
 

A Formalism and a Tool for Diverging Requirements in 
VR Scenario Modeling 

Richard Wages, Benno Grützmacher, Georg Trogemann 
 

Laboratory for Mixed Realities 
Am Coloneum 1, D-50829 Cologne, Germany 

{wages, gruetzmacher, trogemann}@lmr.khm.de 
 
 

Abstract 
Any VR scenario should offer a certain degree of non-
linearity or openness regarding the story progress as a 
consequence of the interaction with the user. In this 
paper we propose a new formalism, which we regard as 
suitable for authors and artists to develop compelling and 
flexible interactive stories. We distinguish two levels of 
openness in storytelling. The first level of openness deals 
with the freedom of the author. Storytelling is regarded 
as an ill-defined problem and hence Authoring Tools 
have to support the author defining his goal and to 
iteratively describe, develop and improve his idea of the 
story. The second level of openness deals with the 
freedom of the user. From the perspective of the 
audience of an interactive story we want the plot to 
behave in personalized ways, i.e. depending on the 
actions of the user the story should develop in different 
directions. In accordance with these two types of 
openness we developed a prototypical graph based tool 
for the creation of non-linear scripts to make VR 
scenario authoring accessible for a much greater number 
of creative people. 

Key words: Virtual Reality, Non-Linear Scenario, Story 
Modeling Formalism, Parallel Graphs,  Authoring Tool 

1. Introduction 
Obviously VR scenarios cannot be strictly composed the 
same way as for example linear movies with entirely pre-
produced images. Authors of non-linear scenarios have 
to describe their intentions for the progress in form of a 
set of explicit rules which govern the (long term) 
behavior of the system at runtime. Hence from an 
authoring point of view the subsequent challenges are 
twofold:  

In the first place one has to provide authors with a 
powerful formalism which is unambiguous and can be 
translated directly into the VR engine of the target 
platform. Secondly one has to observe that VR scenarios 
are still predominantly designed by programmers since 
most of the potential authors of VR scenarios or 
interactive stories are not familiar with programming 
languages. Hence these authors also have to be equipped 

with an authoring tool to create such non-linear scripts 
for interactive stories. To meet this challenge we looked 
upon the once development of abstract formalisms in 
software engineering like statecharts (Harel charts) which 
among other had a strong influence on the specification 
of UML. 

In contrast to past developing processes of 'productive' 
software which began with a definition of strict and well-
defined requirements for the application and the design 
for an optimized implementation nowadays approaches 
for software development are of a more evolutionary 
character. This general shift is true in a double sense for 
authors of scenarios which are expected to show a 
greater openness at runtime. An author will most likely 
add additional objects, story fragments or entire subplots 
at any time during the elaboration of the scenario. This 
might especially be the case towards the end of the 
creative process when she or he gets a better feeling for 
the effects of the developing story. The discovery of 
surprising scenario behavior might even delight its 
creator if it contributes to dramaturgy and suspense in a 
way which was not necessarily anticipated. Hence we 
consider testing opportunities during any time of the VR 
scenario authoring process as crucial.  

For our tool we chose a working sheet with the 
opportunity to build up parallel hierarchical directed 
graphs since both programmers and artists agree on such 
a basic authoring method, even though for different 
reasons: While the latter see an intuitive depiction of a 
proceeding non-linear story, software developers rather 
perceive a direct visual representation of objects which 
can easily be translated into finite state machines (FSM). 
As an example: On entering a node which nests a 
hierarchical lower (sub)graph programming paradigms 
call for an instant descent to a child node of lowest 
hierarchical rank. However such a procedure is an 
unnatural approach for an author who more likely will 
situate certain events to happen within this node before 
an optional entering of the nested (sub)story.  

Our developed VR authoring tool addresses a mediation 
between these diverse realms. On the one hand authors 
are enabled to creatively build up their envisioned 
complex VR scenario progress to – what we consider to 

December 3-5, Tokyo, JAPAN
ICAT 2003



 

be – a maximal possible extent of freedom. On the other 
hand they are bounded insofar as they cannot evade the 
use of the inbuilt (particularly easy) scripting dialogues 
which will lead to a logically consistent and working 
scenario. Thus they are also obliged to explicitly write 
down the results of particular events or user interactions. 
This means an additional advantage within the 
communication process during a production compared to 
mere textual outlines. Programmers now receive a 
complete scenario script in form of an XML file as an 
output of the tool. An interpreter for a target platform 
only has to be developed once. Beside the storyboarding 
functionality the most important component of the 
authoring tool is its internal story player for scenario 
testing opportunities. This player is completely textual 
and hence independent of the existence of any modeled 
images or sounds.  

2. Related Work 
Within the realm of computer games FSMs are widely 
used to model character real-time decision and action 
behavior graphically. Tools like for example DirectIA 
[2] and SimBionic [9] provide a framework to develop 
systems in a very state-oriented way. Most of the 
resulting control flow is governed by states or conditions 
of objects or processes. Yet on the bottom line both are 
rather implementation tools to help programmers to 
create popular constructs than design tools. In contrast 
our tool focuses on a high level scenario design itself. 

An impressing example for interactive storytelling in 
virtual worlds is the Façade project [7]. Here the 
behavior of the believable characters is authored by a 
special scripting language (ABL). While this system 
attends to create a dramatic story progress at real-time 
again the very authoring of the character behavior has to 
be done by a person with programming skills. 

Two prominent tools that are designed especially for the 
development of story are Dramatica [8], a tool which was 
used to develop the scripts of numerous movies, and 
Storyspace [3], a tool to create non-linear hypertext 
novels. Although the creation of scenarios is actively 
supported by these tools they are not applicable for VR 
scenario modeling since they deliver output in unsuitable 
formats, i.e. pure text and hypertext respectively. For our 
tool we decided to use XML as an extremely general 
output format which potentially can serve as in input for 
a great range of VR and game engines. 

3. Interactive Storytelling as Two-Level-
Openness 
While most of the problems that where solved with 
computers in the beginning of computerization belonged 
to the field of well-defined problems, today's applications 
are more and more penetrating the realm of ill-defined 
problems. Well-defined problems are characterized by 
situations in which the starting position, the goal and the 

set of possible actions are known in advance. This means 
especially, that with each problem we are given some 
systematic way to decide, when a proposed solution is 
acceptable. Well-defined problems are static in some 
way, i.e. with the precise description of the problem at 
the beginning of work the whole space of possible 
solutions is already completely determined. Typically 
mathematical problems are well-defined problems. 

Ill-defined problems on the other hand are characterized 
by moving targets. For example, all design problems and 
art works belong to the universe of ill-defined problems 
[4, 5]. The starting situation of designers and authors in 
creating artistic work maybe summarized best by Steven 
D. Katz: '... how does the artist use visualization? ... The 
answer is that the artist rarely has a specific goal in 
mind when he begins to work, so that the process of 
visualization is actually the search for a goal rather the 
attainment of one.'  When dealing with ill-defined 
problems much of the work has to be invested in finding 
and describing the problem. With Poincaré: 'The 
question is not, what is the answer? The question is, 
what is the question?' One other feature of ill-defined 
problems is that the borderline between the relevance or 
irrelevance of information is very vague. The context of 
the application emerges throughout the working process 
and the determination of whether some information or 
action should be considered as relevant or irrelevant can 
only be decided during working on the problem and not 
beforehand. Ill-defined problems are open in the sense, 
that there are no definite criteria to judge the solutions. 
This means, that ill-defined problems are not really 
solved, rather the process of working on the problem is 
stopped at some point, were the state of the solution is 
'satisfying'. 

From what we have said so far, it should be clear, that 
storytelling and the creation of a rich interactive scenario 
belong to the realm of ill-defined problems. The art of 
storytelling has no standardized solutions, sometimes no 
requirements exist at all, the goal becomes only clearer 
during the working process, and the process itself is 
extremely iterative. Also the criteria for success in the 
artistic context of storytelling cannot be formally 
described but works have to be evaluated by unsharp 
aesthetic means. Hence one important requirement any 
authoring tool for storytelling has to fulfill is to support 
the creative solution of an ill-defined problem. 

But regarding storytelling as an ill-defined problem is 
only the first level of openness. In the field of storytelling 
and interactive scenarios in general, we have to deal with 
even a second level of openness. While the first level 
deals with the freedom of the author during the design 
process of a story, the second level deals with the 
freedom of the user. From the perspective of the 
audience of an interactive story we are also interested in 
some sort of openness. We want the story to behave in 
personalized ways, i.e. depending on the actions of the 
user the story should develop in different directions. This 



 

second level of openness also has to be supported by the 
authoring tool. 

The implemented formalisms, features and functionalities 
of our authoring tool aids 1st. and 2nd. level openness of 
scenarios in multiple ways. Since the design of the tool 
functionalities and the underlying formalism for scenario 
authoring are intertwined we describe them not one after 
the other but in accordance to the respective level of 
openness they support during story authoring. 

4. Support of first level openness 
To support first level openness the Authoring Tool must 
address artists rather than programmers. The tool should 
therefore be easy to use and not demand any technical 
skills or programming languages. Again it is the domain 
of computer games which gives a hint in the growing 
problem in the endeavor to create environments of rich 
experiences for the user. Computer game developers 
search for ways to include non-programmers on the 

development team (level designers, authors) in the 
creational process and use the easy to visualize FSM 
diagrams for the communication of system progress over 
time. Since we will finally need an even more general 
structure we decided to offer a working sheet with the 
opportunity to build up parallel hierarchical directed 

graphs as basic elements.  

Not only can authors visualize the progress of the non-
linear scenario (storygraph) but also use the tool as non-
linear storyboard for themselves as well as to provide 
information for the further production process. Moreover 
the storyboard functionality is enhanced by an internal 
media player to illustrate sample files of various file 
formats.  

To cope with growing size and complexity and to overall 
organize huge structures one can recursively encapsulate 
substructures within nodes. A better transparency is 
given by the possibility to access to all hierarchical levels 
of story description directly at any time. 

With the described features authors are enabled to build 
any desired scenario progress from scratch if they like to. 
In addition the tool can be equipped with typical 
structures and special objects (building blocks) of a 
given target platform. These structural templates were 
not only introduced for economical reasons but also to 
aid the inexperienced author and give her or him 
something to start off right away. 

As a direct feedback is essential especially at early stages 
for any artistic and creative work to see if the realization 
of ideas is working out as expected. The tool allows the 
author to process the story in an internal story player 

 
Fig. 2 Internal Media Player 

Fig. 1 A Fraction of the Storygraph 

N

P

C

G

Graph 1

Graph 2

Graph 3

Graph 4

  
Fig. 3 Hierarchical Graph 

 
Fig. 4 Building Blocks 



 

before any images or models are produced. 

At the end of the successive process of forming the story 
from a vague idea towards the final product, the tool 
ensures that the scenario is broken down into a stringent 
form. The generated XML file is a formal description of 
the scenario. Due to the generality and popularity of the 
XML standard the output may potentially be used by a  
wide range of target platforms.  

5. Support of second level openness 
In the following we propose the approach of bringing 
more openness to the interactive scenario by introducing 
parallel graphs. By this we take a further step to extend 
the formalism of pure FSMs. Similar extensions of FSMs 
have been made earlier among other with the 
introduction of concurrency as for example in Harel 
charts [6]. As pointed out in section 3 the tool as well as 
the underlying formalism also address the demand to 
allow for this creation of a more open scenarios.  

Given a system environment which is capable of 
generating a virtual world along scripted rules like a VR 
or game engine. Obeying the aimed aesthetics or logic of 
the presented scenario, some or all control has to be 
transferred to more or less autonomous system entities in 
a meaningful way. Hence there is a need for a central 
system entity which somewhat strongly enforces the 
author’s intentions on the progress of the running 
scenario comparable to a conductor or moderator. At 
runtime all these entities together with the user govern 
the progress of a particular scenario.  

It will always depend on the aimed openness of the 
system to which extent the author is willing to transfer or 
even give up control. An authoring approach, which is 
based on the idea to distribute the control among 
intertwining system entities – the central and most 
powerful of which is the representation of the author's 
intention regarding the progress itself – provides for a 
great spectrum of conceivable scenario types. 

In our case this central entity will be the above 

mentioned storygraph. All other entities (object graphs) 

will be of the exact same structure and can be authored 
the same way, but the storygraph will play the prominent 
role. When we offer to the author the possibility to create 
object states  we primarily think of story relevant states 
rather than for example physical states. In a running 
scenario changes of the system correspond to a transition 
in at least one of the graphs. Such a transition within a 
graph can be triggered by a clearly defined condition like 
a particular reached state of a different graph or a certain 
state constellation of a collection of graphs. The actual 
state of the system is then determined by the collection of 
all active nodes of all objects. 

Table 1 Node Content 
Node Content Function 

Textual description of a scene / 
state represented by this node Storyboard 

Media samples to support the 
description  (e.g. pictures) 
Objects which are referenced 
within this node 
Parameters characterizing this nodeStory Logic 
Event Scripts belonging to this 
node 

 

To expand the authoring possibilities in addition to 
discrete states each node can be equipped with 
(continuous)  parameters. After serving as a more or less 
simple container for the author's description of the 
envisioned scenario, the nodes will be used as the place 
to author the logical interdependencies between the 
different graphs. This is done by the author in form of 
event scripts. To create  such an event script the node has 
to reference other objects. An event script is then a 
simple logical if-then expression, where events can be 
defined as a condition to trigger other chosen events as 
results. 

Conditions (c1, c2,  c3,..)           Results (r1, r2,..) 

Event scripts can only be built with the help of a 
dialogue which only allows for conditions and results 
(i.e. transitions) which are actually possible within the 
scenario since they were earlier created by the authors 
themselves. Thus authors are obliged to break down the 
scenario into a concrete set of rules for the system. 
Although the tool cannot completely guarantee the 
consistency of a created story it thus supports the 
authoring of a reliable scenario to a great extent. 

For parallel processes the priorities of execution and the 
communication between the parallel entities are crucial. 
As pointed out above any state of an object can be 
scripted as a condition of an event script. The condition 
is considered as true in the moment when the appropriate 
state is taken leading to a processing of all the results of 
this script. Since any transition in any graph could 
potentially trigger a script, every transition can be 

Storygraph
Actual state
of the system

Object:
Character A

Object: Door

Object: Rose

 

Fig. 5 Parallel Scenario Graphs 



 

considered as an event. To manage this amount of 
events, a mechanism applies which can be described as 
follows: Given three instances of a list 

Event Scripts List (ESL): Contains all event scripts of the 
nodes which are active at a time and therefore listening 
to occurring events. 

Object states list (OSL): Contains all objects and their 
current states. 

Processing List (PL): Contains all event scripts which 
will be executed because they were matched. An event 
script is matched when all its conditions are true at the 
same time evaluated by comparing ESL and OSL. While 
processing the PL all results of an event script will be 
processed after another, before the processing of the next 
event script will be started. The list will be processed 
from top to bottom (the oldest entry on the list is the first 
to be executed and will be deleted afterwards). During 
processing the list new entries can be registered as 
consequence of another result. 

Starting from the execution of a result (e.g. processing 
the result Rj,i of an event script Sj leading to a transition 
to node N in a graph G) on the PL will lead to the 
following process execution order:  

1. Transition to node N 

2. Update OSL & ESL  

3. Write start states of objects of N in PL (as event 
scripts) 

4. Write start scripts of node N in PL (event 
scripts where the condition is true in the 
moment the node N in entered)  

5. Evaluate matching scripts (by comparing 
conditions of the scripts on ESL with OSL). Put 
matched scripts on the PL. 

6. Process next result of Script Si (return to 1.) 

7. Delete the event script Sj on the PL. Process 
first result of next event script Si+1 on the PL. 
(return to 1.) 

8. Idle (Interaction of the user or time triggered 
events are new transitions to return to 1.) 

Nonlinear time management: 

For the dramaturgy of storytelling the management of the 
temporal occurrence of events is a fundamental element 
which ought to be under the control of an author. Even if 
the user has only limited control over the progress of the 
scenario, his freedom leads normally to the destruction of 
a meaningful time management. To allow the author 
somewhat more influence on the temporal progressing of 

the story timelines as special objects are provided in the 
tool. These timelines can be referred to in any node and 
integrated into the event scripts' logic to trigger 
transitions in the storygraph or in objects. Especially the 
following characteristics of timelines are considered as 
crucial for nonlinear time management: 

Flexibility: Because of the full integration of  timelines 
in event scripts a timeline can be started, paused and 
stopped under any possible condition (e.g. any state of 
any object). Likewise a timeline can also be scripted as a 
condition itself, leading to time triggered transitions. 

Hierarchy: Another important feature of timelines lies in 
the combination with the concept of hierarchy and the 
possibility to define an event script as local or global. By 
defining a time triggering script as local or as global the 
author can also define time management on different 
hierarchical levels. 

One has to keep in mind that even simple rules are 
capable of generating complex behavior [10] that cannot 
be anticipated completely by any author on a descriptive 
level. Hence in practice extensive testing, i.e. inspecting 
the behavior of the system during running becomes again 
an integral part of the authoring process. While first 
testing is more of a debugging character, final (second 
level) testing now means to explore the open system, to 
check if the goal to create openness was reached in a 
satisfying way. 

6. Consequences for Interactive Storytelling 
The introduction of independent objects with an own 
inner logic and the possible transfer of control away from 
the storygraph towards these objects gives rise to a 
heterarchical structure of the scenario. Authors are now 
obliged to find a balance for the potentially emerging 
concurrency between the entities at runtime. On the other 
hand we expect that the deliberate allowance for 
concurrency will lead to the creation of new forms of 
scenarios with the desired greater openness. Hence the 
authoring tool also facilitates the management of yet 
another category of concurrency which arises from the 
hierarchical structure of the graphs. Authors are able to 

 
Fig. 6 Internal Story Player 



 

create event scripts in any node of any graph. But there is 
no automatism regarding inheritance of these scripts and 
encapsulated sub-graphs. The progress of a story may 
linger in a node for some time before maybe descending 
to a sub-node.  

At any hierarchical level an author now can decide 
whether or not to enable a script for substructures., i.e. 
make a script purely local or more global. This again 
may lead to (accepted) concurrency effects, e.g. between 
local and global timelines. 

7. Summary 
We have developed both a formalism and a prototypical 
authoring tool suitable for the ill-defined task of 
interactive storytelling or more general the creation of 
interactive scenarios. Compared to common software 
engineering processes we observe an additional level of 
openness for this task, namely the freedom of the user. 
Hence beside an approach to enable artists and authors to 
create such scenarios in the first place we also had to 
make sure that they can create these scenarios with the 
desired greater openness for the user. For this common 
formalisms like FSMs had to be extended. The resulting 
phenomena of concurrencies between local and global 
scripting as well as concurring heterarchical entities were 
deliberately accepted. We stressed the relevance of 
different levels of testing during all parts of the scenario 
development process. Authors with little or no 
programming skills can attend to the task of interactive 
scenario modeling and contribute their very own artistic 
skills. 

Acknowledgements 
This work is part of the ongoing 'alVRed' project [1] and 
was supported by the German Ministry of Education and 
Research (BMBF) under grant No. 524-40001-
01IRA06A within the 'Virtual and Augmented Reality' 
project framework. 
 

References 
[1] Project alVRed, http://www.alvred.de 

[2] MASA: DirectIA, http://www.directia.com 

[3] Eastgate Systems Inc.: Storyspace 
http://www.eastgate.com/Storyspace.html 

[4] Fischer, G.: Shared Understanding, Informed 
Participation, and Social Creativity – Objectives for the 
Next Generation of Collaborative Systems, in: Proceedings 
of COOP'2000, Sophia Antipolis, France, 20 00 

[5] Fischer, G.: Articulating the Task at Hand and Making 
Information Relevant to It, in: Human-Computer 
Interaction Journal, Special Issue on Context-Aware 
Computing, (in press), 2001 
www.cs.colorado.edu/~gerhard/papers/hci2001.pdf 

[6] Harel, D.: Statecharts: A Visual Formalism for 
Complex Systems, Science of Computer Programming 8, 
Elsevier Science Publishers B.V. (North-Holland), 1987 

[7] Mateas, M., Stern, A.: Architecture, Authorial Idioms 
and Early Observations of the Interactive Drama 
Façade, Technical Report CMU-CS-02-198, Carnegie 
Mellon University, 2002 

[8] Screenplay Systems: Dramatica 
http://www.dramatica.com 

[9] Stottler Henke, Inc.: SimBionic 
http://www.stottlerhenke.com/products/index.htm 

[10] Wolfram, S.: A New Kind of Science, Wolfram Media 
Inc., Champaign, IL, 2002 

 
Fig. 7 Local and Global Scripting 

http://www.alvred.de/
http://www.directia.com/
http://www.eastgate.com/Storyspace.html
http://www.cs.colorado.edu/~gerhard/papers/hci2001.pdf
http://www.dramatica.com/
http://www.stottlerhenke.com/products/index.htm

	Node Content

