
December 3-5, Tokyo, JAPAN
ICAT 2003

Hierarchical QoS Architecture for Networked Virtual
Dancing Environment*

Jin Ryong Kim1, Youjip Won1, Beomeun Kim2

1 Div. of EECE, Hanyang University

17 Hangdang-dong, Sungdong-ku, Seoul, Korea
{ jessekim | yjwon }@ece.hanyang.ac.kr

2 Advanced Development Group, Samsung Electronics

416 Maetan-dong, Paldal-ku, Suwon, Korea
bekim@samsung.com

Abstract
In this paper, we present the hierarchical QoS
architecture for the virtual dancing environment. In this
system, geographically distributed users share the virtual
dancing hall and interact to each other. The participating
object can be a graphical avatar or live video stream. It
allows the coexistence of graphic objects and real stream
in a shared virtual space. One of the main technical
challenges in developing distribute virtual environment
is to handle excessive network traffic. In an effort to
effectively reduce the network traffic, we propose to
adjust the QoS of each object with respect to the
distance from the observer in the virtual space. The
server maintains the QoS vector for each client's shared
space. The server controls the packet traffic to individual
clients based on its QoS vectors. We develop proto-type
virtual dancing environment. Java based development
enables the client to be platform independent. The result
of experiment shows that the adoption of hierarchical
QoS architectures significantly reduces the overall
network traffic.

Key words: QoS, DVE, Multimedia Streaming,
Multicast, Mixed Reality

1. Introduction
1.1 Motivation

The distributed virtual environment(DVE) is a
distributed system where the clients are located in
different parts of the network and the participants
concurrently explore and interact with each other under
a high-resolution, 3D graphical environment. The
application of this technology ranges from education,
medical operations to military training. DVE is setting
forth a new set of challenges in the management of
system resources in a distributed environment.

* This work is funded by KOSEF grants number R11-
2000-073-01000-0.

In DVE, it is crucial that the participant's state needs to
be updated in a shared space promptly so that the new
state of the participant becomes visible to the rest. There
are two approaches in maintaining this consistency:
server-client and peer-to-peer. In the server-client
approach for consistency management, the server is
responsible for updating the state of individual
participants in the shared space and for distributing the
updated state to each client. In this approach, the server
can easily be overloaded when the number of client
becomes high and also can be a single point of failure. In
the peer-to-peer approach, each client machine
symmetrically updates the view on the shared space. It
resolves the burden on the server in the server-client
approach.

Another important issue in distributed virtual
environment is the load on the network. Each client
informs the server(or the rest) about its state change. It is
possible that the network traffic may increase
combinatorially with the increment in the participants.
Following methods are used to reduce the network
traffic: (i) packet compression; (ii) packet integration for
collecting various packets to transmit as one packet; and
(iii) method for reducing the frequency of the packet
transmission. Also, the network traffic can be reduced
using the multicast protocol.

In this work, we intend to augment the virtual
environment with live streams from the participants in
the server-client approach. A participating object, the
dancer can be a graphic avatar whose motion is
controlled by the keyboard input, motion detector, or etc.
or can be a live streaming video of the dancer which is
captured and downstreamed from the respective site. In
capturing the image of the dancer, it is not possible to
capture the image of only the dancer, but the background
image accompanies. The chroma-key based processing is
mandatory to extract the image of dancer in each frame.

The design objectives of our virtual environment can be
summarized as follows: (i) Users participate in the

identical virtual dancing environment; (ii) Participant
can be real video stream or 3D avatar; (iii) Each
participant interacts with each other; (iv) there is no
minimum network bandwidth requirement for
participants. We put the requirement (iv) since the
network environment becomes more diverse with the
technology advancement. It is important to provide a
single unified framework which can incorporate the
users with variable network bandwidth seamlessly.

The co-existence of multiple streaming sessions
generates non-trivial amount of network traffic.
However, the network traffic generated by the user in
the high speed connection cannot be delivered to the
client connected via low speed network line, e.g.
modem. Further, if one object is located in the distant
place from the observer in the virtual space, the observer
may not be interested in or may not be able to see the
detailed action of the distant object,

In this work, we present the QoS framework which
incorporates the distance between the observer and the
object in determining the QoS of the respective object in
the virtual space.

1.2 Related Work

The DIVE system[1-4] focuses on minimizing the
network delay large scale in distributed virtual
environment. In the DIVE system, data is transmitted as
peer-to-peer using multicast streaming. To reduce the
retransmission of the lost packets, the DIVE system
proposes a simple dead-reckoning algorithm based on
the linear velocity movement of an object. This
algorithm does not apply for the complex motion of the
object.

In NPSNET[5], the virtual environment are divided into
the hexagonal regions. Each region is assigned to one of
the multicast group so that an avatar receives
information from the total of seven multicast groups,
including avatar itself and all of the regions that is
adjacent to it. Whenever an avatar moves through the
virtual space, it joins the same number of the multicast
groups as the number of the multicast groups it leaves.
The group-per-region allocation method of NPSNET can
decrease not only the overhead of the host processor but
also the network traffic, because data that is sent or
received is limited to specified regions. However, if the
boundary of the cell is located in the middle of the
hexagonal regionals where the objects are passing the
boundary frequently, the multicast groups of avatar
moving along the boundary are required to be changed
frequently[]. Subsequently, the network load increases.

The MASSIVE system[6-10] determines the levels of
mutual awareness between objects using the concept of
focus and nimbus. The mutual awareness is a
measurement of the mutual interest between an
observing object and an observed object. The term focus
represents the observer's region of interest and the term

nimbus represents the observer’s region of Influence.
That is, MASSIVE proposes the QoS architecture based
on the observer’s awareness. The QoS architecture
controls data over network such as volume of audio,
level of graphics, and quality of video by the levels of
mutual awareness. MASSIVE is designed for the virtual
environment of the first person’s point of view,
therefore, the client himself cannot see his avatar in the
virtual environment. That is, the viewpoint of the client
and his avatar is identical. Hence, the concept of
MASSIVE is not appropriate for the virtual environment
of the third party’s viewpoint. In addition, because each
avatar expresses its face with the video stream and the
body with the 3D figure, it is difficult to express the
motion of each avatar. In another word, MASSIVE
defines the static avatar model rather than the dynamic
avatar model and the QoS architecture for the dynamic
model is not proposed at all.

The DVE system[11-12] addresses the scalability
problem by developing the partitioning algorithm. The
partitioning algorithm is based on the linear optimization
technique and is shown to be computationally efficient.
It can effectively partition the workload evenly among
the servers and, at the same time, can reduce the
communication overhead. The partitioning algorithm
also illustrates how it can partition a very large scale
DVE system. However, this algorithm does not propose
the hierarchical QoS architecture to reduce the amount
of data transmitted to the clients and is not applicable for
this project.

2. Overview of TIE System
The objective of TIE is to develop a virtual dancing
environment where the clients share the same virtual
space and communicates with each other. In TIE system,
the real video streams of the clients and the 3D avatars
co-exist in the shared virtual environment.

The TIE system consists of three parts: TIE server, TIE
client, and network transport. Depending on the distance
from the primary viewer, we need to adjust the visual
and aural quality of the respective object. The TIE server
is a program entity which maintains state of the shared
virtual environment and position of each object in the
virtual environment and updates the QoS information for
each object for individual client application. The client
application is a program entity which shows the view of
dancing studio from the respective user's point of view.
The multicast routing protocol based on the adaptive and
hierarchical QoS architecture is used. The TIE system is
developed based on restricted third party's view.

Before to proceed further, we like to clarify the notion of
client and the user. Client denotes the application
program which renders the image of dancing floor and
participating objects. User is the human entity which
participates in the shared virtual space as an avatar or as
real video stream. It is important to note that each user

has its own client application. Let us briefly explain the
concept of hierarchical QoS architecture. Although all
users share the same virtual environment, what is seen in
each user's client terminal is different from each other.

Fig.1. illustrates schematic diagram of the virtual
dancing environment of the TIE system. The TIE
system is based on server-client architecture.

viewpoint of client A viewpoint of client B

Avatar BAvatar A

Avatar C

Avatar D

A vatar

not shown

QoS Level

C

A high

middle

B, D

A vatar

low

QoS Level

C

B high

low

D

A not shown

QoS Table of client A QoS Table of client B

Fig. 1 Shared Virtual Dance Hall and QoS table for
individual client

In this Figure, let client A be the client application
running in the user A's local site. Client A sees the
avatars A and C. From the observer's position, avatar A
is located more closely than the avatar B. In three
dimensional space, the object in the farther distance
looks smaller. We carefully argue that the object in the
farther position is not required to maintain the same level
of QoS as the one in the closer distance in each client
application. Thus, in client A, the QoS level of avatar A
can be higher than the avatar C. Same principle applies
in determining the QoS level for each avatar in client B.
Also, the viewpoint is not symmetric. Even though
avatar B appears in client A, avatar A may not be visible
in user B's window. The quality of the live image object
can be governed by the frame rate, frame size, and
encoding method.

In the TIE server, the QoS level of the avatar is
determined by the distance from observer's position in
the virtual space. For the live video object, the TIE
server dynamically adjusts the frame rate with respect to
the distance. The objective of the hierarchical QoS
architecture is to reduce the network traffic by properly
incorporating the distance between the observer and the
object in each user's view.

3. Hierarchical QoS Architecture
3.1 Resource Requirement

It is important to properly estimate the total amount of

system resources to maintain the given virtual space.
Eq.1 in the Information Principle[13] provides insightful
guideline for this.

Resources M H B T P≈ × × × × (1)

where M is number of messages transmitted in the
virtual environment, H is average number of destination
hosts for each message, B is average amount of network
bandwidth required for a message to each destination, T
is timeliness with which the network must deliver the
packets to each destination (large values of T implies
that the packets may be delivered with longer delays),
and P is number of processor cycles required to receive
and process each message. Because the TIE system
supports both the real video streams and the 3D avatars
in the same virtual environment, more resources are
required for dynamic adjustment of frame rate, rendering
of mixed type objects, etc. The hierarchical QoS
architecture tries to reduce the resource by minimizing H
and B in Eq.1.

A client's avatar participated in its own view on virtual
dancing environment is called local avatar and other
client's avatar in the same view is called remote avatar.
The avatar is a representative of the client. If the
observer's viewpoint is the same as the local avatar's
viewpoint, it is called the first person's viewpoint.
Otherwise, it is defined as the third person's viewpoint.
In case of the first person's viewpoint, the user cannot
see his own avatar. In case of the third person's
viewpoint, the viewer can see his local avatar on the
screen.

In the TIE system, we introduce the restricted third
person's viewpoint. In the restricted third person's
viewpoint, the distance between the local avatar and the
viewer is bounded. Thus, when the local avatar changes
its location and the distance from the observer goes
beyond the predefined upper bound, the observer's view
point is required to be changed accordingly. The local
avatar is always visible from the viewer, i.e. in the client
terminal.

3.2 Visual QoS

Fig. 2. illustrates the location of the viewer and the
avatar in the third person's viewpoint of the virtual
dancing environment. The user observes the virtual
environment at the viewer's position and his object,
which can be an avatar or live stream, appears at the
local avatar's position. The objects near the observer's
view point look more clear and larger in the client
screen.

There are two important principles in visual QoS: (i) The
QoS level of each object depends on the distance from
the observer's view point; and (ii) For local avatar, the
distance from the viewer should be less than its upper
bound. Since there is no restriction on the location of the

avatar in the shared virtual space, the observer's view
point needs to be updated in accordance with the local
avatar's move.

+X

+Y

+Z
viewer's position (x, y, z)

local avatar's position(x, y, z)

angle of

observer

Fig. 2 Location of viewer and avatar

Let (x, y, z) and (x′, y′, z′) be the local avatar's and the
viewer's position, respectively in three dimensional
space. The distance D between the local avatar's position
and the viewer's position is computed as in Eq. 2.

'D z z= − (2)

We need to obtain the QoS level for each avatar based
on the distance D in Eq. 2. For this purpose, we
introduce the QoS mapping function as in Eq. 3.

1

1() ()cf D O
D

=
(3)

This QoS mapping curve has the following
characteristics. The avatar's QoS level is inversely
proportional to the square of the distance between the
local avatar and the viewer. Function f maps the
distance to one of the set of integers in {1,…,nQoS}. nQoS
is the number of distinct QoS levels provided in the
system. For example, there are three different QoS levels
for avatar, e.g. high, middle, and low. In this case, nQoS
corresponds to 3.

We can assign different frame rate for each QoS level,
e.g. 15 frames/sec, 10 frames/sec, and 5 frames/sec,
respectively. In case of the 3D avatar, there is no notion
of frame rate. The motion of avatar is changed based
upon the control signals generated from the respective
user. For graphic avatar, level of details(LOD) is
adjusted.

Different QoS mapping function is used for local avatar
than the remote avatar, as shown in Fig. 3. Whenever the
local avatar is out of the permitted view area, the
viewer's position is changed in order to keep track of the

local avatar. The reason of tracing the local avatar is that
the local avatar is the most important object in the
viewer's point of view. This policy of maintaining view
can easily changed to other ones. Let QT be the lower
bound of QoS for local avatar. In the QoS mapping
function for local avatar, QoS level must be greater than
QT, as in Fig. 3.

Fig. 3 QoS mapping function

The important issue for mapping function is to determine
the range of D values for each QoS level. D can be
equally paced, or the range of D for each QoS levels can
be set up differently. Session with higher QoS level
generates more network traffic and put more load on the
client application.

The QoS level of each client's avatar is saved in m n×
matrix, Q. and denotes the number of avatars, and
the number of clients, respectively. In the TIE virtual
environment, the number of the clients is the same as the
number of the avatars.

m n

Fig. 4 illustrates the QoS matrix. Qij denotes the QoS
level of avatar i in the client j's view. When an avatar i
updates its position, all the elements in a row i need to
be updated. For each client j, the streams are sent based
on the information given in column j.

Fig. 4 m n× QoS matrix

3.3 Audio QoS

The local avatar is not able to hear all the sound or voice
of all the other avatars in the virtual environment. To

address this issue, we introduce the concept of influence
region of avatar interaction. When an object is within a
certain distance from the local avatar, the client can hear
its sound. The volume of sound is inversely proportional
to the distance between the two objects. When an object
is beyond a certain threshold distance, the local avatar is
not able to hear it. Eq.4. denotes the relationship
between the distance and the sound.

sound is transmitted
sound is not transmitted

a b

a b

R R d
R R d

+ ≥ →
+ < →

(4)

4. TIE System Architecture
4.1 Implementation of Hierarchical QoS Architecture

Fig. 5 TIE system architecture for virtual dancing
environment

Fig. 5 illustrates the TIE server architecture.
SceneInformation class manages the entire scene
information and QoSManager class determines the
levels of QoS. StreamHandler class is responsible for
transmitting and receiving streams. These three classes
are used to determine the levels of QoS for each avatar
and to manage the consistency of virtual dancing hall.
When the new avatar joins the virtual dancing
environment, AvatarInformation class is created which
manages information of the avatar.

When the client sends the state information for its local
avatar, the server updates the position, re-computes the
QoS level, and transmits the appropriate streams to each
client. QoSManager class receives the user A's new
position from SceneInformation and each client
recalculates the avatar A's QoS level. The QoS level of
live video stream denotes the frame rate and the QoS
level of the avatar denotes the LOD of the 3D avatar.

Whenever the new streams are received from the client,
the data source of the streams is copied and transcoded
into high, middle, and low of the QoS levels. After

transcoding, classified streams are multicasted to other
multicast groups. StreamHandler class catches all
avatars' QoS information corresponding to the current
client in QoSManager class when StreamHandler class
receives a new stream from the client. This QoS
information is stored in the column of the QoS matrix.

4.2 Multicast

Adjusting the frame rate based on client's QoS level is as
follows. For each object in the virtual environment, a
number of multicast channels are created. The number of
mutlicast channels corresponds to the number of QoS
levels in the system. When there are three QoS levels,
e.g. high, middle, and low, three multicast channels are
created with the respective avatar or streaming object,
e.g. Th, Tm and Tl. To get middle QoS level stream, the
client need to subscribe for Tm and Tl multicast channels
for the respective avatar. As the distance between the
object and the viewer changes, the client dynamically
joins and leaves the multicast channel.

In case of wireless environment, there will be a network
bandwidth constraint. In IEEE 802.11b, the maximum
network bandwidth is 11Mbps. By transcoding and
multicast, we can support both wired and wireless
network environments.

4.3 Client System

Fig. 6 Client system

Fig. 6 shows how the real video avatar and 3D CG
avatars explore and interact with each other in the shared
virtual dancing studio. The TIE client system is designed
to render CG and real video stream simultaneously using
JMF and Java3D. The client connects to the server to
enter the virtual space in forms of either a video or a 3D
CG avatar. If the client joins the virtual space as a video
avatar, the real video streams of the user are captured by
the user's camera. The pre-processed video stream is

encoded with H.263 format and transmitted to the server.
Each client in the shared virtual space receives the video
stream using RTP stream. JMF processor transforms the
received video stream to 2D image.

5. Experiment
For validity and novelty of our work, we conducted the
experiment. The purpose is to study the effectiveness of
the hierarchical QoS architecture when there are a large
number of clients are in a shared virtual environment. In
this experiment, we measure the network traffic in the
TIE system. We conduct the experiment using two real
video streams and five CG avatars in the shared virtual
environments. Each QoS level is mapped to its own
value so that high, middle, and low quality levels are set
to 15fps, 10fps, and 5fps, respectively. In this
experiment, we demonstrate the performance of the
proposed system by comparing it with the system that
QoS architecture is not applied. The experiment is set
under local area network environment and we
intentionally change the QoS level of each avatar by
moving them around the virtual worlds to see how it
influences the system. In case of video streams, the real
streams of the users are received at the server from
respective clients, transcoded into high, middle, and low
of the QoS levels, and multicasted to the clients. We use
the range from 233.0.0.0 to 233.0.0.255 for multicast
addresses

5.1 Load on the Client

0

20

40

60

80

100

120

140

160

180

QoS(mid, mid) QoS(high, mid) QoS(high, high) QoS(blind)

QoS Values

(F irst and second terms in the pa rantheses denote Client 1 and Client 2 , respectively)

B
it
 R

a
te

 (
K

b
p
s
)

Fig. 7 Network traffic at client 1

In this experiment, we captured the packets from clients
and evaluated them. Fig. 7 shows the effectiveness of
our proposed QoS algorithm. We adjusted two video
streams to have different QoS values at each case by
changing their positions in the virtual worlds. In this
Figure, each bar represents the stream data receiving rate
at the first client site. The first three bars represent the
cases that our hierarchical QoS architecture is applied.
The receiving rate of the first case where the qualities of
video streams are both middle is around 120 Kbps. The
receiving rate of the second case where the quality of the
first video stream is high while the second one is middle
is around 140 Kbps. However, the receiving rate of the
last case where QoS is not applied is 180 Kbps. Since

the QoS management is not applied at all, both of the
video streams are streamed at 90 Kbps, for each. Thus, it
is clear that the amount of network packets can be
reduced by applying our QoS architecture.

Fig. 8 is the result from another client. In the same
manner, the first three bars represent the stream
transmission rates that QoS is applied while the last one
represents the stream transmission rate without applying
QoS architecture. In this Figure, the receiving rate of the
first case where the qualities of both video streams are
low is around 60 Kbps. This value is one third of the last
case, which is 180 Kbps. Thus, it proves that our
hierarchical QoS architecture can reduce the network
traffic by 1/3 at most, compared to non-hierarchical QoS
architecture.

0

20

40

60

80

100

120

140

160

180

QoS(low, low) QoS(mid, mid) QoS(high, high) QoS(blind)

QoS Values
(First and second terms in the parantheses denote Client 1 and Client 2,

respectively)

B
it
 R

a
te

 (
K

b
p
s
)

Fig. 8 Network Traffica at client 2

5.2 Packet Transmission on the Network

In this experiment, we captured packets on the network.
We set all seven clients(two for video avatars and five
for CG avatars) to receive two streams from video
avatars for each. To validate our QoS algorithm, we
compared our QoS based system to non-QoS system.
For non-QoS system, we used unicast for the video
delivery.

0

200

400

600

800

1000

1200

Multicast Unicast

Delivery Type

N
e
tw

o
rk

 T
ra

ff
ic

(K
b
p
s
) Multicast

Unicast

Fig. 9 Packet transmission on the network

Fig. 9 is the network load in the TIE system. Since our
algorithm uses the hierarchical QoS architecture based

on the multicast transmission scheme, the load is much
lower than the unicast system. In the unicast system, all
the streams transmitting to each client are the highest
qualities of frames and each stream has to be delivered
to its own destination. On the other hands, in the
multicast system using our hierarchical QoS architecture,
the clients simply join their respective multicast groups
depending on their positions to receive video streams.
Therefore, by adaptively changing the QoS level of each
avatar in the shared virtual environment, we are able to
significantly reduce the overall network traffic.

5.3 Simulation

Fig. 10 Direction of avatar's movement

We design the simulation program to find the
effectiveness of the hierarchical QoS architecture. In this
simulation, the initial position of the avatar is set
randomly and the avatar moves in one of the eight
directions by one step from the current position as
shown in Fig. 10. The avatar's position is updated every
second. Whenever the avatar's position is out of the
viewer's permitted view area, the viewer's position is
updated. The viewer's permitted view area is the
maximum distance between the viewer's and the avatar's
positions, and it is calculated by y = QT in the QoS
mapping curve.

In this simulation, the following variables are defined:
number of clients participated in the virtual dancing
environment, elapsed time, number of QoS levels, and
density of avatars in the selected region. The default
values of the variables are defined as follows: number of
clients participated in the virtual dancing environment is
10, elapsed time is 100 seconds, number of QoS levels is
3(0, 3, and 7), and density of the avatars in the selected
region is 0%. In this experiment, we assume that
network is not bottleneck point.

In Figure 11, the number of packets that the clients
receive for 1 second is measured using JMStudio in
JMF. The average packet size is approximately 907
bytes/packet. We find that the system is more scalable

from the aspect of network traffic when the shared
virtual environment is controlled by the hierarchical QoS
architecture. By applying the hierarchical QoS
architecture, the number of packets transmitted over the
network decreases by 1/3 compared to non-hierarchical
QoS architecture. With the increase in the granularity of
QoS level, we can achieve further decrease in the
network traffic. Thus, it is important to select the
suitable number of QoS level depending on how the
virtual dancing environment is designed.

Fig. 11 Number of clients vs. network traffic

Fig. 12 Density of avatars vs. network traffic
(# of avatars = 30)

Fig. 12 illustrates the relationship between the packet
traffic and the density of avatars when 30 clients
participate in the virtual dancing environment. The
density of avatars is a ratio of the number of avatars in
the selected region over the total number of avatars in
the virtual dancing space. The network traffic generated
from the densely populated region is much larger than
the network traffic generated from the less densely
populated region. However, we find that the overall
traffic becomes smaller with hierarchical QoS
architecture when the objects are focused on smaller

fraction of the shared virtual space. We divide the virtual
dancing environment into 9 regions with the same
dimension. The density of avatars ranges from 0 to 100.
For each density value, we locate a number of avatars to
particular region to maintain the given density value.
The other avatars are dispersed to the rest of the virtual
space randomly. We increase the density of avatars in
the selected region gradually and measure the number of
packets transmitted in the virtual environment. In Fig.
12, the number of packets transmitted over the network
is the same regardless of the density when the
hierarchical QoS architecture(number of QoS level is 0)
is not applied. On the other hand, the number of packets
transmitted over the network decreases with the
hierarchical QoS architecture.

5. Conclusion
In this paper, we propose the hierarchical QoS
architecture of the TIE system to reduce the number of
packets transmitted over the network in the virtual
dancing environment. The hierarchical QoS architecture
has several advantages: (i) it controls the frame rate of
the stream by the QoS level based on the distance
between the viewer and the avatar, (ii) the client receives
the packets for only the objects in its visible region. This
can significantly reduce the amount of network traffic,
(iii) the quality of audio can be improved by applying
the concept of influence region, and (iv) the hierarchical
QoS architecture manifests itself when the participating
objects are clustered in relatively smaller region rather
than in the evenly populated in the virtual environment.
The result of experiment shows that the hierarchical QoS
architecture developed in this work successfully reduce
the amount of network traffic involved in the distributed
virtual environment.

References
[1] C. Carlsson and O. Hagsand: Dive-a Multi-user

Virtual Reality System. In Virtual Reality Annual
International Symposium, pages 394-400. IEEE,
September 1993.

[2] E. Frecon and M. Stenius. Dive: A Scaleable
Network Architecture for Distributed Virtual
Environments. Distributed Systems Engineering
Journal, 5(3):91-100, September. 1993.

[3] O. Hagsand. Interactive Multiuser in the Dive
System. IEEE Multimedia Magazine, 3(1):30-39,
Spring 1996.

[4] A. Steed, J. Mortensen, and E. Frecon. Spelunking:
Experiences using the Dive Systems on Cave-like
Platforms. In Proceedings of Immersive Projection
Technologies and Virtual Environments 2001, pages
153-164. Springer-Verlag, May 2001.

[5] M. R. Macedonia, M. J. Z. Pratt, D. R. Brutzman, D.
P. Barham, Paul T. Exploiting Reality with Multicast
Groups: A Network Architecture for Large Scale
Virtual Environments. In Proceedings of the 1995

IEEE Virtual Reality Annual Symposium, North
Carolina. (1995).

[6] S. Benford and C. Greenhalgh. Massive: A
Collaborative Virtual Environment for
Teleconferencing. ACM Transactions on Computer-
Human Interaction, 2(3):239-261, September 1995.

[7] S. Benford, C. Greenhalgh, G. Reynard, C. Brown,
and B. Koleva. Understanding and constructing
shared spaces with mixed-reality boundaries. ACM
Transactions on Computer-Human Interaction,
5(3):182-223, September 1998.

[8] C. Greenhalgh, J. Pubrick, and D. Snowdon. Inside
massive-3: Flexible Support for Data Consistency and
World Structuring. In Proceedings of the Third
International Conference on Collaborative Virtual
Environments, pages 119-127. ACM, September
2000.

[9] S. Benford, C. Greenhalgh, D. Snowdon, and A.
Bullock. Staging a Public Poetry Performance in a
Collaborative Virtual Environment. In Proceedings of
the 5th European Conference on CSCW ’97, pages
125-140. Dordrecht: Kluwer Academic Publishers,
September 1995.

[10] C. Greenhalgh, S. Benford, and G. Reynard. A QoS
Architecture for Collaborative Virtual Environments.
In Proceedings on the Seventh ACM International
Conference on Multimedia (Part 1), pages 121-130.
ACM, October 1999.

[11] J.C.S. Lui, M.F. Chan: An efficient partitioning
algorithm for distributed virtual environment systems.
IEEE Transactions on Parallel and Distributed
Systems, Volume: 13 Issue: 3, March 2002: Page(s):
193 -211.

[12] J.C.S, Lui: Constructing Communication Subgraphs
and Deriving an Optimal Synchronization Interval for
Distributed Virtual Environment Systems, IEEE
Transactions on Knowledge and Data Engineering,
Volume: 13 Issue: 5, September-October 2001: Pages:
778-792.

[13] Sandeep Singhal, M.Z.: Networked Virtual
Environments : Design and Implementation. (1999):
Addison-Wesley/ACM Press.

