

A Study on Hierarchical Avatar Behavior
Representation and Control Technique

Jae-kyung Kim,
Yoon-Chul Choy
Dept. of Computer

Science, Yonsei Univ.,
Seoul, Korea

{ki187cm, ycchoy}
@rainbow.yonsei.ac.kr

Won-Sung Sohn
Computational

Design Program,
School of

Architecture.,
Carnegie Mellon

Univ., USA
sohnws

@u.washington.edu

Beom-Joon Cho
Dept.of Computer

Engineering,
Chosun Univ.,

Kwangju, Korea
bjcho@chosun.ac.kr

Soon-Bum Lim
Dept. of Multimedia

Science
Sookmyung

Women’s Univ.,
Seoul, Korea

sblim
@sookmyung.ac.kr

Abstract
Avatar techniques have rapidly progressed in recent
years, and will be widely applied to various applications.
However, current expression and control of avatar
behavior lacks structured and standardized method
which makes it difficult to express it. The paper
proposes hierarchical approach for representation and
control techniques for avatar behavior for simpler avatar
control in various domains. We suggest three layered
architecture: task-level behavior, high-level motion, and
primitive motion. The task-level behavior represents
task-oriented avatar behaviors used in various task
domains such as cyber class, virtual shopping mall, etc.,
so that end user can control the avatar through easy and
simple task-level user interface. High-level motion
provides abstract and parameterized actions. It is
independent from task domains and implementation
environments such as avatar engines. The primitive
motion describes avatar motions supported by each
avatar engines or implementation tools. Thus, the user
controls avatar at task-level layer and does not need to
be concern about low-level animation data. The task-
level behavior is translated to primitive motion thru
high-level motion, so that the behavior can be applied to
various tools. Our goal is to support flexible and
extensible representation and control of avatar behavior
by hierarchical approach separating application domains
and implementation tools.

Key words: Avatar, Script Language, Behavior

1. Introduction
With computer becoming an important part of our lives,
many of our activities are achieved in virtual
environment. Now, computers are not just a machine
doing simple jobs but one of the interfaces to our social
activities. Thus, interactive user interface techniques
between human and computer which can induce interests
is becoming more and more important. The avatar is a
representative example of the interface techniques.

Avatar techniques have rapidly progressed over the
recent years. Gartner group[1] selected the avatar
application as the major communication technique
among ten branch information which were paid attention
to in 21st century.

With these avatar application, study on avatar behavior
representation and control is actively going on.
Especially, since the establishment of XML, the web
standard language, avatar behavior script can be based
on XML and it is possible to standardize avatar
behavior. Actually, many XML-based script languages
which have various purposes are being developed such
as CML[3], AML[2], VHML[4], XSTEP[5] and so on.

In the paper, we define the script languages for avatar
behavior control by layered approach architecture to
provide easy interface to users at various application
domain and implementation environments. Suggested
script consists of three layered architecture: task-level
behavior, high-level motion, and primitive motion. We
discuss them in the next chapter in detail.

2. Related Works
2.1 Task-level Avatar Behavior

Task is a kind of avatar behavior which has specific
purpose or object[9]. For instance, avatar behaviors such
as ‘Walk to Table' or 'Jump Here to There' is task-
oriented avatar behavior because it has the purpose of
going to a specific location or an object, while avatar
motions such as just ‘Walk’ or ‘Jump’ is just motion
itself.

Each domain uses different task behavior. For example,
‘lecture’, ‘answer’, and ‘query’ tasks could be used in
the learning domain, and ‘sell’ and ‘buy’ tasks should be
used in the virtual shopping domain.

Some task-level behavior systems have been researched
such as STEVE[7], PPP[8], and Wizlow[6]. The main

This work was supported by Ministry of Commerce,
Industry and Energy

advantage of these task-level avatar systems is that the
user does not need to control complicated avatar
motions. The user just gives avatar a certain task, and the
avatar performs appropriate sequence of behaviors to
achieve the task.

However, most systems convert the task-level behaviors
into primitive motion or low-level animation data
directly which is supported by avatar engines or motion
library to control the avatar behavior. Therefore, task-
level behavior might be dependent to low-level motion
of the specific implementation tool or engine, and
efficiency in extensibility or reusability is lowered.

2.2 High-level Motion Control

It is difficult for common users to control the motion of
avatar by providing low-level motion such as rotation
angle to every part of body. This kind of job is for
professional animators and not for common users.
Therefore, the common users should be abstracted from
low-level animation data or physical representation of
avatar motion.

High-level motion allows the users to control avatar at
abstract motion level. Some preceded works such as
AML, CML, VHML, STEP have been researched. These
scripts are based on XML format and are aimed to
control avatar motions independent from specific
implementation environment.

The purpose and scope of the scripts are various. In case
of AML, it calls static low-level animation data such
MPEG4 and represents it by motion parameters. Another
script, CML, defines base motion elements such as turn-
to or move-to to bridge the gap between avatar tools and
engines. STEP is based on dynamic logic, which
provides semantics for complex behavioral patterns, and
VHML is designed to accommodate the various aspects
of human computer interaction with regards to facial
animation, text to speech production, body animation,
dialogue manager, emotional representation.

Recently, many researches about avatar motion are
actively going on. These high-level motion scripts
represent avatar motions well in detail but it is too
complicated for users to control the avatar motion..

3. Layered Representation and Control of
Avatar Behavior
Proposed method seeks high extensibility, convertibility
and reusability as its goals by defining behavior
expression and control language for layered animated
character behavior control. Behavior expression and
control language is composed of animated character
task-level behavior language which users create in
specific domain context, primitive motion script for
expression of basic motions supported by animated
character animation engine or library, and high-level
language which expresses animated character behavior

independently from such domain or software program.
The table 1 will show characteristics of the proposed
languages.

Table 1. Characteristics of the proposed languages
Script Level Characteristics
Task-Level
Behavior

▪ Consists of task behaviors that are
required for specific domain such as
cyber education and shopping mall
▪ Dependent on domain but independent
from animation engine

High-Level
Motion

▪ Express general character motion
through various parameter
▪ Abstract expression and control
language
▪ Independent from both domain and
animation engine

Primitive
Motion

▪ Primitive motions supported by
animation engine or motion library of the
specific software program
▪ Physical representation of character
motion parameter
▪ Independent from domain, but
dependent on animation engine

To interpret script language on each layer, the proposed
technique uses task-level behavior translator and
context-based high-level motion translator. Since we
focused on script languages, the translators are briefly
described here. The task-level behavior translator
analyzes behavior task-level behavior script using
information of domain environment and produce
parameterized high-level motion sequence. The high-
level motion translator converts high-level script
language into primitive motion script based on the
context, that is, information on the physical structure in
the virtual world. In other words, the script language on
each layer exists independently from each other and is
produced by the proposed translator. The following
section will discuss each of these script languages in
detail.

3.1 Task-level Behavior

As we mentioned in previous chapter, task-level avatar
behavior is to accomplish a certain task in a specific
domain environment and how the actual behavior is
performed differs depending on the attribute of domains.

In this paper, we define the XML DTD according to the
following concepts that represent script language of
task-level avatar behavior which can be used in various
domain environments.

Design Concept

▪ Simplicity: Easy to write by human scripter.

▪ Abstraction: Completely abstracted from low-level
concepts

▪ Readability: Human-readable and also machine
readable

▪ Parameterization: Variable behaviors derived from
same behavior with different parameters

▪ Synchronized: Sequential and parallel control of
behaviors

Table 2. Elements of task-level behavior script
Element Description

Behavior Name Task-level behavior name
Target Object Object or location of task

Purpose Purpose or result of task
Adverb Adverb such as speed, intensity, etc

Synchronization Parallel or sequential execution of
behaviors

According to the concepts, we developed necessary
elements for the task-level script which is described in
table 1 and the brief overview of grammar for the script
is the following:

Task-level behavior = <behavior name>[<target
object>|<target location>] [<purpose>] [<adverb>]*
[<synchronization>]+

3.2 High-level Motion

In the paper, high-level avatar motion is independent
from both the specific application domain and
implementation environment, and has abstract
description for common avatar motions. Namely, the
high-level motion represents and controls the avatar
motion by using parameters such as speed, intensity,
direction, and so on.

Task-level
Behavior

Primitive
Motion

Primitive
Motion

Primitive
Motion

Task-level
Behavior

Task-level
Behavior

High-level
Motion

…

…

OpenGL MSAgent Java3D

Cyberclass
Shopping

Mall
Weather

cast

Domain Application
Dependent

Implemetation
Dependent

Domain/Implementation
Independent

Fig. 1 Overall Architecture of Proposed System

We analyzed the parameters which are used in the
existing high-level motion scripts, and defined high-
level motion script. In the proposed method, for the

definition of high-level motion, we analyzed the existing
parameters and property in the existing high-level
motion script to draw fac-tors for animated character
motion expression. The high-level motion contains more
than one of the motions lists element. The motion list is
composed of motion elements such as motion name and
parameters like space, time, intensity, and verbal
elements.

First, spatial element is divided into destination property
appointing target with hand and feet gestures and target
property expressing character’s direction. Time element
is character’s speed, continuance duration of motion,
repetition of motion, and sequential and parallel motion.
Intensity element is element that stresses or changes the
intensity of the animated character motion property.
Finally, verbal ele-ment is to express speech information
for output of character’s voice and sound effect.

These attributes represent avatar motion independent
from both domain and implementation. The script takes
a role which is similar to mediator between task-level
behavior and primitive motion shown in fig. 1

These parameters are converted to lower hierarchy,
which is dependent to implementation and express
physical geometric information of virtual world. Because
the high-level motion script does not express physical
geometric information, context-based translator extract
needed information from the rendering engine of
implementation and convert the abstract parameters into
physical. To extract the context, the translator traverses
all nodes of cyberspace structure consisted of
scenegraph, XML/HTML or etc. Detailed processing of
the translator will not be discussed here.

In the proposed script shown in fig. 2, the parameters
were expressed after the defined XML based W3C
schema for high-level motion script language to bridge
gap between task-level and primitive motion in a
standardized way.

3.3 Primitive Motion

A primitive motion expresses an avatar motion which is
supported by avatar engines or motion libraries. While
high-level motion is ordinary and abstracts avatar
motion, primitive motion is dependent to avatar control
engines. Since each engine or library supports different
kinds of motions, primitive motion would be in different
and expressed differently depending on its
environments.

Also it contains physical information for specific
implementation tool compared to high-level motion. For
example, a high-level motion script, “<go to="table">”
should be expressed like “<walk_to x="100" y="12"
z="-2">” at the primitive motion script.

In the paper, we define primitive motion scripts that

support 3D avatar motion engine based on OpenGL and
MS Agent motion library. A user writes down the task-
level behavior script and it is translated into the high-
level motion script. It is converted to each primitive
motion which belongs to corresponding avatar engine or
library.

4 Implementation Results
Our world represents an ordinary classroom with some
components: a lecture, a blackboard, a computer, a table,
a door, walls and several lecture-related objects. In task-
level script language, author command the lecturer by
combination of these components and behavior. After
the example script is translated to a high-level script
language by the suggested formal translator, the high-
level script will be loaded to the system and converted to
primitive motions and the animated character performs
its tasks in fig. 2(a). As we mentioned before, the
primitive motion contains the physical information of the
system, the same task-level script can be properly
applied even though physical structure of the virtual
world is reorganized as shown in fig. 2(b).

(a) before repositioning objects

(b) after repositioning objects

Fig. 2. The animated character is teaching an algorithm
in cyber classroom

Moreover, the script language can be applied to
completely different implementation tool or
environments. For instance, the same task-level script is
loaded to two applications as shown in fig. 3. Because
our architecture takes layered approach, application tools
and script languages are explicitly decoupled. This
makes easier to apply script language to various
implementations environments

4. Conclusion
We suggested the three layered architecture consisted of
task-level behavior, high-level motion and primitive
motion to provide simple interface for avatar control at
various application domains to users. Also each layer
interacts independently. Task-level behavior is explicitly
separated from implementations so that it could be
reusable at different tools.

Fig. 3. The animated character performs his tasks in the

web environments

Using this approach, avatar behavior can be controlled
more easily in task-level and in high level and primitive
motion, it is possible to control and express avatar
motion with great reusability and extensibility which
does not depend on implementation environment
through abstract and physical expression.

In future works, an intuitive graphical user interface for
the input of avatar tasks, and avatar motion controls
based on avatar-object interaction technique are required
for providing more efficient interface to users.

References
1. Gartner Group, http://www.gartner.com.
2. Kshirsagar S. et al, “Avatar Markup Language,” Proc.
Eurographics, EGVE 2002, pp.169-177, 2002
3. Yasmine Arafa, Abe Mamdani, “Scripting embodied
agents behaviour with CML: character markup
language,” Proc. IUI, pp.313-316, 2003
4. Marriott, A. & Stallo, J., “VHML- Uncertainties and
Problems... A discussion." Proc AAMAS 2002,
Bologna, Italy., 2002
5. Zhisheng Huang, et al, “Implementation of a scripting
language for VRML/X3D-based embodied agents,” Proc
web technology, pp.91-100, 2003
6. James C.Lester, et al, “Explanatory Lifelike Avatars,”
Autonomous Agents., 1999
7. Jeff Ricket, et al, “Task-Oriented Collaboration with
Embodied Agents in Virtual Worlds,” Embodied
Conversational Agents, MIT Press., 2002
8. Andre Elisabeth, et al, “WebPersona : A Life-like
Presentation Agent for the WWW,” International
Multimedia Conference, 1998
9. Thalmann D., “Autonomy and Task-level Control for
Virtual Actors,” Programming and Computer Software,
No4., 1995

