

Real-time Marching-cube-based
LOD Surface Modeling of 3D Objects
Hasup Lee

KAIST, Daejeon, 305-701 Korea
hasups@kaist.ac.kr

Hyun S. Yang
KAIST, Daejeon, 305-701 Korea

hsyang@cs.kaist.ac.kr

Abstract

The marching cube octree data structure is a scheme for
representing and generating the mesh of various level-of-
details (LODs) and was proposed in [15]. We suggest a
solution to a problem happened when modeling partially
complex objects by improving the original LOD model.
The marching cube octree is based on the data structure
of the Marching Cube algorithm [1], which is used to
generate the mesh from the range data and the octree,
this last widely used in computer graphics. Our LOD
model can support adaptive simplification, compression,
progressive transmission, view dependency rendering
and collision detection. Our LOD mesh generation
algorithm is faster than previous methods because it
directly references the marching cube octree.

Key words : Surface Representation, Hierarchy
Transformation, Level-of-detail Modeling

1. Introduction

Previous methods of LOD modeling are mostly
concentrated on a similar description of the original
object. Creations of representations are very complex or
expensive, however, and mesh generation is too slow to
be used in practice. Thus, most commercial real-time
systems have their own model. In a real-time system, user
interactiveness is more important than the precision of
the description.

This paper proposes a new data structure improved from
marching cube octree [15]. We used this data structure to
make the new LOD model. Using the sampling paradigm,
our algorithm is faster than most of previous methods. If
the Marching Cube algorithm is used to generate the
mesh, the proposed method can make the “LOD-
controllable 3D model” directly from the range data.

1.1. Related Work

1.1.1. Adaptive Subdivision

An adaptive subdivision and analysis method that
applies wavelet-based multi-resolution analysis to an
arbitrary topology surface was proposed [6][7]. This

method can perform smooth parameterization at any LOD
and can be applied to adaptive simplification,
compression, progressive transmission and editing
[8][9][10]. The wavelet-based method makes some of
these advantages possible. Nevertheless, this method
renders the making of the base mesh expensive and slow.
Too many triangles are needed and generated when
resolving small local features.

To overcome these drawbacks, a new algorithm, MAPS,
was proposed [11]. The MAPS algorithm uses
hierarchical simplification, defined by vertex removal,
flattening and retriangulation, to induce a
parameterization of the original mesh over a base mesh.
Although this method can reduce the complexity of the
base mesh formulation and resolve small features well, it
cannot support view dependency rendering and collision
detection, which are important in computer graphics
systems.

1.1.2. Geometry Removal

Another algorithm called Progressive Mesh was
proposed that makes the new mesh by defining the edge
collapse and the vertex split operation, and applying
these to the detailed mesh [3]. In addition, a new format
was developed for saving and transmitting the
triangulated geometric model [4]. The Progressive Mesh
method can be applied to adaptive simplification,
compression, progressive transmission and view
dependency rendering [5]. The model generation is
relatively slow, however, because the simplification is
based on the energy function. This method also slightly
supports collision detection.

1.2. Features of Marching Cube Octree

Our algorithm was designed to rapidly construct the LOD
model and generate the LOD mesh. We approximated the
3D object conceptually with sampling range data in many
resolutions. We used the octree and the marching cube
to represent the LOD model. The operation necessary for
the construction of the marching cube octree is relatively
simple. We used the octree that naturally supports
progressive transmission, view dependency rendering
and collision detection. We did not implement these
features yet but octree-based view-defendant rendering
has been carried out efficiently by [13]. We can construct

the LOD model directly from the range data by using the
marching cube data structure, if the Marching Cube
algorithm is applied for the mesh generation. Our
algorithm directly generates the LOD mesh by
referencing only the needed nodes of the tree.

2. Marching Cube Octree Representation

2.1 Overview

The Marching Cube mesh-generation algorithm for
medical images like MRI and CT was proposed [1]. The
cube, which includes the in/out configuration of each of
the 8 vertices, is classified into 14 distinct cases.
Triangles are created automatically for each case. The
vertices of the triangles are at the midpoints of the cube’s
edges. The Marching Cube algorithm can also be used to
generate the mesh from the range data.

To generate triangles, we use the sign and the ratio
converted from the signed distance of the cube’s
vertices. The signed distance was proposed for surface
reconstruction from unorganized points [2]. It is defined
as the distance between the vertex P and the closest
range point multiplied by +-1, depending on which side
of the surface P is. The sign of the vertex is defined as
the sign of the signed distance. The ratio of the edge is
defined as the ratio of the absolute value of one vertex’s
signed distance to that of the others. We can generate
triangles naturally using a low resolution by choosing
the proportional point instead of the midpoint for the
vertex of the triangles.

Using an octree for the representation of 3D object is not
new idea. The isosurface generation using marching
cubes and octree traversal was proposed in [14]. This
paper describes efficient creation of octree based
representation. But we applied modified marching cube
configuration to octree structure, thus can construct
hierarchies and implement level-of-detail.

We define a marching cube in this paper as the set of
signs and colors for each of the 8 vertices, and of ratios
for the 12 edges. A marching cube octree is defined as a
spatial octree whose nodes are marching cubes. Since the
dimension of the root node is known, we can determine
the relative position and the size of any node in the
octree. A null node is defined for all edges of the
corresponding marching cube that do not intersect with
the surface. Thus, all vertex signs are the same. The null
node has no child nodes and null points. Finally, the
nodes of the marching cube octree correspond only to
the region of the surface.

2.2. Creation of the Marching Cube Octree

The marching cube octree is created from the marching
cubes of the Marching Cube algorithm [15]. The creation

algorithm consists of two operations: parent node
creation and marching cube conversion. The spatial
octree is created using a bottom-up approach. We make
the parent node from adjacent nodes and then convert it
into the marching cube.

Creation of the marching cube octree starts with
marching cubes of the most detailed resolution from the
Marching Cube algorithm. Let the most detailed marching
cube's level be 0. Eight or fewer marching cubes that are
adjacent to a certain vertex are grouped and become child
nodes of the new parent node. We convert the parent
node into the marching cube, and then make the next
parent nodes successively until all level 0 nodes are
covered. Then we repeat this process from level 1 to level
2 and so on, until a marching cube is created in level N. If
the child node's corresponding marching cube does not
exist, the parent node has the null node for that child
node.

A parent node can be made into the marching cube by
referencing its child nodes. The decision on the sign of
the vertex is classified into four cases [15]:

(1) if a corresponding vertex exists in the child nodes, the
sign is the same as that of vertex A;

(2) if an adjacent vertex exists in the child nodes, the sign
is the same as that of vertex B;

(3) if a diagonal vertex exists in the child nodes, the sign
is the same as that of vertex C; and

(4) if no corresponding, adjacent and diagonal vertex
exists in the child nodes, the sign is the same as that of
the center vertex (vertex D).

In case (2), several adjacent vertices can exist in the child
nodes, but their signs will all be the same. The color
value is copied in the same manner. The ratio is
calculated easily by extending the vertex that has the
triangle's vertex in it (Figure 6). The ratio of the vertex
that does not have the triangle’s vertex in it is
unnecessary.

Figure 1. Marching Cube Octree

The intermediate data structure of our algorithm shows in
(Figure 1). The right part of the (Figure 1) is the cube

…

… … …
… … …

configuration figure proposed in [1].

2.3. Node Priority Numbering

To detail the LOD of the model, we assign a priority
number to all the nodes. The priority numbering
determines the order of the node expansion. We use the
area difference as the LOD metric. The area difference is
defined as the difference between the area of the
triangles generated from one node and the area of the
triangles generated from the child nodes. The higher the
area difference is, the more detailed is the description of
the local feature and the higher the priority is. To
describe the 3D object with fewer triangles, the higher
priority node expands first in the same level.

Figure 2. Marching Cube Octree with LOD Array

To generate the LOD mesh rapidly, we save this priority
number in a referencing array, the LOD array. The number
N means the Nth node to be expanded. Thus, its child
nodes are triangulated, as shown in (Figure 2). When the
LOD of the mesh is 1, the child nodes of the 1st node (the
root) are triangulated. When the LOD of the mesh is 2,
the 2nd node’s child nodes and the rest of the 1st node’s
child nodes— the 3rd to the 7th nodes— are triangulated.

Cracks are generated at the interfaces of nodes with
varying levels (left-hand side of Figure 3 is from [12]).
This is a common problem with adaptive subdivision
algorithms. Crack patching algorithm was proposed in
[12] and we use that in our algorithm. This algorithm can
apply the case that adjacent node’s level difference is 1.
When priority numbering, we check all adjacent nodes’
level. If only all of that are 1 or all are 0, we can expand
this node. This case (node A) is illustrated conceptually
by 2-dimesion in (right-hand side of Figure 3).

The level difference between node B and the child node
expanded from node A is more than 1 is remarkable. This
method is depth-first manner but the original priority
numbering algorithm is breadth-first one. The modeling
of partially complex object is efficient by this method.

Figure 3. Crack Patching

3. Direct Generation of Level-of-detail Mesh

Using the algorithm mentioned above, we constructed
the marching cube octree presentation of a certain mesh.
In this section, we consider generating the LOD mesh
using this representation. We generate the LOD mesh
rapidly and efficiently by referencing the LOD array.

The LOD of the LOD mesh is controlled by using the
LOD array. In the LOD array, there is a triangulated node
sequence of all nodes in the marching cube octree. When
the next node is triangulated, the number of triangles in
the mesh is increased by d (0= d= 4). We check each
node already expanded in its subtree on the reverse order
sequence from given priority number’s node. The pseudo
code is written as follows:

For all node n (n’s priority number is i, i-1, ... , 2, 1)
If all n’s child nodes are ’expanded’,

exit loop;
Otherwise,

triangulate n’s child nodes
except ’expanded’
mark n as ’expanded’

end of loop;

Figure 4. Direct Generation of LOD Mesh

If the number of triangles in the mesh is given, we
convert this input to the priority number by using the
accumulation table. The accumulation table contains a
triangle increment by the priority order triangulation.
Thus, we can get the approximated priority inversely from

A

B

1
0 …

…
…

…

…

1
2
3
4
5
6
7
8
9

10
:

M

… …

…

2 3 9 7 5 8 4 6

1

M

N = 5

Rend
ering

…

…
…

… …

1
2
3
4
5
6
7
8
9

10

:
:

M

… … …

…

2 3 9 7 5 8 4 6

1

1
0

M

the number of triangles. The final data structure of our
algorithm shows in (Figure 4).

4. Results

The numbers of the triangles are 119262, 45857, 25038,
5585 in male body and 1705, 23184, 59083, 114236 in
Venus. The meshes of the upper part are wire-frames and
of the lower part, rendered meshes (Figure 5). If the
rendered models are far from user position, their
appearances are indistinguishable. So these results show
our model is feasible for LOD representation.

Our algorithm directly generates the LOD mesh by
referencing only the needed nodes of the tree. Let N is
the triangle number of the most detailed mesh and C is of
the coarsest. If m is the triangle number of an arbitrary
LOD mesh (m ? [C,N]), The time complexity of our
algorithm is O(m), because it refers only needed cubes
from the LOD array. The time complexities of previous
models are the same O(m2) because of the serial
accumulation manners. The space complexity of our
model is the same as the other models. The additional
space of the LOD array used for fast mesh generation
occupies only small space - just pointing(indexing) - and
needed only in the processing time.

5. Conclusion

In this paper, we propose the improved method of LOD
modeling using the marching cube octree. We create the
representation easily and efficiently by using the
marching cube features. We can take advantage of the
octree representation in a 3D graphics system. Our LOD
model can support adaptive simplification, compression,
progressive transmission, view dependency rendering
and collision detection. By using the sampling paradigm,
our LOD mesh generation algorithm becomes faster than
previous methods. We can construct the LOD model
directly from range data by using the marching cube data
structure, if the Marching Cube algorithm is applied for
the mesh generation. We improved the feasible method
of 3D object LOD modeling.

References

1. William E. Lorensen and Harvey E. Cline. 1987.
Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. SIGGRAPH 87 Conference
Proceedings, Vol. 21(4), 163-170.

2. Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. 1992. Surface
Reconstruction from Unorganized Points. Computer
Graphics (SIGGRAPH 92 Proceedings), Vol. 26(2), 71-78.
3. Hugues Hoppe. 1996. Progressive Meshes. Computer
Graphics, Vol. 30, Number Annual Conference Series, 99-
108.
4. Jovan Popovic and Hugues Hoppe. 1997. Progressive
simplicial complexes, Computer Graphics, Vol. 31, Numb er
Annual Conference Series, 217-224.
5. Hugues Hoppe. View-Dependent Refinement of
Progressive Meshes. In Computer Graphics (SIGGRAPH
97 Proceedings), 189-198, 1997.
6. Lounsbery, M., Derose, T., and Warren, J.
Multiresolution Analysis for Surfaces of Arbitrary
Topological Type. Transactions on Graphics 16, 1
(January 1997), 34-73.
7. Lounsbery, M. Multiresolution Analysis for Surfaces
of Arbitrary Topological Type. PhD thesis, Department
of Computer Science, University of Washington, 1994.
8. Eck, M., Derose, T., Duchamp, T., Hoppe, H.,
Lounsbery, M., and Stuetzle, W. Multiresolution
Analysis of Arbitrary Meshes. In Computer Graphics
(SIGGRAPH 95 Proceedings), 173-182, 1995.
9. Certain, A., Popovic, J., Derose, T., Duchamp, T.,
Salesin, D., and Stuetzle, W. Interactive Multiresolution
Surface Viewing. In Computer Graphics (SIGGRAPH 96
Proceedings), 91-98, 1996.
10. Zorin, D., Schroder, P., and Sweldens, W. Interactive
Multiresolution Mesh Editing. In Computer Graphics
(SIGGRAPH 97 Proceedings), 259-268, 1997.
11. Aaron W. F. Lee, Wim Sweldens, Peter Schroder,
Lawrence Cowsar and David Dobkin. MAPS:
Multiresolution Adaptive Parameterization of Surfaces.
SIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pp. 95-104, Addison Wesley, July
1998.
12. Raj Shekhar, Elias Fayyad, Roni Yagel, J. Fredrick
Cornhill. Octree-Based Decimation of Marching Cubes
Surfaces. Proceedings of the Conference on
Visualization, pp. 335-344, IEEE, October 27- November 1
1996.
13. David Luebke and Carl Erikson. View-Dependent
Simplification of Arbitrary Polygonal Environments.
Proceedings of SIGGRAPH 97, ACM Press, August 1997.
14. Wilhelms, Jane and Allen Van Gelder. Octrees for
Faster Isosurface Generation, ACM Transactions on
Graphics, Vol. 11, No. 3, pp. 201 - 227, July 1992.
15. Hasup Lee, Juho Lee and Hyun S. Yang, Real-time
LOD: Marching-cube-and-octree-based 3D Object Level-
of-detail Modeling, The 8th International Conference on
Virtual Systems and MultiMedia (Proceeding), pp 634 -
643, September 2002.

Figure 5. Examples of male bodies and Venus (Dataset courtesy of Cyberware)

Figure 6. Conversion of the marching cube

A B

C

D

a b

a/2(a+b)

a b

(2a+b)/2(a+b)

