipeline. Thus, objects (or 
subdivisions) must be culled by software from the view 
frustum. 

The virtual objects may move around and their bounding 
boxes may collide with one another (even though the 
object themselves are not in collision.  In this case, if we 
treat the objects separately, a correct view may not be 
generated.  Figure 11 illustrates the situation.  If Object 
1 is rendered ahead of Object 2, the part that should be 
occluded (at the middle part of the figure) will not come 
out right.  When the bounding boxes collide, we merge 
the two subdivision cells into a virtual bounding box in 
the same way explained in the Section 3.6 for reducing 
the number of texture operations. 

 

Figure 12 shows a simple virtual environment with many 
virtual objects with the mixed representation (also See 
the accompanying video).  Although indistinguishable 
visually, the mixture of the representations among all 
subdivision cells is determined by placing a constraint 
on the number of polygons that the given system can 
handle per second (in this case, 5,000).  Within this 
constraint, we apply the formula introduced in Section 
3.4 at every frame to decide which objects (or cells) are 
important enough to be rendered in 3D polygons. Figure 
13 shows the variation in the frame rate as a user moves 
around the scene. Note that the frame rate never drops 
below 10 fps (the variation above the minimum frame 
rate is much less problematic). 

 

 

 

 
Fig. 11  Two different subdivision cells belonging to 
two different objects in collision.  Object 1 occludes 
Object 2 in the middle when seen in the arrow direction.

 
 

  
Fig. 12  A virtual environment with multiple virtual 
objects with mixed representation. 

 
Fig. 13  The frame rate trend when a user navigates in 
the virtual environment of Figure 12.  A dynamic 
switching of representations is applied to keep a target 
frame rate at 10 Hz. 



 

5. Conclusion 
In this paper, we presented an approach to mix both 
polygonal and image based representations in rendering 
a virtual object.  The main motivation for doing this is in 
achieving real time rendering (with minimal frame rate 
variation) of virtual objects and allow some interactivity, 
especially when the objects are made of a high number 
of polygons relative to the polygon processing capability 
of a given graphics hardware. We further proposed to 
subdivide the object into cells according to its structure, 
polygon count, and visibility and use Relief Textures to 
implement the concept as efficient as possible. We 
demonstrated its potential in terms of its visual 
appearance and property that lends itself to an effective 
performance management for real time virtual 
environments. Our future work lies in improving the 
performance of the proposed method with a clever 
management of the potentially large image data counts.  
A more practical application of the proposed technique 
in an interactive virtual environment is in progress. 
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