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Abstract 
A basic problem with Augmented Reality systems using 
Head-Mounted Displays (HMDs) is the perceived 
latency or lag. This delay corresponds to the elapsed time 
between the moment when the user's head moves and the 
moment of displaying the corresponding virtual objects 
in the HMD. One way to eliminate or reduce the effect of 
system delays is to predict future head locations. 
Actually, the most used filter to predict head motion is 
the extended Kalman filter (EKF). However, when 
dealing with non linear models (like head motion) in 
state equation and measurement relation and a non 
Gaussian noise assumption, the EKF method may lead to 
a non optimal solution. In this paper, we propose to use 
sequential Monte Carlo methods, also known as particle 
filters to predict head motion. Theses methods provide 
general solutions to many problems with any non 
linearities or distributions. Our purpose is to compare, 
both in simulation and in real task, the results obtained 
by particle filter with those given by EKF. 

Key words: Augmented Reality, HMD, latency, dynamic 
registration, particle filter. 

1. Introduction 
In Augmented Reality systems using Head-Mounted 
Displays (HMDs), one of the major problem is the end-
to-end system delay (or latency). This delay exists 
because the head tracker, scene generator, and 
communication links require time to perform their tasks, 
causing a lag between the measurement of head location 
and the display of the corresponding images inside the 
HMD [1,2,3,4,16]. Therefore, those images are displayed 
later than they should be, making the virtual objects 
appear to "lag behind" the user's head movements. This 
is annoying to users and tends to destroy the illusion that 
the virtual objects are co-existing with the real objects. 
One way to compensate for the delay is to predict future 
head locations. If the system can somehow determine the 
future head position and orientation for the time when the 
images will be displayed, it can use that future location to 
generate the graphic images, instead of using the 
measured head location. Inertial sensors, such as linear 
accelerometers and angular rate gyroscopes are widely 

used for head motion tracking [12,13,18,20,21]. A filter 
structure is used to fuse inertial data and then predict the 
head pose. Actually, the most used filter to estimate head 
motion is the extended Kalman filter (EKF) [19]. This 
filter is based upon the principle of linearizing the 
measurements and evolution models using Taylor series 
expansions. The series approximations in the EKF 
algorithm can, however, lead to poor representations of 
the nonlinear functions and probability distributions of 
interest. Besides, when dealing with non linear models 
(like head motion) in state equation and measurement 
relation and a non Gaussian noise assumption, the EKF 
method may lead to a non optimal solution. The 
sequential Monte Carlo methods, or particle filters 
[5,9,10,14,15], provide general solutions to many 
problems where linearizations and Gaussian 
approximations are intractable or would yield too low 
performance. In this paper, we apply the classical 
particle filter Bayesian bootstrap [14], to predict head 
motion. This method allows for a complete 
representation of the posterior distribution of the states, 
so that any statistical estimates can be easily computed. It 
can therefore, deal with any non linearities or 
distributions. Our purpose is to compare, both in 
simulation and in real task, the results obtained by 
particle filter estimator with those given by EKF 
estimator. Typical head motion trajectories are 
considered and error prediction for the two estimators are 
examined. 
The remainder of this paper is organized as follows. 
Section 2 is devoted to the principle of particle filter and 
to the implementation details of the Bayesian bootstrap 
filter [14,15]. Section 3 describes the head motion 
model, including the state representation and system 
dynamics. Section 4 presents results of our experiments. 
Finally, section 5 provides conclusions and pointers for 
future work. 

2. Particle filtering method 
Particle filtering has been a growing research area lately 
due to improved computer performance. A rebirth of this 
type of algorithms came after the seminal paper of 
Gordon et al. [14], showing that particle filtering 
methods could be used in practice to solve the optimal 
estimation problem. The head motion tracking can be 
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considered as a single target non linear discrete time 
system: 
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The particle filters provide an approximative Bayesian 
solution to discrete time recursive problem by updating 
an approximative description of the posterior filtering 
density. Let n

tx ℜ∈ denote the state of the observed 

system and { }t
iit  y  Y 0==  be the set of observations until 

present time. Assume independent process noise vt and 
measurement noise et with densities pvt respective pet. 
The initial uncertainty is described by the density px0. 
The particle filter approximates the probability density 
p(xt|Yt)  

by a large set of N particles { }N
i
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tx 1= , where each particle 

has an assigned relative weight, )i(
tw , such that all 

weights sum to unity. The location and weight of each 
particle reflect the value of the density in the region of 
the state space. The particle filter updates the particle 
location and the corresponding weights recursively with 
each new observation. The non-linear prediction density 
p(xt|Yt-1) and filtering density p(xt|Yt) for the Bayesian 
interference are given by: 
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The main idea is to approximate p(xt|Yt-1) with 
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where δ is the discrete Dirac function. Inserting equation 
(4) into equation (3) yields a density to sample from. 
This can be done by using the Bayesian bootstrap or 
Sampling Importance Resampling (SIR) algorithm from 
[14], given in Table (1). 
The estimate for the particle filter can be calculated as : 
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Table 1. Bayesian bootstrap (SIR) algorithm 
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4. Predict new particles, i.e, ( )t
*)i(

t
)i(

t v,xfx =+1 , 
i = 1,…,N using different noise realization for the 
particles. 

5. Increase t and iterate to item 2. 

3. Head motion model and system dynamics 
Our AR tracking system consists of a robust vision 
landmark tracker and an inertial measurement unit (IMU) 
providing 3D linear acceleration and 3D rate of turn (rate 
gyro). The 3D coordinate frames used in our study, as 
illustrated in figure (1), are: {W} the world coordinate 
system, {C} the camera-centered coordinate system, and 
{I} the inertial-centered coordinate system. Since the 
inertial sensor is rigidly mounted to the camera, the 
transformation between the camera frame {C} and the 
inertial frame {I} is known. 
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World frame

Inertial/camera frames 

 
Fig. 1 Frames of reference 

 
We used head motion model proposed by Chai et al. 
[6,7], where head motion is represented by 15×1 vector: 

 ( )x  ,x  ,x  ,  ,X head ���ωθ=  (6) 
where θθθθ is the orientation of the camera frame with 
respect to the world (we use Z-Y-X Euler angles), ωωωω is 
the angular velocity , and x  ,x  ,x ���  are the position, 
velocity, and acceleration of the camera with respect to 
the world. With these states, the discretized system 
dynamics are given by [6]: 
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where ∆T is the sampling period, W(θ) is the Jacobian 
matrix that relates the absolute rotation angle to the 
angular rate [8], and i

kv  are the system random 
distribution noise. 
Otherwise, sensors have associated with them an output 
equation, which maps the states to the sensor output. 
Since the goal of our study is to compare performances 
of a particle filter estimator and an EKF estimator, we 
suppose that observation equations measure directly the 



 

 

system state. So the vision system measures the camera 
pose (θm, xm) in world coordinate system. The gyroscope 
produces angular velocity measurements ωm, and the 
accelerometers produce the acceleration mx�� . The sensors 
measurements can then be represented by a measurement 
vector as follows: 

 ]x  ,x   ,   ,[y mmmmm ��ωθ=  (8) 
the measure equation is then given by : 
 kkk eXHY +⋅=  (9) 
where 
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and I3×3 is a 3×3 identity matrix, and ek is the 
measurements noise. 
We used a particle filter as fusion filter [11,17,20,21] to 
estimate the head pose parameters of (6) from the 
measurements of the vision and inertial sensors. 

4. Results 
In order to evaluate the performance of our fusion 
particle filter, we first implement it with purely synthetic 
data. So, a synthetic position and orientation of user's 
head are described (figure 2), and synthetic 
accelerometer, gyro, and camera data are generated from 
it. A synthetic white Gaussian random sequence is added 
to the measurements with variance 0.01 for gyros, 1300 
for accelerometers and 0.016 for the vision tracker. 
Furthermore, the process and measurement noises, vk and 
ek respectively, are assumed gaussian, i.e ( )Q,Nvk 0∈  and 

( )R,Nek 0∈ . The data rate of the sensors is ∆T = 15.6 ms. 

 
Fig. 2 Synthetic position and orientation data 

The filter parameters, i.e. measurement noise matrix R, 
process noise matrix Q and initial state error matrix P0 , 
where chosen as: 

[ ]( )33
6

33
4

33
2

33330 10101010100 ×××××= IIIIIdiagP  

[ ]( )33
6

33
5

333333 10101010010 ×××××= IIII.I.diagQ  

[ ]( )33
4

33333333 101000100010 ×××××= IIII.I.diagR  

The noise matrices were chosen empirically in order to 
achieve the best performance of the filter. 

 
(a) 

 
(b) 

 
(c)  

Fig. 3 Pose estimates. (a) Position x (b) orientation x (c) 
Top view trajectory in {W} frame. 

 
First, we compare the SIR method with an EKF filter, 
implemented using equations (7) and (9). We don’t 
include the extended Kalman filter equations since they 
can be found in most related textbook, e.g., [19]. In 
figure (3) results of head motion prediction using SIR 
filter are presented. The true position and orientation are 
as a solid line, where the estimates are drawn in dashed 
lines. Figure (3-a) illustrates the estimated x position, and 
figure (3-b) is the estimated x orientation. The particle 
filter used N = 100 samples. We note that the 
implemented particle filter succeeds to fellow the true 



 

 

trajectories very closely, which implies a robust head 
motion prediction. Figure (3-c) shows a top view of the 
prediction process in the {W} frame. The solid line 
represents the true location of the camera in the {W} 
frame, whereas the "x" represents the predicted one. 

To evaluate the filter performances a root mean 
square error (RMSE) analysis is performed. The RMSE 
is given by: 

 �
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where x(k) is the true trajectory, and )k(x̂  the predicted 
one. 
In figure (4), the RMSE values for different times are 
presented for both SIR and EKF filters. Figures (4-a) and 
(4-b) illustrate the RMSE for the camera position and 
orientation according to the x axis of the {W} frame, 
respectively. We note that, in the two cases and under the 
same conditions, performances of the SIR estimator are 
better than those of the EKF estimator. This foretells a 
well efficiency when the SIR filter will be implemented 
in our AR system. 

 
(a) 

 
(b) 

Fig. 4 RMSE analysis for SIR and EKF filters.  
(a) Position x. (b) Orientation x 

In table (2), the results for the two methods are 
summarized: 
 

Table 2. SIR and EKF RMSE 
Estimation Translation (m) Orientation (rd) 
SIR 0.01642 0.0003 
EKF 0.01986 0.0049 

 
In figure (5) the relationship between the SIR 
performances and the number of particles is presented. 

We note that, when the number of particles increases, the 
RMSE decreases. However, as it is known, the 
computational burden for the particle filters is dependent 
on the number of particles [9]. Therefore it is essential to 
minimize the number of particles used in the estimation 
step. The number of particles needed is determined so 
that the computational remained suitable for our real time 
application, while assuring high performances. So, we 
have done several experiments to determine the 
appropriate number of particles, in this case N = 100. 

 
Fig. 5 Effect of the number of particles on SIR 

performances. 
 
In order to demonstrate the efficiency of our approach, 
we simulated an AR demonstrated system using our 
fusion particle filter. We have generated a sequence of 
images taken by a moving camera. During its motion, the 
camera observes always the "Venus" object which 
represents our visual reference object. Since the "Venus" 
is fixed in the {W} frame, it does not move during the 
process. When the camera pose is predicted by the SIR 
etimator, we backproject the "Venus" model (the virtual 
object), on the plane of the corresponding future image. 
Figure (6) shows the results of this projection for 
different times in the images sequence. We have noted 
that, at every time, the virtual model is well superposed 
to its corresponding scene object. This result shows how 
well the SIR estimator predict the camera pose. 

5. Conclusion 
This paper has presented an accurate and an efficient 
method for AR registration that simultaneously tracks the 
pose and motion of the user's head. This approach is 
based on the implementation of a particle filter to 
integrate inertial and vision subsystems. We have 
compared our particle filter estimator to a classical EKF 
estimator implemented under the same conditions. The 
root mean square error (RMSE)  analysis was used to 
describe performance. The obtained results showed that 
the particle filter estimator performs better than the EKF 
estimator. Otherwise, we quantitatively evaluated, in 
simulation, our AR system under several conditions, and 
the results showed that the fusion method using particle 
filter achieves high tracking stability and robustness, and 



 

 

image projection accuracy is under some pixels over a 
range of test conditions. Our current investigation is how 
to tune the filter parameters to achieve optimum 
performance. Ideally, instead of manually adjusting the 
parameters based on an intuitive understanding of the 
process, an automatic procedure would be used such that 
the optimum performance of the system is guaranteed. 
One interesting approach is to adaptively adjust the filter 
parameters based on the observed motion of the user. 
Indeed, when the person is moving slowly, we have a 
lower level of process noise than when he is moving 
rapidly. 
 

 
(a) t=0.78 s 

 
(b) t=4.68 s 

 
(c) t=6.4 s 

Fig. 6 AR system simulation 
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