
   

Real-time Translator from OpenGL to OpenGL ES for 
Mobile Devices 

Zhigeng Pan1, Bing Tang1, Jian Yang2, Shushen Sun1  
1State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China 

2Centrality Communications Co., LtD, Shanghai, China 
{ zgpan, btang, jyang, sss}@cad.zju.edu.cn 

 
 

Abstract 
With the rapid development of mobile devices, advanced 
2D/3D graphics capabilities are required for new 
applications such as video, games. OpenGL ES has been 
designed to implement a subset of the routines of the 
well-known OpenGL industrial standard. Many 
developers dream of reusing the applications already 
written in OpenGL for mobile devices with minor or no 
modification. However, not all the OpenGL functions 
are supported by OpenGL ES API. The challenge is to 
make it possible by using clever substitutions. In this 
paper, we introduce the work of OpenGL translator, 
which can convert the wide range of existing OpenGL 
applications in PC world to OpenGL ES in real time. 
The workloads collected in our experiences also can 
help to analyze the major bottleneck of the graphics 
pipeline, and provide valuable information for mobile 
devices graphics chip design.  

Key words: Mobile graphics; Computer graphics; 
Workload analysis; OpenGL ES 

1. Introduction 
In recent years, with the rapid development of mobile 
phones, the number of users of interactive 3D graphics 
applications is expected to increase drastically in the 
future. Several companies have developed low-power 
3D graphics accelerators to support 3D graphics in real 
time.1 OpenGL ES has been designed to implement a 
subset of the routines of the well-known OpenGL 
industrial standard.  

Since OpenGL ES is just a subset of OpenGL, not all the 
functions of OpenGL are supported by OpenGL ES. The 
applications already written for PC platform can not 
directly run on the mobile devices without any 
conversion. One solution is to convert and re-compile 
the sources codes, which will wastes a lot of human 
resources for this kind of hand-made translation. 
Furthermore, an original third-part source code could 
even not be available for many reasons. 

The primary goal of this paper is to provide a translator 
to convert the OpenGL commands to OpenGL ES or 
emulate most of them in real time. This approach will 
allow the developers to reuse the applications already 

written for PC directly on the mobile phone with binary 
files only. Users will be able to run most applications 
created for OpenGL on OpenGL ES easily if many 
applications run at reasonable speed. 

The second goal of this paper is to study the dynamic 
polygonal 3D graphics workloads characterization. 
Some statistics such as the average and maximum 
numbers of triangles, the total required texture memory 
are collected for evaluating 3D graphics accelerator 
cards. We hope such statistics could help to analyze the 
major bottleneck of the graphics pipeline and be used to 
guide the development of low-power, mobile 3D 
graphics architecture. 

2. Related work 
In the past ten years, there have been plenty of trace 
tools developed to help people to study the graphic 
pipeline.  These traces can gather the command stream 
traces from real OpenGL applications, allowing the 
entire graphics portion of the application to be replayed 
at a later time. GLTrace from Hawksoft is a well-known 
OpenGL wrapper2. It is an OpenGL programming utility 
that intercepts and logs OpenGL calls made by a running 
application. GLSim & GLTrace is another famous 
tracing package for recording and playing back OpenGL 
traces.3 D3D9Wrapper is a similar tool for Direct3D 
calls tracer and debugger.4 

When OpenGL ES 1.0 specification was released by 
Khronos group released in 2003, many developers were 
attracted by the newborn standard. DOGLESS was 
developed as a generic real-time translation engine, 
which focuses on translating most OpenGL functions 
into OpenGL|ES.5 This translator has been tested on 
some suite application including the famous porting of 
Quake called “TomazQuake” and Quake2. But the 
translator does not capture completely reproducible 
OpenGL calls, and display list has not been supported.  
DirectX port is a project to emulate the DirectX API 
calls thru OpenGL commands and other platform 
specific commands in order to run DirectX application 
running on other platform than windows.6  

There have been some researches made to 3D graphics 
workload characterization.7 But most works are focused 
on PC platform and high-end applications.8, 9 Mitra and 



   

Chiuch presented the dynamics, polygonal 3D graphics 
workloads characterization in their research.10 Most 
related to our work is the study of Iosif etc.11 They 
proposed a set of benchmarks that represents the type of 
3D applications that might be run on low-power, mobile 
systems. However, all their tests are based on OpenGL 
rather than OpenGL ES.  

3. Methodology 
In this section, we will describe the whole emulator used 
to translate an OpenGL application to OpenGL ES at 
runtime and benchmark sets to study the workloads, 
including the tracing/recording and software simulation 
environment.  

3.1. Tracing Environment 

In order to convert the OpenGL commands to OpenGL 
ES at runtime and obtain a set of repeatable workloads, 
we have to trace the existing applications and record all 
OpenGL calls. A tracing environment should be set up 
firstly. 

Our tracer is based on GLTrace from Hawksoft. It wraps 
all the standard OpenGL functions. It intercepts and logs 
OpenGL calls made by a running application, and then 
calls the OpenGL function invoked by the application. 
No source code is required, since it redirects calls from 
OpenGL dynamical library to a specified provider DLL, 
with API function trace to output debug string or a text 
file. 

Since the trace recorded by GLTrace is a text trace, 
which is rather slow, we modified it by adding a binary 
logging mode that significantly improves the 
performance. GLTrace does not log completely 
reproducible OpenGL calls such as textures. We 
modified the GLTrace library so that the OpenGL calls 
used by the targeted applications are completely 
reproducible. And we also added the number of vertexes 
and frames counter in GLTrace. In order to get a set of 
same and repeatable workloads for an application, a 
trace player is developed to play back the recorded 
OpenGL traces.  

The work statistics were collected using the OpenGL 
simulator based on Mesa, which is a public-domain 3D 
graphics rendering library implementing OpenGL API.12 

3.2. The translator 

After the tracing environment was set up, it is the time to 
translate the commands from OpenGL to OpenGL ES. 
But a lot of problems can come from the fact that 
OpenGL ES does not support all the functions of 
OpenGL. The challenge is to try to make it possible 
using clever substitutions.  

First, the difference between OpenGL and OpenGL ES 
should be found out. It can be found in the OpenGL ES 
specification, which can be freely downloaded from the 

website.  

Second, a virtual OpenGL ES processing pipeline should 
be built: buffer the OpenGL streams and translate 
buffered streams (send by the applications) into the 
commands of the appropriate OpenGL ES API. Many 
futures of the DOGLESS have been referenced in our 
translator. If the commands are supported by OpenGL 
ES, just let it alone. If not, use the equivalent codes to 
emulate most of them at runtime. We listed the main 
OpenGL features that are not available in OpenGL ES:   

• glBegin/glEnd  paradigm; 
• Some geometric primitives: Quads, Quad strips, 

Polygons; 
• Complex data types; 
• Display list. 
 
For example, the Begin/End paradigm is not supported, 
and the primitives: QUADS, QUAD_STRIP, and 
POLYGON are also not supported. We trace and 
intercept the command streams. If the glBegin command 
was detected, vertex array will be enabled to substitute 
the commands. At the same time, the primitive mode 
was saved to force it draw with triangles.  

At last, for the memory of mobile devices was limited, 
simplification of the application database should be 
made. Furthermore, such devices currently handle scenes 
with a low resolution of 320×240 pixels. It does not 
need so high-resolution textures. Textures were 
automatically subsampled to reduce the required texture 
memory. We are planning to develop a tool to simplify 
the scenes. 

3.3. Benchmark sets 

In a near future, the most popular 3D applications 
running on mobile platforms would be interactive 3D 
games.13 Two game environments were introduced in 
our benchmark sets.  According to the investigation of 
Iosif,11 three sets of benchmarks are used: a test of the 
Viewperf 6.1.2 benchmark, two demos of popular 
interactive 3D game --Quake3 and Tux Racer, and three 
VRML 1.0 models. The Viewperf benchmarks are 
designed for high-resolution output devices, and most of 
the benchmarks have more than 20,000 triangles per 
frame. The polygon count of these benchmarks is too 
high for mobile devices. Some benchmarks are 
CAD/CAM applications. It is unlikely that such 
application will be offered on mobile platforms.  So we 
did not select it.  

Benchmark sets include: 
• Quake214. It is a first person shooter game.  
• 3rd person. It is a freely available 3D graphics 

application with game like environment.15  
• Skyfly. This is GLUT demo selected as our 

benchmark.  



   

• Library, Graz, and Aztec. These three VRML 
scenes were chosen based on their diversity and 
complexity. Library is a virtual model of Austrian 
National Library and consists of 10292 polygons 
with detailed textures, Graz is a model of Graz 
University of Technology, Austria and consists of 
8859 polygons,16 and Aztec is a complex model of 
Aztec city created by architect Ignacio Marquina.18 

 
4. Results and Analysis 

4.1. Results of translator 

The translator has been tested on the suit applications 
provided. All the tests have been succeeded in 
converting the OpenGL commands to OpenGL ES. 
According to the currently limited resolution display of 
mobile devices, the output resolution was set as 320×
240 pixels. Textures are subsampled to test visual 
quality on systems with limited texture memory, and 25 
percent of texture resolution is used. The video quality is 
really near to the original OpenGL version (Fig. 1.). 

 

 
 
 
 
 
 
(a) Quake2                                           (b) 3rd person                                                          
 
 
 
 
 
 
 
(c) Skyfly                                       (d) Library                                                   
 
 
 
 
 
 
 
(e) Graz                                            (f) Aztec 

Fig. 1. Tests of translation 

Table 1 shows some statistics of the efficiency during 
translation. The characteristics and statistics presented in 
the table are: 
• Frames. The total number of frames in each test. 

• Total calls. The total number of OpenGL calls in 
each test. 

• Translated calls. The number of OpenGL calls was 
translated into OpenGL ES in each test. 

• Frame rate. The average frames were got per 
seconds in each test. 

Table 1. Statistics of the translator 

Applications Frames Calls Translated 
calls 

Translation 
rate 

Frame 
rate 

Quake2 292 5,114,187 1,528,425 29.9% 4 

Skyfly 320 2,2869,55 1,042,492 45.6% 15 

3rd Person 312 6,264,511 1,7646,72 28.2% 8 

 
We observed that there was a sharp drop of frame rate in 
these tests when all the trace logs were turned on.  It 
could not reflect actual efficiency of the translator, so the 
frame rates listed in Table 1 were got with logs toggled 
off.  The Quake 2 demo can get average 4 fps 
performance in our simulator. These statistics indicate 
that the translator should be competent for the overall 
converting work. 

4.2. Workload analysis 

Table 2 and 3 present some statistics of the workloads. 
The characteristics and statistics presented in these tables 
are: 
• Image resolution. Since the typical resolution of 

currently mobile devices is 320×240 pixels, we 
selected the resolution of 320×240. 

• Frames. The total number of frames in each test. 
• Texture memory. An indication of the amounts of 

texture memory required. 
• Avg. Triangles. The average number of triangles 

sent to the rasterizer per frame. 
• Max. Triangles per frame. The maximum number of 

triangles was sent for one frame 

Table 2. Characteristics of the benchmarks 

Benchmarks Frames Image resolution Texture memory 
(MB) 

Quake2 292 320×240 1.6 

Skyfly 320 320×240 0.2 

3rd Person 312 320×240 1.2 

Library 301 320×240 1.8 

Graz 300 320×240 2.2 

Aztec 299 320×240 0 

As texture mapping becomes pervasive in 3D 
applications, particularly games, an efficient way is vital 
important to a mobile device with limited texture 
memory. Therefore, it is required to list that the amount 
of texture memory (as presented in Table 2). If the 
textures are subsampled efficiently, only 25 percent of 
the texture memory is needed to run these applications 



   

correspondingly. Notice that Quake 2 did not require so 
much texture memory as we expected. As profiting from 
the high reuse of texture data, the game can significantly 
reduce memory bandwidth requirement. However the 
average amount of texture data that needs to be fetched 
per frame would be much larger than other applications. 

Table 3. Statistics of the benchmarks 

Benchmarks Frames Avg. Triangles Max. Triangles 

Quake2 292 3,751 6,247 

Skyfly 320 1,278 1,597 

3rd Person 312 3,982 4,896 

Library 301 4,786 14, 024  

Graz 300 5,901 9,982 

Aztec 299 10, 241 31, 287 

 
Some information can be obtained from Table 3. It can 
be observed from the column labeled “Max. Triangles 
per frame” that the scenes generated by Aztec more 
complex than the others, and it contains more than 
30,000 triangles. If we take the average of triangles of 
Quake 2 as example, the required bus bandwidth is 
approximately to 0.3 MB per frame (Assuming that each 
triangle is represented individually and each vertex can 
potentially have xyz coordinates, each 4 bytes, rgb for 
color and alpha for transparency, each 1 byte, and 
texture coordinates uvw, each 4 bytes.) Compared with 
the other benchmarks, Quake2, skyfly and 3rd person 
have a more smooth change of triangles. This result is 
due to a smooth viewpoint change and clipping stage. 
The full 3D graphics potential would be used in these 
cases. 

5. Conclusion and Future work 
As the fast development of mobile devices, low-power 
3D graphics accelerators will be available everywhere in 
near future. And OpenGL ES mobile graphics API has 
received growing industry-wide acceptance. More and 
more 3D applications will adopt this newborn OpenGL 
industrial standard. This paper aimed to reuse the 
applications already written in OpenGL on mobile 
platforms. A real-time translator was proposed to 
convert most of the codes. And some statistics of 
workloads were collected to analyze the major 
bottleneck of the graphics pipeline and guide the 
development of mobile 3D graphics architecture.  

As future work, more features will be added into the 
translator to support more 3D applications on mobile 
devices. And we intend to extend the number of 
components for workload analysis. 

5. Acknowledge 
The research is co-supported by TRAPOYT program of 
MOE, P.R.C. and the 973 project (grant NO: 
2002CB312100). Thanks to Phil Frisbie, Fabio Andreoli 
and Daniele Paccaloni for the codes on which the 

translator is based. 

References 
1. Neil Trevett, “Building the Industry Infrastructure 

for embedded 3D”. CES 2004 OpenGL ES products 
& Conformance Testing (2004). 

2. Hawk Software, GLTrace Programming Utility. 
Available at htpp://www.hawksoft.com/gltrace. 

3. Stanford University, GLSim & GLTrace. Available 
athttp://www.cs.virginia.edu/~gfx/Courses/2002/Big
Data/glsim.html, 

4. SourceForge, D3D9Wrapper project. Available at 
http://sourceforge.net/. 

5. SourceForge, DOGLESS project: OpenGL to ES 
realtime translator with extra profiling and 
debugging capabilities. Available at 
http://sourceforge.net/projects/dogless. 

6. RealtechVR. Dxglwrap project. Available at 
http://sourceforge.net/projects/dxglwrap/ 

7. J.C. Dunwoody and M.A. Linton, “Tracing 
Interactive 3D Graphics Programs”, Proc. of ACM 
Symposium on Interactive 3D Graphics (1990). 

8. D. Kirk, “Unsolved Problems and Opportunities for 
High quality, High-performance 3-D Graphics on a 
PC Platform”. ACM SIGGRAPH/Eurographics 
Workshop on Graphics Hardware (1998). 

9. I. Antochi, B.H.H. Juurlink, A. G. M. Cilio, P. 
Liuha, “Trading Efficiency for Energy in a Texture 
Cache Architecture”, Proc. of the 2002 Euromicro 
Conference on Massively-Parallel Computing 
Systems, Ischia, Italy, 189-196 (2002). 

10. Tulika Mitra and Tzi-cker Chiueh, “Dynamic 3D 
Graphics Workload Characterization and the 
Architectural Implications”, 32nd ACM/IEEE Int. 
Symp. on Microarchitecture (MICRO), Haifa, Israel, 
62-71 (1999). 

11. Iosif Antochi, Ben Juurlink, and A. Cilio, "A Low-
Cost, Power-Efficient Texture Cache Architecture”, 
Proc. of the 12th Annual Workshop on Circuits, 
Systems, and Signal Processing (ProRISC2001), 
Veldhoven, The Netherlands, 29-30 (2003). 

12. The Mesa Project, The Mesa 3D Graphics Library, 
Available at http://www.mesa3d.org. 

13. Neil Trevett, “The State of the Mobile 3D Industry - 
continuing to grow rapidly”. Game Developers 
Conference 2004, San Jose, California (2004).  

14. Id Software Inc., Quake 2 & Quake 3. Available at 
http://www.idsoftware.com. 

15. Ronny André Reierstad, 3rd person project. 
Available at www.morowland.com. 

16. IICM, Graz University of Technology, Austria. 
Sample VRML models. http://www2.iicm.edu/vrml. 


