
   

Haptic Interaction with a Glove Interface in a Physics 
Based Virtual Environment 

Michael F. Zaeh*, Hans Egermeier*, Bernd Petzold*, and Harald Schmid# 
*Institute for Machine Tools and Industrial Management (iwb), Technische Universtiät München, 

85748 Garching, Germany 
{michael.zaeh, hans.egermeier, bernd.petzold}@iwb.tum.de 

#Technische Universtiät München, 85748 Garching, Germany 
schmid@manageandmore.de 

 
 

Abstract 
In order to enhance productivity and to speed up the 
ramp-up of manual production processes, manual 
assembly simulations are an important step during early 
design and planning stages. One of the most essential 
requirements is the realistic dexterous object 
manipulation. An intuitive approach is the use of Virtual 
Reality (VR) techniques in combination with force 
feedback devices, in order to enhance the visual 
representation and the user interaction with the virtual 
prototypes. The presented concept is a new approach 
combining the GJK algorithm for collision detection 
with linear complementarity techniques to model and 
simulate multi-rigid-body dynamics with contact and 
friction between the user’s hand and the manipulated 
objects. The concept is implemented to support a stable 
fine object manipulation in the simulation environment 
Virtual engineering environment Ve², which is currently 
developed at the iwb. 

Key words: Haptic, Glove Interface, Dexterous 
Manipulation 

1. Introduction 
In manual assembly simulations, object manipulation is 
the most essential man-machine interaction between the 
virtual environment and users. A promising approach is 
the use of haptic interfaces for dexterous object 
manipulation. With a virtual scene haptic interfaces add 
a sense of touch to interactions. The sensations of touch 
are generated by detecting collisions and deducing 
forces from the collision situation between user and 
objects in the virtual environment (VE) and reflecting 
those forces back to the user. 
For this reason a VR-system is developed at the iwb with 
the focus on man-machine interaction to allow realistic 
and meaningful assembly simulation. The Virtual 
engineering environment Ve² is built up by different 
modules. Asides from a number of modules that enable 
Ve² to be configured, to integrate different device 
drivers, and to connect to remote processes, the three 
core modules are: 
_ 

• Visualisation module: this module is responsible for 
the graphical representation of the virtual 
environment. It supports different displays from 
monitor screens up to full immersive multi-projection 
walls.  

• _ 

• Haptic rendering module: the haptic rendering is 
needed to detect contacts and intersections in the 
scene and to calculate the penetration depth vectors 
and contact points. 

• Rigid-body simulation module: the simulation 
module computes the object movements based on the 
detected contacts, the kinematic constraints and the 
exerted torques and forces. 

This paper focuses on the haptic rendering and the rigid-
body simulation module, because these two modules are 
mainly responsible for an appropriate haptic interaction. 
A lot of research was done in the field of collision 
detection reducing the computational effort and 
enhancing the used algorithms for contact, local 
minimum distance and penetration depth computation 
based on polygonal, voxel, and point shell models for 
either single or multiple haptic interface points. But for 
manual assembly simulations not only the collision 
detection itself is important. Realistic physical object 
behaviour and, realistic object manipulation with the 
virtual user’s hands is essential for the simulation as 
well. Although for rigid-body simulation techniques as 
much research was done as for collision detection 
approaches, combinations of an efficient collision 
detection, physically based object behaviour, and 
dexterous object manipulation with a force reflecting 
glove interface are only rarely reported. 
This paper describes a new possibility to integrate a 
collision detection based on a stable implementation of 
the GJK algorithm, a fast and stable physics simulation 
using linear complementarity techniques to simulate 
multi-rigid-body dynamics with contact and friction, and 
a haptic hand interface.  

2. Main Results 
The presented concept shows the combination of open 
source software packages for collision detection and 
physical simulation to support dexterous object 



   

manipulation with a force reflecting glove interface. 
Using geometric primitives for the approximation of the 
virtual hand allows a fast collision detection and contact 
computation of the hand model. The developed hand 
simulation interface provides a stable force and torque 
computation algorithm for hand object interactions, in 
order to support dexterous manipulation of objects. The 
concept is realised in the VR-system Ve² which is used 
as testbed to evaluate the concept and the algorithms.  

3. Previous Work 
Implementations for dexterous object manipulation 
strongly depend on the ability to show realistic motion 
control of the manipulated object. Collision detection 
plays a key role. It is necessary to prevent objects from 
interpenetrating and to provide the basic information that 
can be used to compute geometric constraints or contact 
forces involved in the manipulation process. A lot of 
research has already been conducted in the field of 
collision detection and therefore many different 
approaches and implementations are known. Besides 
using voxel [1] or point shell [2] based algorithms, the 
use of polygon based approaches is the most common. 
An evaluation for some available implementations of 
polygon based algorithms is given in [3]. One of the 
tested implementations is SOLID. It employs the 
Gilbert-Johnson-Keerthi (GJK) algorithm, which is 
reported first in [4]. SOLID also makes use of 
modifications explained in [5] and [6] to provide results 
faster and with less instability. In most of the tests 
described by Reggiani SOLID is rated well among the 
other tested libraries. In addition, Luciano [7] recently 
reported that SOLID is suited very well as collision 
detection for haptic applications. 

The second key role to show realistic object behaviour is 
the real-time computation of rigid-body dynamics. The 
well known basics of rigid-body dynamics are presented 
for instance in [8] and [9]. Although many 
implementations of rigid-body dynamics simulation 
software use collision detection in order to compute 
contact information, it is only rarely reported that this 
information is used to support haptic interaction devices. 
One reason for that are stability issues, which are for 
instance discussed in [10]. Ikei [11] presents a method, 
where the behaviour simulation method of manipulated 
objects is based on statics, in order to reduce the 
complexity of real-time computation. In this case, it is 
shown that statics calculation can provide sufficiently 
realistic behaviour of the manipulated objects. It is 
assumed that the user grasps the manipulated object at 
one point. The haptic interaction device and the object 
are then connected by a virtual spring. Grasping and 
ungrasping is realised by a separate hardware switch on 
the input device. Recently an implementation of an 
integrated haptics and dynamics simulation was 
published by Hasegawa [12], [13]. The software called 
SPRINGHEAD proposes a method for real-time rigid-
body simulations for haptic interactions based on a 

penalty method regarding the contact volume of 
intersecting bodies. The method is tested with a haptic 
interface controlling, a so called haptic pointer.  

The third important aspect of dexterous manipulation is 
the integration of collision detection, physical simulation 
and hand models, which allow realistic user interaction. 
Kijima [14] reports an approach of object manipulation, 
where the interacting part of the virtual hand is reduced 
to three fingertips. Two example manipulation 
calculations with fingertips in VE without force 
feedback are developed. The two methods presented are 
called ”Impetus Method” and ”Representative Spherical 
Plane Method”. The first method is based on the 
collision between only one fingertip and the object 
surface. It belongs to the category of semi-dynamics. 
The second method is based on the restricted interaction 
among three fingertips and a sphere that represents the 
object. It belongs to the field of kinematics. 
Experimental results show the superiority of object 
manipulation to conventional gesture based methods. 
A more sophisticated hand model, which represents the 
whole user’s hand is described by Boulic [15]. Spheres 
placed on finger joints act as sensors to detect collisions, 
which have shown to be suitable for dexterous object 
manipulation. The aim of the proposed method is to 
overcome the lack of force feedback of general purpose 
digital gloves. The aim is to derive a visual restitution 
consistent with the user manipulative intentions while 
respecting the integrity of solid interactions with friction. 
No rigid-body dynamics are involved in this approach. 
Huang et al. [16] use a similar method, which uses 
spheres as sensors placed on finger joints to detect 
collisions. 
In [17] Furusawa describes a peg in a hole assembly 
scenario for two collaborating hands. The peg is 
controlled by one hand using a haptic display called 
”HapticMaster”. The part, where the peg needs to be 
inserted, is controlled by a data glove interface without 
force feedback. The user’s hand is represented as a set of 
bounding boxes. The grasping algorithm is only a 
function of the number of intersections of bounding 
boxes of the fingers and the manipulated objects. This 
model neither supports fine manipulation with the 
fingers nor rigid-body dynamics. 
Hirota [18] describes a constraint based approach to 
calculate contact forces. The proposed method simulates 
physical manipulation of objects with force feedback. 
The interaction force is computed based on the 
constraint that is caused by the object on the user’s 
finger. It expands the common concept of the god-object 
method, so that physical constraints during the spatial 
motion of haptic interface points can be simulated. This 
concept is implemented to support two fingers connected 
to force feedback devices. This concept was further 
developed by Hirota [2] to a point shell concept for the 
whole hand, which supports user interaction with a glove 
interface. The improved concept allows fine 



   

manipulation of physical simulated objects, currently 
without force feedback. dtdtlc dk ttt ∆⋅−⋅=    (2) 

with ∑
=

×=
zyxi

sim
iid

,,

elt    (3) 
4. Algorithms and Concepts 

with  (4) zyxidriver
i

sim
ii ,,=−= eelThe virtual world scene simulated by Ve² consists of 

three different spaces. A visual space for the visual 
representation of the objects, a collision space for 
collision detection and contact computation, and a 
physics space for the computation of the rigid-body 
dynamics. The representation of an object in a space is 
called body. The coherence between the three spaces is 
maintained through synchronisation.  

The visual body of the hand is represented as a 
polygonal model where every single limb including the 
palm is a separate geometry.The collision body of the 
virtual hand is modelled as Minkowski sum built up out 
of geometric primitives. Each finger limb is represented 
as the Minkowski sum of a sphere and a line segment. 
The resulting body is a capped cylinder, where the 
length and thickness of the cylinder is determined by the 

length of the line and the radius of the sphere. The palm 
is represented as the Minkowski sum of a sphere and a 
box. The resulting body is a box with round edges, 
depending on the radius of the sphere, see Fig. 2. The 
Minkowski sum A+B of two sets A and B is defined as: 

A. Hand Model 
The representation of the user’s hand consists of a 
kinematics skeleton, which is updated by the device 
driver of the haptic glove interface. It consists of fifteen 
finger joints and a palm, with altogether twenty-two 
degrees of freedom. This skeleton is coupled with the 

geometric and physical hand representation over spring-
damper elements, generating the corresponding limb 
constraint forces flc and torques tlc to synchronise the 
skeleton with each geometric and physical representation 
of all finger limbs and the palm. See Eqn. 1 for the 
constraint force computation based on the position 
deviation vector xd and the deviation speed vd, and 
Eqn. 2 for the constraint torque computation based on 
the deviation vector td and the rate of change of the 
deviation vector ∆td. td is used as measurement of the 
difference of the orientation of the simulated hand part 
coordinate system csim relatively to device driver 
coordinate system cdriver, see Fig. 1. kf and kt are the 
stiffness factors, df and dt are the damping factors. 
Although penalty methods to oppose constraints, which 
add extra energy to the system and tend to stiff 
differential equations and lower accuracy, this approach 
is considered to be sufficient to enable a stable and 
realistic hand interaction. 

 
Fig. 2 Approximation of the users hand for the collision 

detection by the Minkowski sum out of primitives  
Fig. 1 Schematic view of the implemented constraint 

mechanism of the hand model 

{ }BbAabaBARBA ∈∈+=+⊂ ,;:,, 3 . (5) 

Physically the hand limbs are modelled as mass located 
at the origin of the limb coordinate system and an inertia 
matrix, which describes how the mass is distributed 
around the centre of mass. The geometric dimensions of 
the physical representation are determined by the 
dimensions of the corresponding collision body. The 
position and orientation of the physical limbs also 
specify the geometric representations for visualisation 
and collision detection. 

B. Object Representation 
Ordinary objects, other than the hand, have exactly the 
same polygonal representation for the visual body and 
for the collision geometry. No simplifying assumptions 
are made. In the collision engine, objects are represented 
as compound of convex objects. Their physical 

dfdflc dk vx ⋅−⋅=f   (1) 



   

representation is characterised by the body’s mass and 
the inertia tensor centered at the body’s origin.  Nm FF µ= ,   (10) 

where Fm denotes the maximum force limit.  
C. Grasping Algorithm and Force Computation 
In order to manipulate touched or grasped objects in a 
realistic way, contact forces between the virtual hand 
and the objects in the scene need to be calculated. The 
following steps are computed, see Fig. 3. 

The first step of the algorithm is the collision detection. 
Based on the GJK algorithm described in [6] the 
collision detection and penetration depth computation 
problems are expressed in terms of the configuration 
space obstacle (CSO). For this purpose a negation 
operation of the Minkowski sum need to be indroduced 

{ BbbB ∈−=− : },   (6) 

so that the CSO can be written as A + (-B) which will be 
abbreviated to A - B. Following from that the collision 
detection problem is expressed as 

BABA −∈⇔≠∩ 00 ,  (7) 

During the next step the equations of motion of the 
rigid-body system are solved. The constraint equations 
of the system are shown in Eqn. 11, which are solved 
with a Danzig LCP solver, see also [20] and [21] for a 
detailed description. Eqn. 12 is the ODE specific 

modification [19] of Eqn. 11, where J is the constraint 
Jacobian matrix, M the system’s mass matrix, λ the 
Lagrange multipliers the equation needs to be solved for, 
h the timestep stepsize of the simulation, and c the vector 
of the forces being applied to the bodies. 

 
Fig. 3 Simulation sequence of grasping algorithm and 

force computation 

 
Fig. 4 A pair of intersection objects and their 
corresponding CSO. The arrow represents the 

penetration depth 

where 0 denotes the origin of the configuration space. 
Therefore, the magnitude of the penetration depth p(A,B) 
can be expressed as 

{ }BAinfBAp −∉= xx :),( ,  (8) 

where p(A,B) denotes the shortest distance from 0 to the 
boundary of A-B. See Fig. 4 for the relation between 
intersecting objects and their CSO and the resulting 
penetration depth. 

The next step of the grasping algorithm is the contact 
definition. If one or more intersections between the hand 
and objects are detected, a contact is defined at each 
position where the hand intersects the objects. A contact 
is specified by the direction of the penetration depth 
vector p(A,B), the contact position, the friction 
coefficient µ, and the ODE specific parameters ERP 
(error reduction parameter) and CFM (constraint force 
mixing). ERP specifies what proportion of simulation 
errors regarding joints and contacts will be fixed during 
the next simulation step. The CFM parameter specifies 
the amount, with which the original constraint equation 
of the rigid-body system can be violated. With these two 
parameters the surface characteristics are expressed with 
regard to surface stiffness and surface damping. 
Furthermore, the contact situation between two or more 
objects is computed based on the Coulomb friction 
model 

cT =− λJJM 1    (11) 

h
c

h
CFMT =






 +− λJJM 1   (12) 

Solving Eqn. 12 leads to the constraint forces fc which 
preserve the system constraints. 

λT
c Jf =    (13) 

Knowing all the constraint forces and external forces 
and torques exerted to the bodies, which are summed up 
in F and T, the change in linear momentum ∆P and 
angular momentum ∆L can be calculated. 

NT FF µ≤ ,   (9) LTPF ∆=∆∆=∆= tt   (14) 

where FT and FN are the tangetial and normal force 
vectors and µ is the friction coefficient. Due to 
efficiency reasons, this friction model is approximated to 

Following from that the new linear and angular velocity 
vt and ωt of the current timestep t of each body can be 
computed, where I-1 is the inverse inertia tensor. 



   

LIPvv ∆+=
∆

+= −
−−

1
11 tttt m

ωω  (15) 

As last step of the rigid-body simulation the position xt 
and orientation qt of the bodies is updated. 

ttt tvxx ∆+= −1   (16) 

12
1

−= tt qq ω&    (17) 

ttt tqqq &∆+= −1   (18) 

Fig. 6 Grasping a box with 12 polygons at 250 frames 
per second 

 
Fig. 7 Grasping a frame with 38 polygons at 250 frames 

per second 

After solving the rigid-body system, the position and 
orientation of all objects, which are defined in the visual 
space and the collision space, are updated as well. From 
the resulting difference of the new position and 
orientation, calculated by the rigid-body simulation and 
the device driver update, the constraint forces of the 
hand model are computed according Eqn. 1 and Eqn. 2. 
The calculated forces are then sent to the haptic hand 
interface. Also, the hand constraint forces and torques 
are saved for the next simulation step, so that the 
differences can be corrected by the rigid-body 
simulation. 

5. Implementation and Results 
The currently used hardware setup of the described 
system is shown in Fig. 5. The used workstation is an 
SGI Onyx 2 running four 250 MHz IP27 processors of 
the type MIPS R10000 and with a two GB main 
memory. The graphics board is of the type 
InfiniteReality2E. The used operating system is IRIX 

6.5. The workstation is directly connected to a 
FASTRAK control unit with two receivers: one used for 
head tracking and the other used for the position tracking 
of the user’s hand. As display, a two sided projection 
system is used. The CyberGrasp Force Control Unit 
(FCU) is connected to the workstation via Ethernet. The 
basic runtime structure of the used VR-system Ve² 
consists of three different loops controlling the 
application. The display loop runs with 20 Hz and is 
solely responsible for graphical rendering. The collision 
and simulation loop runs depending on the tested models 
with 230 up to 250 Hz and is responsible for collision 
detection and executes the simulation engine in every 
frame. The kernel loop is synchronised with the collision 
and simulation loop and runs the same frame rate. This 

loop is responsible for the device refreshing, the 
constraint force computation of the hand model, and 
updates the object positions and orientations of the 
visual representation according to the collision and 
simulation results.  

 
Fig. 8 Grasping the Stanford bunny with 250 polygons 

at 230 frames per second 

 
Fig. 5 Hardware setup of Ve² 

Ve² is implemented in C++ and uses the following 
software packages: World Toolkit R9 for visualisation 
and driver for the FASTRAK tracking system, SOLID 
3.5 for collision detection, ODE v0.039 as physics 
engine, the GSL math library version 1.1.1 for matrix 
and vector computation, and the Virtual Hand Suite 
2000 from Immersion is used as device driver for the 
CyberGrasp. For the system parameters of the presented 
tests see Tab 1. For the constraint force parameters of 
the hand model of the finger limbs and palm see Tab. 2. 
The results of three different grasping tests with the 
current configuration are shown in the pictures Fig. 6, 
Fig. 7, and Fig. 8. Due to hardware restrictions of the 
SGI platform simplified objects were chosen to show the 
principle of the proposed method. 

6. Conclusion 
A concept for the integration of generally available 
software packages in order to support dexterous haptic 
interaction was proposed. As one representation of a 
generally available collision detection package SOLID 
was used, which employs the GJK algorithm. As rigid-



   

body dynamics simulation package ODE was used, 
which employs the time stepping approach and uses 
linear complementary techniques to model and simulate 
multi-rigid-body dynamics with contact and friction. 
This presented combination of algorithms integrated in 
Ve² allows a stable and realistic manipulation of 
dexterous objects in virtual environments. The user is 
enabled to touch, feel, and manipulate the virtual 
objects. 

Further work will be conducted to port the underlying 
VR-system Ve² onto Windows and Linux platforms to 
enhance the overall system performance in order to 
handle larger objects and to maintain higher update rates 
for the collision detection and simulation loop. Besides 
that, we are interested to expand the collision detection 
algorithm implemented in SOLID in a manner, that not 
only the maximum penetration depth of two colliding 
objects is given back, but also the penetration depth of 
every single polygon. This would enable more elaborate 
contact calculations, necessary for a stable 6DOF haptic 
renderer.  

Table 1. System Parameters 
Integration stepsize h [sec] 0.001 
Gravity [m/s²] 0.8 
Mass m per body of all 
manipulated bodies [kg] 1.0 

Intertia tensor I per body 
[kg m²] 

Appro. as sphere, depending 
on bounding box volume 

µ [--] 200 
ERP [--] 0.01 
CFM [m/Ns] 0.01 

 
Table 2. Hand Model Parameters 

Mass of limbs m [kg]  0.01 
Intertia tensor I per body [kg m²] see Tab. 1 
kf [N/m] 200 
df [N s/m] 800 
kt [N/m] 0.48 
dt [N s/m] 0.06 

7. Acknowledgment 
The authors would like to thank the Bayerisches 
Kompetenznetzwerk fuer Mechatronik (BKM), which 
financed this project. The BKM is an initiative of the 
High-Tech-Offensive Bayern. 

References 
[1] W. McNeely, K. Puterbaugh, and J. Troy, “Six degree-of-
freedom haptic rendering using voxel sampling.” in Proc.of 
ACM SIGGRAPH, 1999, pp. 401–408. 
[2] K. Hirota and M. Hirose, “Dexterous object manipulation 
based on collision response,” in Proceedings of the IEEE 
Virtual Reality 2003, 2003, pp. 232–239. 
[3] M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental 
evaluation of collision detection packages for robot motion 
planning,” in Submitted to IEEE Int. Conf. on Robotics and 
Automation. IEEE, 2002. 
[4] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure 
for computing the distance between complex objects in three-

dimensional space,” IEEE Transactions on Robotics and 
Automation, vol. 4, no. 2, April 1988, pp. 193–203. 
[5] S. Cameron, “Enhancing gjk: Computing minimum and 
penetration distances between convex polyhedra.” in In Proc. 
IEEE Int. conf. on Robotics and Automation, April 1997, pp. 
3112–3117. 
[6] G. van den Bergen, Collision Detection in Interactive 3D 
Environments, ser. Series in Interactive 3D Technology. 
Amsterdam, Boston, Heidelberg: Morgan Kaufmann 
Publishers, 2004. 
[7] C. Luciano, P. Banerjee, T. DeFanti, and S. Mehrotra, 
“Realistic cross-platform haptic applications using freely-
available libraries,” in Proceedings of the 12th Symposium on 
Haptic Interfaces for Virtual Environment and Teleoperator 
Systems, in conjunction with IEEE Virtual Reality 2004, 2004. 
[8] D. Baraff, “Analytical methods for dynamic simulation of 
non-penetrating rigid bodies,” in SIGGRAPH ’89, ser. 
Computer Graphics, vol. 23, no. 3, 1989. 
[9] A. Witkin and D. Baraff, “Physically based modeling: 
Principles and practice,” SIGGRAPH 1997 Course Notes, 1997. 
[Online]. Available: 
http://www.cs.cmu.edu/baraff/sigcourse/notesa.pdf (July 2004). 
[10] J. M. Brown and J. E. Colgate, “Physics-based approach 
to haptic display,” in Proceedings of the 1994 International 
Symposium on Measurement and Control in Robotics, Topical 
Workshop on Virtual Reality, Houston, TX, 1994, pp. 101–106. 
[11] Y. Ikei, K. Takahashi, and S. Fukuda, “Statics-based 
contact behavior simulation of a manipulated object,” in 
International Conference on Artificial Reality and Telexistence, 
ICAT’98, 1998, pp. 77–82. 
[12] S. Hasegawa, N. Okada, J. Baba, Y. Tazaki, H. Ichikawa, 
A. Shirai, Y. Koike, and M. Sato, “Springhead: Open source 
haptic software for virtual worlds with dynamics simulations,” 
in Proceedings of EuroHaptics 2004 (CDROM), 2004. 
[13] S. Hasegawa and M. Sato, “Real-time rigid body 
simulation for haptic interactions based on contact volume of 
polygonal objects,” EUROGRAPHICS, vol. 23, no. 3, 2004. 
[14] R. Kijima and M. Hirose, “Fine object manipulation in 
virtual environment,” in 2nd Eurographics Workshop on 
Virtual Environment, 1995, pp. 1–10. 
[15] R. Boulic, S. Rezzonico, and D. Thalmann, “Multi-finger 
manipulation of virtual objects,” in ACM Symposium on 
Virtual Reality Software and Technology VRST’96, Hong-
Kong, July 1996, pp. 67–74.  
[16] Z. Huang, R. Boulic, and D. Thalmann, “A multi-sensor 
approach for grasping and 3-D interaction,” in Computer 
Graphics International ’95, June 1995.  
[17] R. Furusawa, N. Abe, K. Tanaka, K. Matsunaga, and H. 
Taki, “Presenting states and functions of objects under 
assembling operation with force display device,” in 
International Conference on Artificial Reality and Telexistence, 
ICAT’98, 1998, pp. 175–181. 
[18] K. Hirota, M. Hirayama, A. Tanaka, and T. Kaneko, 
“Representation of force in object manipulation,” in 
International Conference on Artificial Reality and Telexistence, 
ICAT’99, 1999, pp. 237–243. 
[19] R. Smith, Open Dynamics Engine v0.5 User Guide. 
[Online]. Available: http://ode.org/ode-latestuserguide.html 
(July 2004). 
[20] D. Baraff, “Fast contact force computation for 
nonpenetrating rigid bodies,” in SIGGRAPH ’94, ser. 
Computer Graphics Proceedings, Annual Conference Series, 
1994, pp. 23–34. 
[21] D. Baraff, “Linear-time dynamics using lagrange 
multipliers,” in SIGGRAPH ’96, ser. Computer Graphics 
Proceedings, Annual Conference Series, 1996, pp. 137–146. 


