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Abstract 

The marching cube octree data structure is a scheme for 
representing and generating the mesh of various level-of-
details (LODs) and was proposed in [15]. We suggest a 
solution to a problem happened when modeling partially 
complex objects by improving the original LOD model. 
The marching cube octree is based on the data structure 
of the Marching Cube algorithm [1], which is used to 
generate the mesh from the range data and the octree, 
this last widely used in computer graphics. Our LOD 
model can support adaptive simplification, compression, 
progressive transmission, view dependency rendering 
and collision detection. Our LOD mesh generation 
algorithm is faster than previous methods because it 
directly references the marching cube octree. 
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1. Introduction 

Previous methods of LOD modeling are mostly 
concentrated on a similar description of the original 
object. Creations of representations are very complex or 
expensive, however, and mesh generation is too slow to 
be used in practice. Thus, most commercial real-time 
systems have their own model. In a real-time system, user 
interactiveness is more important than the precision of 
the description. 

This paper proposes a new data structure improved from 
marching cube octree [15]. We used this  data structure to 
make the new LOD model. Using the sampling paradigm, 
our algorithm is faster than most of previous methods. If 
the Marching Cube algorithm is used to generate the 
mesh, the proposed method can make the “LOD-
controllable 3D model” directly from the range data. 

1.1. Related Work 

1.1.1. Adaptive Subdivision 

An adaptive subdivision and analysis method that 
applies wavelet-based multi-resolution analysis to an 
arbitrary topology surface was proposed [6][7]. This 

method can perform smooth parameterization at any LOD 
and can be applied to adaptive simplification, 
compression, progressive transmission and editing 
[8][9][10]. The wavelet-based method makes some of 
these advantages possible. Nevertheless, this method 
renders the making of the base mesh expensive and slow. 
Too many triangles are needed and generated when 
resolving small local features. 

To overcome these drawbacks, a new algorithm, MAPS, 
was proposed [11]. The MAPS algorithm uses 
hierarchical simplification, defined by vertex removal, 
flattening and retriangulation, to induce a 
parameterization of the original mesh over a base mesh. 
Although this method can reduce the complexity of the 
base mesh formulation and resolve small features well, it 
cannot support view dependency rendering and collision 
detection, which are important in computer graphics 
systems. 

1.1.2. Geometry Removal  

Another algorithm called Progressive Mesh was 
proposed that makes the new mesh by defining the edge 
collapse and the vertex split operation, and applying 
these to the detailed mesh [3]. In addition, a new format 
was developed for saving and transmitting the 
triangulated geometric model [4]. The Progressive Mesh 
method can be applied to adaptive simplification, 
compression, progressive transmission and view 
dependency rendering [5]. The model generation is 
relatively slow, however, because the simplification is 
based on the energy function. This method also slightly 
supports collision detection. 

1.2. Features of Marching Cube Octree  

Our algorithm was designed to rapidly construct the LOD 
model and generate the LOD mesh. We approximated the 
3D object conceptually with sampling range data in many 
resolutions. We used the octree and the marching cube 
to represent the LOD model. The operation necessary for 
the construction of the marching cube octree is relatively 
simple. We used the octree that naturally supports 
progressive transmission, view dependency rendering 
and collision detection. We did not implement these 
features yet but octree-based view-defendant rendering 
has been carried out efficiently by [13]. We can construct 



   

 
the LOD model directly from the range data by using the 
marching cube data structure, if the Marching Cube 
algorithm is applied for the mesh generation. Our 
algorithm directly generates the LOD mesh by 
referencing only the needed nodes of the tree. 

 

2. Marching Cube Octree Representation 

2.1 Overview 

The Marching Cube mesh-generation algorithm for 
medical images like MRI and CT was proposed [1]. The 
cube, which includes the in/out configuration of each of 
the 8 vertices, is classified into 14 distinct cases. 
Triangles are created automatically for each case. The 
vertices of the triangles are at the midpoints of the cube’s 
edges. The Marching Cube algorithm can also be used to 
generate the mesh from the range data. 

To generate triangles, we use the sign and the ratio 
converted from the signed distance of the cube’s 
vertices. The signed distance was proposed for surface 
reconstruction from unorganized points [2]. It is defined 
as the distance between the vertex P and the closest 
range point multiplied by +-1, depending on which side 
of the surface P is. The sign of the vertex is defined as 
the sign of the signed distance. The ratio of the edge is 
defined as the ratio of the absolute value of one vertex’s 
signed distance to that of the others. We can generate 
triangles naturally using a low resolution by choosing 
the proportional point instead of the midpoint for the 
vertex of the triangles. 

Using an octree for the representation of 3D object is not 
new idea. The isosurface generation using marching 
cubes and octree traversal was proposed in [14]. This 
paper describes efficient creation of octree based 
representation. But we applied modified marching cube 
configuration to octree structure, thus can construct 
hierarchies and implement level-of-detail. 

We define a marching cube in this paper as the set of 
signs and colors for each of the 8 vertices, and of ratios 
for the 12 edges. A marching cube octree is defined as a 
spatial octree whose nodes are marching cubes. Since the 
dimension of the root node is known, we can determine 
the relative position and the size of any node in the 
octree. A null node is defined for all edges of the 
corresponding marching cube that do not intersect with 
the surface. Thus, all vertex signs are the same. The null 
node has no child nodes and null points. Finally, the 
nodes of the marching cube octree correspond only to 
the region of the surface. 

2.2. Creation of the Marching Cube Octree 

The marching cube octree is created from the marching 
cubes of the Marching Cube algorithm [15]. The creation 

algorithm consists of two operations: parent node 
creation and marching cube conversion. The spatial 
octree is created using a bottom-up approach. We make 
the parent node from adjacent nodes and then convert it 
into the marching cube.  

Creation of the marching cube octree starts with 
marching cubes of the most detailed resolution from the 
Marching Cube algorithm. Let the most detailed marching 
cube's level be 0. Eight or fewer marching cubes that are 
adjacent to a certain vertex are grouped and become child 
nodes of the new parent node. We convert the parent 
node into the marching cube, and then make the next 
parent nodes successively until all level 0 nodes are 
covered. Then we repeat this process from level 1 to level 
2 and so on, until a marching cube is created in level N. If 
the child node's corresponding marching cube does not 
exist, the parent node has the null node for that child 
node. 

A parent node can be made into the marching cube by 
referencing its child nodes. The decision on the sign of 
the vertex is classified into four cases [15]: 

(1) if a corresponding vertex exists in the child nodes, the 
sign is the same as that of vertex  A; 

(2) if an adjacent vertex exists in the child nodes, the sign 
is the same as that of vertex B; 

(3) if a diagonal vertex exists in the child nodes, the sign 
is the same as that of vertex C; and 

(4) if no corresponding, adjacent and diagonal vertex 
exists in the child nodes, the sign is the same as that of 
the center vertex (vertex D). 

In case (2), several adjacent vertices can exist in the child 
nodes, but their signs will all be the same. The color 
value is copied in the same manner. The ratio is 
calculated easily by extending the vertex that has the 
triangle's vertex in it (Figure 6). The ratio of the vertex 
that does not have the triangle’s vertex in it is 
unnecessary. 

 

Figure 1. Marching Cube Octree 

The intermediate data structure of our algorithm shows in 
(Figure 1). The right part of the (Figure 1) is the cube 
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configuration figure proposed in [1]. 

2.3. Node Priority Numbering 

To detail the LOD of the model, we assign a priority 
number to all the nodes. The priority numbering 
determines the order of the node expansion. We use the 
area difference as the LOD metric. The area difference is 
defined as the difference between the area of the 
triangles generated from one node and the area of the 
triangles generated from the child nodes. The higher the 
area difference is, the more detailed is the description of 
the local feature and the higher the priority is. To 
describe the 3D object with fewer triangles, the higher 
priority node expands first in the same level. 

 

Figure 2. Marching Cube Octree with LOD Array 

To generate the LOD mesh rapidly, we save this priority 
number in a referencing array, the LOD array. The number 
N means the Nth node to be expanded. Thus, its child 
nodes are triangulated, as shown in (Figure 2). When the 
LOD of the mesh is 1, the child nodes of the 1st node (the 
root) are triangulated. When the LOD of the mesh is 2, 
the 2nd node’s child nodes and the rest of the 1st node’s 
child nodes— the 3rd to the 7th nodes— are triangulated. 

Cracks are generated at the interfaces of nodes with 
varying levels (left-hand side of Figure 3 is from [12]). 
This is a common problem with adaptive subdivision 
algorithms. Crack patching algorithm was proposed in 
[12] and we use that in our algorithm. This algorithm can 
apply the case that adjacent node’s level difference is 1. 
When priority numbering, we check all adjacent nodes’ 
level. If only all of that are 1 or all are 0, we can expand 
this node. This case (node A) is illustrated conceptually 
by 2-dimesion in (right-hand side of Figure 3).  

The level difference between node B and the child node 
expanded from node A is more than 1 is remarkable. This 
method is depth-first manner but the original priority 
numbering algorithm is breadth-first one. The modeling 
of partially complex object is efficient by this method. 

 

Figure 3. Crack Patching 

 

3. Direct Generation of Level-of-detail Mesh 

Using the algorithm mentioned above, we constructed 
the marching cube octree presentation of a certain mesh. 
In this section, we consider generating the LOD mesh 
using this representation. We generate the LOD mesh 
rapidly and efficiently by referencing the LOD array. 

The LOD of the LOD mesh is controlled by using the 
LOD array. In the LOD array, there is a triangulated node 
sequence of all nodes in the marching cube octree. When 
the next node is triangulated, the number of triangles in 
the mesh is increased by d (0= d= 4). We check each 
node already expanded in its subtree on the reverse order 
sequence from given priority number’s node. The pseudo 
code is written as follows: 

For all node n (n’s priority number is i, i-1, ... , 2, 1) 
If all n’s child nodes are ’expanded’,  

exit loop; 
Otherwise, 

triangulate n’s child nodes 
except ’expanded’ 
mark n as ’expanded’ 

end of loop; 
 

 

Figure 4. Direct Generation of LOD Mesh 

If the number of triangles in the mesh is given, we 
convert this input to the priority number by using the 
accumulation table. The accumulation table contains a 
triangle increment by the priority order triangulation. 
Thus, we can get the approximated priority inversely from 
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the number of triangles. The final data structure of our 
algorithm shows in (Figure 4). 

 

4. Results 

The numbers of the triangles are 119262, 45857, 25038, 
5585 in male body and 1705, 23184, 59083, 114236 in 
Venus. The meshes of the upper part are wire-frames and 
of the lower part, rendered meshes (Figure 5). If the 
rendered models are far from user position, their 
appearances are indistinguishable. So these results show 
our model is feasible for LOD representation. 

Our algorithm directly generates the LOD mesh by 
referencing only the needed nodes of the tree. Let N is 
the triangle number of the most detailed mesh and C is of 
the coarsest. If m is the triangle number of an arbitrary 
LOD mesh (m ? [C,N]), The time complexity of our 
algorithm is O(m), because it refers only needed cubes 
from the LOD array. The time complexities of previous 
models are the same O(m2) because of the serial 
accumulation manners. The space complexity of our 
model is the same as the other models. The additional 
space of the LOD array used for fast mesh generation 
occupies only small space - just pointing(indexing) - and 
needed only in the processing time. 

 

5. Conclusion 

In this paper, we propose the improved method of LOD 
modeling using the marching cube octree. We create the 
representation easily and efficiently by using the 
marching cube features. We can take advantage of the 
octree representation in a 3D graphics system. Our LOD 
model can support adaptive simplification, compression, 
progressive transmission, view dependency rendering 
and collision detection. By using the sampling paradigm, 
our LOD mesh generation algorithm becomes faster than 
previous methods. We can construct the LOD model 
directly from range data by using the marching cube data 
structure, if the Marching Cube algorithm is applied for 
the mesh generation. We improved the feasible method 
of 3D object LOD modeling. 
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Figure 5. Examples of male bodies and Venus (Dataset courtesy of Cyberware) 

 



   

 

Figure 6. Conversion of the marching cube 

 

A B 

C 

D 

a b 

a/2(a+b) 

a b 

(2a+b)/2(a+b) 


