

Manipulation Using Magnet Metaphor for 2D and 3D
Integrated Toolkit Systems

Yoshihiro Okada1,2, Yoshiaki Akazawa1 and Koichi Niijima1

1Graduate School of Information Science and Electrical Engineering, Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, JAPAN

{okada, y-aka, niijima}@i.kyushu-u.ac.jp
2Intelligent Cooperation and Control, PRESTO, JST

Abstract
This paper proposes a component-based 3D object
manipulation framework using a magnet metaphor for
2D and 3D integrated toolkit system. The authors have
been studying component based 3D software
development systems. For the development of 3D
graphics applications, the layout of 3D objects is
important factor. However, it is very laborious work and
it takes a long time because 3D objects have six degrees
of freedom (DOF) and it is not easy to lay out them
using a standard 2D input device, i.e., a mouse device.
In the real world, every object exists contacting with
other objects and then it has three DOF, i.e., x-y
translation and z-axis rotation because the gravity exists.
Then, the authors introduced new component that
behaves like the magnet to simulate the simplified
gravity effect for positioning 3D objects. Furthermore,
3D graphics applications need 2D graphical components
for the interface of interactive operations, e.g., pop-up
menus, toggle buttons, pull-down menus and so on.
This paper also proposes the construction of such 2D
interfaces using 3D primitives. The new 3D component
using a magnet metaphor also makes it easier to
construct such 2D-like 3D graphical user interfaces.

Key words: Virtual Reality, 3D toolkit, 3D layout,
Object manipulation, IntelligentBox

1. Introduction
This paper proposes a 3D object manipulation method
using a magnet metaphor for 2D and 3D integrated
toolkit systems. The authors have been studying 3D
software development systems. The research group, to
which one of the authors previously belonged, has
already proposed a component-based 3D graphics
software development system called IntelligentBox [1,2].
IntelligentBox provides 3D software components called
boxes. Each box has a 3D visible shape and a unique
functionality. IntelligentBox also provides a dynamic
data linkage mechanism called slot connection. With
this mechanism, the user can construct 3D graphics
applications by combining existing boxes through direct
manipulation on a computer screen without writing any

text-based programs. Actually, for the development of
3D graphics applications, the layout of 3D objects is
important factor. However, it is very laborious work and
it takes a long time because 3D objects have six degrees
of freedom (DOF) and it is not easy to lay out them
using a standard 2D input device, i.e., a mouse device.
In the real world, every object exists contacting with
other objects and usually it has three DOF, i.e., x-y
translation and z-axis rotation as shown in Figure 1
because the gravity exits. Therefore, in order to make
the layout of 3D objects easier, we introduced a gravity
field effect as a software component, i.e., a particular
box called MagnetBox, into IntelligentBox. Indeed, the
simulation of the complete gravity is impossible in real
time so our MagnetBox only behaves like the magnet
and it works in real time. This is a 3D visual component
so the user can adequately use it for his/her applications
in various ways. For example, this enables to provide a
virtual 2D desktop. On this desktop, the user can lay out
3D primitive parts to build 2D-like 3D GUIs as if he/she
would construct 2D GUIs on a 2D desktop. As a result,
our system IntelligentBox came to have aspects of 2D
and 3D integrated toolkit systems.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 explains
essential mechanisms of IntelligentBox. Section 4
explains how MagnetBox works and shows several
construction examples of 3D composite models. Section
5 explains the construction of 2D-like 3D GUIs. Finally
section 6 concludes the paper.

2. Related work

Our research purpose is to clarify software architecture
that makes it easier to develop interactive 3D graphics
applications. Its related works are Virtual Reality
construction toolkit systems including MR Toolkit[3],
MERL[4] and so on. Most of them provide a script
language like VRML [5]. When developing 3D graphics
applications, developers have to make programs to
define the behavior of each object existing in a 3D
virtual world using a script language. As well, there are
some distributed Virtual Reality systems such as
MASSIVE[6], dVS/dVISE[7], DIVE[8]. Although

December 3-5, Tokyo, JAPAN
ICAT 2003

these are very powerful systems, it is not easy to use
their essential mechanisms for end-users.

Our research system IntelligentBox provides various 3D
software components represented as visible, manually
operable, and reusable objects. Furthermore
IntelligentBox provides a dynamic data linkage
mechanism called slot connection. These features make
it easier for even end-users to develop interactive 3D
graphics applications. This is the main difference
between IntelligentBox and others.

Concerning the higher DOF problem for 3D object
manipulations, there are researches on the use of higher
DOF input devices. For example, the Roller Mouse (a
three DCF mouse) [9], the Bat (a six DOF mouse) [10],
and Data Glove exist. These devices allow the user to
manipulate 3D objects as if he/she would do in the real
world. However, these devices have two main
problems. One is that these devices have their own
manual operation way so the user suffers from the
difference among such various ways. The other one is
that specialized hardware is expensive and difficult to
get.

Smith et al. [11] proposed the manipulation of 3D
objects using a 2D user interface. This system employs
contact constraints among 3D objects to allow the user
to position 3D objects using a mouse device. Xu et al.
[12] proposed a constraint-based automatic placement
system using the pseudo-physics engine [13]. The
purpose of these researches is the same as that of our
research. However, the approach of our research is
different from the others. In this paper, we propose the
component-based approach.

3. Essential mechanisms of IntelligentBox
IntelligentBox employs the following essential
mechanisms inherited from IntelligentPad[14,15], which
is a 2D synthetic media system because IntelligentBox is
an extension of IntelligentPad to 3D graphics
applications.

3.1. Model-Display object (MD) structure

As shown in Figure 2, each box consists of two objects,
a model and a display object. This structure is called an
MD (Model-Display object) structure. A model holds
the state values of a box. They are stored in variables
called slots. A display object defines how the box
appears on a computer screen and how the box reacts to
user operations.

Figure 2 shows messages between a display object and a
model. This is an example of RotationBox. RotationBox
has a slot named ‘ratio’ that holds a double precision
number, which means a rotation angle. Through direct
manipulations on a box, its associated slot value
changes. Furthermore, its visual image simultaneously
changes according to the slot value change. Then a box
reacts to the user manipulations according to its
functionality.

3.2. Message-sending protocol for slot connections

Figure 3 illustrates a data linkage concept among boxes.
Each box has multiple slots. Its one slot can be
connected to one of the slots of other box. This
connection is called slot connection. The slot
connection is carried out by three messages, i.e., a set
message, a gimme message and an update message,
when there is a parent-child relationship between two
boxes. These messages have the following formats:

 (1) Parent box set <slotname> <value>.
 (2) Parent box gimme <slotname>.
 (3) Child box update.

A <value> in a format (1) represents any value, and a
<slotname> in formats (1) and (2) represents the user-
selected slot of the parent box that receives these two
messages.

A set message writes a child box slot value into its
parent box slot. A gimme message reads a parent box
slot value and sets it into its child box slot. Update
messages are issued from a parent box to all of its child
boxes to tell them that the parent box slot value has

Fig. 2 MD structure of a box and its
internal messages

Fig. 3 Standard messages among boxes

Fig. 1 Three DOF of the object
contacting with on other object

changed. Each box has three main flags that control the
above message flow, i.e., a set flag, a gimme flag, and an
update flag. These flags are the properties of a display
object. A box works as an input device if its set flag is
set to true. Contrarily a box works as an output device if
its gimme flag is set to true. A box sends update
messages if its update flag is set to true. Then child
boxes take an action depending upon the states of the set
flag and the gimme flag after they receive an update
message or after they individually change their slot
values.

4. 3D object manipulation using magnet
metaphor
In this section, we introduce standard 3D object
manipulations supported by IntelligentBox and describe
their problem when positioning 3D objects. Then we
explain how MagnetBox works in IntelligentBox to
compensate it, and shows several positioning examples.

4.1 Standard manipulation of 3D objects

 Figure 4 shows the standard coordinate system of 3D
graphics systems. IntelligentBox also has the same
coordinate system. Figure 5 shows standard translation
operations in IntelligentBox. The left-right movement of
a mouse device corresponds to the x-translation, its up-
down movement corresponds to the y-translation, and
the up-down movement with pushing the right button of

a mouse device corresponds to the z-translation. These
x-, y- and z- axes mean the screen coordinate as shown
in Figure 4. With these translations, it is still difficult to
put 3D objects on other object and move on it. Indeed,
IntelligentBox provides three dedicated operations for
such a case. One is to move a 3D object to make its
specific face touch the specific face of other 3D object as
shown in Figure 6. Actually, this operation needs extra
operations to select the two specific faces. The
remaining two are to move and to rotate a 3D object on
its specific face as the same as shown in Figure 1. These
operations need many menu selections. This is not
convenient and not intuitive manner. Furthermore, it
needs many set of operations for positioning 3D objects
especially on a composite object composed from several
primitive objects. MagnetBox makes it simple as
follows.

4.2 Functionality of MagnetBox

As mentioned in Sec. 1, MagnetBox has not a real
gravity effect but a magnet effect. That is, each 3D
object defined as a descendant of MagnetBox always
touches its parent object. When, through the manual
operation using a mouse device, the user translates any
3D object that is a descendant of MagnetBox, the 3D
object moves on the surface of its parent object like a
creeping motion as shown in Figure 7 (a). Normal arrow

Fig. 6 Moving an object to make its face touch
the face of other object

Fig. 4 Standard coordinate system

Fig. 5 Standard translation operations in
IntelligetnBox

Fig. 7 Moving an object with touching the
surface of its parent object

lines mean the movement of a 3D object by a standard
translation operation. t, t+1, t+2 and t+3 mean frame
times. In each frame, the standard translation operation
executed by the user moves the target object to the
position ①, and then, MagnetBox once moves it to the
position ①’ where is enough high from the magnet face
and moreover moves the target object down until it
touches its parent object (or its ancestor object shown in
Figure 7 (b)). A magnet face is the user-specific face of
MagnetBox. Finally the target object will be located at
the position ②. As a result, the target object moves on
the surface of its parent object like the sequence of
position ② shown at each frame time.

As explained above, usually 3D object moves on the
surface of its parent object. However, there is the case
that a desk exists on a floor and the target object also
exists on the floor, and the user wants to move the target
object onto the desk. Also, there is the opposite case
that the target object exists on a desk and the user wants
to move it down onto the floor. Our implementation
makes it possible by using a keyboard operation. Figure
8 (a) and (d) show the former case and the latter case
respectively. When the user clicks a specific key of a
keyboard, e.g., a ‘u’ key, the 3D object goes down under
the desk as shown in Figure 8 (d). On the other hand,
when the user clicks another key, e.g., a ‘u’ key, the 3D
object goes up on the desk as shown in Figure 8 (a).
Moreover, in this case, if the user clicks a ‘u’ key again,
the 3D object goes upon the object located on the desk
as shown in Figure 8 (b). From this situation if the user
clicks a ‘d’ key again, the 3D object goes down onto the
desk as shown in Figure 8 (c). In the all cases, the target
object once goes up to the position ①’ from the initial
position ①, and then, goes down until it touches any
other object. Strictly speaking, when the user clicks a
‘u’ key, i.e., the cases (a) and (b), MagenetBox moves

the target object up to the position ①’, and then, moves
it down until it touches any sibling object. On the other
hand, when the user clicks a ‘d’ key, i.e., the cases (c)
and (d), MagnetBox once moves the target object up to
the position ①’, and then, moves the target object down
until it touches any ancestor object of its parent.

As you see figure 8 and imagine, these operations also
change the parent-child relationship concerning the
target object automatically. For example, in the case of
Figure 8 (a), after the operation, the target object
becomes the child of the desk. If the user moves the
desk, the target object still moves with attached to the
desk. In the case of Figure 8 (b), after the operation, the
target object becomes the child of the object located on
the desk.

4.3 Discussion

Figure 9 shows an actual layout example. Usually,
without using MagnetBox, it takes a couple of minutes to
compose the composite component of the right figure
from separate primitive objects of the left figure.
However, with using MagnetBox, it takes less than one
minute. This is a very simple composition example and
its elapsed time was very short. However when making
more complicated scene, it needs longer time. In such a
case, the use of MagnetBox comes to have the big

Fig. 9 Composition result (b) composed from
primitive components (a)

Fig. 8 Object positioning example using MagnetBox

advantage.

There is a problem because, for simplicity, our algorithm
cannot detect the collision of a target object with inside
faces of other object. For example, a bookshelf has
several shelves its inside so it is impossible to locate
books on its shelves. Figure 10 shows one of the
solutions to this problem. Each shelf should be an
individual component and a parent-child relationship
should be assigned between any two adjoining shelves.
In such a case, with using keyboard operations, the user
can put a book on any shelf.

Indeed, we have already proposed a random layout
algorithm for 3D scene generations [16, 17]. Figure 11
shows four random layout results generated by the
algorithm. However, to obtain user required 3D scenes
by modifying the 3D scenes once generated by the
random layout algorithm, user’s manual operations are
necessary. In such a case, 3D object manipulations
using MagnetBox must reduce the cost of such layout
work drastically.

5. Virtual desktop: construction of 2D-like 3D
GUIs
3D graphics applications need 2D graphical components
for the interface of interactive operations, e.g., pop-up
menus, toggle buttons, pull-down menus and so on. Our
MagentBox help us to construct such 2D-like 3D GUIs.

5.1 3D Primitives

3D primitives of a screen image of Figure 12 are
RotationBoxes, SliderMeterBoxes, ListBoxes and so on.
With using MagnetBox, the user can lay out them to
build 2D-like 3D GUIs as if he/she would manipulate on
the real desktop of a computer display like
pasting/peeling operations. This reduces the time
consuming for building 2D-like 3D GUIs.

5.2 Composition example of 2D-like 3D GUIs

Figure 13 shows one composition example of 2D-like
3D GUIs and its hierarchical structure. In the figure, the
symbols ‘ratio’, ‘state’, ‘alpha_value’ and ‘opacity’
mean slot values of boxes. The root object is
IOBufferBox and its alpha_value slot is connected to the
ratio slot of RotationBox and also connected to the ratio
slot of SliderMeterBox. The opacity slot of the
IOBufferBox is also connected to the state slot of
ToggleSwitchBox. The ToggleSwitchBox controls
availability of the opacity of the IOBufferBox. As well,
both the SliderMeterBox and the RotationBox works to
change the transparency level of the IOBufferBox.

To understand how this composite box works in more
detail, see the demonstration video on the web of

Fig. 10 Positioning books in a bookshelf
using MagnetBox

Fig. 11 Four random layout results generated by a
prototype system

Fig. 12 Virtual desktop: positioning 3D
primitives by pasting/peeling operations

Fig. 13 Composition example of 2D-like 3D GUIs

ICAT2003 conference or on http://www.i.kyushu-
u.ac.jp/~okada/extern/Publication/ICAT2003/index.html
.

5.3 VisorControlBox

To provide a virtual desktop, another box called
VisorControlBox is used with MagnetBox in practical
cases. VisorControlBox controls the view direction in
order to keep it as the same as the normal direction of
the magnet face of MagnetBox. With VisorControlBox,
the user sees 2D-like 3D primitive components on the
magnet face as if they would exist on a 2D flat display
screen.

6. Concluding remarks
This paper proposed a component-based 3D object
manipulation framework using a magnet metaphor for
2D and 3D integrated toolkit systems. By considering
the gravity, it is possible to reduce the DOF of 3D
objects and to make the positioning of 3D objects
simple. We introduced a particular component called
MagnetBox into IntelligentBox in order to simulate the
simplified gravity effect. MagnetBox is also used to
provide a virtual desktop in a 3D space and hence is
useful for the construction of 2D-like 3D GUIs. In this
paper, we explained how MagnetBox works and describe
its usefulness.

The functionality of MagnetBox is based on the collision
detection. Since we do not use any efficient collision
detection algorithm, we will have to introduce one of the
efficient collision detection algorithms to improve the
performance of MagnetBox. Furthermore, we will have
to develop some practical application examples of 2D-
like 3D GUIs to evaluate the availability of MagnetBox.
These are our future works.

References
1. Okada, Y. and Tanaka, Y., IntelligentBox: A

Constructive Visual Software Development System
for Interactive 3D Graphic Applications, Proc. of
Computer Animation ’'95, IEEE Computer Society
Press, pp. 114-125, 1995.

2. Okada, Y. and Tanaka, Y., Collaborative
Environments in IntelligentBox for Distributed 3D
Graphic Applications, The Visual Computer (CGS
special issue), Vol. 14, No. 4, pp. 140-152, 1998.

3. Shaw C, Green M, Liang J, Sun Y, Decoupled
Simulation in Virtual Reality with the MR Toolkit.
ACM Transaction on Information Systems, Vol. 11,
No. 3, pp. 287-317, 1993.

4. Anderson DB, Barrus JW, Howard JH, Rich C,
Shen C, Waters RC, Building Multiuser Interactive
Multimedia Environments at MERL. IEEE
Multimedia, 2(4): 77-82, 1995.

5. Ames, A. L, Nadeau, D. R. and Moreland, J. L., The
VRML Sourcebook, John Wiley & Sons, Inc. ,
1996.

6. Greenhalgh, C., Benford, S., MASSIVE: a
Distributed Virtual Reality System Incorporating
Spatial Trading. Proceedings of IEEE 15th
International Conference on Distributed Computing
Systems (DCS'95), pp. 27-34, 1995.

7. Grimsdale, C., dVS-Distributed Virtual
Environment System. Proceedings of Computer
Graphics '91, London, UK, Bleinheim Online, pp.
163-170, 1991.

8. Hagsand, O., Interactive Multiuser VEs in the DIVE
System. IEEE Multimedia, Vol. 3, No. 1, pp. 30-39,
1996.

9. Venolia, D., “Facile 3D direct manipulation”, ACM
SIGCHI, pp. 31-26, 1993.

10. Ware, C., and Jessome, D.R. “Using the Bat: a six
dimensional mouse for object placement”, IEEE
computer Graphics & Applications, 8(6): pp. 65-70,
1988.

11. Smith, G., Salzman, T., and Stuerzlinger, W.,
Integration of constraints into a VR Environment,
VRIC 2001, pp. 103-110, 2001.

12. Ken Xu, James Stewart, Eugene Fiume, Constraint-
based Automatic Placement for Scene Composition,
Graphics Interface, pp. 25-34, 2002.

13. M. Shinya and M.C. Forgue, Laying out objects
with geometric and physical constraints, The Visual
Computer, (11):188-201, 1995.

14. Tanaka, Y., Meme Media and a World Wide Meme
Pool, Proc. of ACM Multimedia ’96, pp. 175-186,
1996.

15. Tanaka, Y., Meme Media and Meme Market
Architectures for the Reediting and Redistribution
of Knowledge Resources, Proc. of MultiMedia
Modeling ’98, IEEE Computer Society Press, pp. 2-
11, 1998.

16. Akazawa, Y., Okada, Y. and Niijima, K. :
Automatic 3D Object Placement for 3D Scene
Generation, The European Simulation and Modeling
Conference 2003 (ESMc2003), short paper, pp.
316-318, 2003.

17. Akazawa, Y., Okada, Y. and Niijima, K., 3D Scene
Generation System and Its Intuitive Interface, to
appear in EUROSIS 4th annual European GAME-
ON Conference (GAME-ON2003), 2003.

