

An Adaptive Texture Control
for a High Fidelity Terrain Visualization

Sang-Hee Kim
Agency for Defense Development, Daejeon, 305-600, Korea

falcon@add.re.kr
Kwangyun Wohn

Korea Advanced Institute of Science and Technology, Dept. of EECS, Daejeon, 305-701, Korea
wohn@vr.kaist.ac.kr

Abstract
For an out-of-core terrain visualization on a resource-
limited computing environment, real-time continuous
rendering must be crucial to give user more fidelity.
Most of the existing techniques often suffer from
overloading massive terrain data on-the-fly, especially
texture data, by a complex flying-over and by a large
view frustum, which results in severe fluctuation in
rendering performance.

 In this paper, we propose a method, multiple
VFmaps(ViewFrustum maps) which are concentric VF
footprints swept on viewpoint, to feasibly work out
performance inconsistency by adaptively dealing with
large scale of terrain texture. The resolution range and
the size of each VFmap are determined by texture
mipmap levels contributed to the viewport, viewing
parameters, and texture memory capacity. The reason
that we have multiple classes of VFmap is to adaptively
fit the amount of texture needed to load to the texture
memory, because VFmap may cause the excessive data
loading in order to cover all area around viewpoint. The
position of concentric center of multiple VFmaps plays
an important role in controlling the rendered image
quality and the performance.

 Applying to the terrain-based simulation on PC
consolidates the most regulated performance for the
abrupt rotation, geo-reference and the large view
frustum scale compared to the existing out-of-core
terrain processing methods, which contributes to give
more visual fidelity.

Key words: Real-time Rendering, Terrain Texture,
View Frustum map, Terrain Cell, Adaptive Control

1. Introduction
With the development of satellite technologies, we have
to deal with out-of-core terrain data because the high
resolution terrain data tends to be growing larger and
larger. And also user's need for virtual reality or fidelity
in virtual simulation is getting higher and higher. Out-of-
core means that all the referenced data during rendering
is too large to fit in main memory or texture memory, but

exist in secondary disk or data server[Davis 98].

 When we perform photogrammetric modeling on the
stereo terrain images from satellite, we always get terrain
texture higher than DEM (Digital Elevation Model) in
resolution. For terrain visualization to deal with out-of-
core terrain data on-the-fly on resource-limited PC under
the low-to-high altitude flight-through, real-time
continuous rendering with promising image quality must
be crucial to give user more fidelity[Rabinovich 97].

 The whole gamut of terrain-based virtual flight is from
simple level flight to very complex maneuvers such as
abrupt rotation and geo-reference to the arbitrary
position around a viewpoint. Level flight is a normal
translation which causes rarely problematic rendering.
However, there exists an noticeable discrepancy in frame
rates when we perform the abrupt rotation which means
drastic attitude change in roll and yaw, and the geo-
reference which observes objects at an arbitrary
direction out of the viewpoint. The abrupt rotation often
needs to load considerably much data entered into
current VF compared to the previous VF. For the geo-
reference, the situation tends to be catastrophic because
almost all data should be newly loaded. Therefore, we
have to work out efficiently to these kinds of abrupt
movements to keep orientation-invariant continuous
rendering.

 IMAGINEVirtualGIS[ERDAS99]suggested reasonable
viewing range to be [0.5 to 1.5]×[image scale]×[(1 for
meters) or (3.281 for feet)]. According to this equation,
for example, most popular map of 1:50,000 scale image
(roughly equivalent to 5~10 meter resolution image) can
have 25km to 75km visibility. For the large view
frustum, all the terrain data, especially texture can't be
loaded at the very time, so we have to efficiently work
out about view frustum with this kind of visibility range.

 Most of the existing techniques for orientation-
invariant, scale-invariant huge terrain visualization often
suffer from overloading massive terrain data, especially
terrain texture due to sudden viewpoint change, which
results in severe fluctuation in rendering performance.
Therefore, efficient texture management is crucial to

alleviate excessive load into the graphic processor and
present the proper data at the right time.

 In this paper, we propose a method, multiple VFmaps
(ViewFrustum maps), to feasibly work out performance
inconsistency by adaptively dealing with large scale
terrain texture in orientation-invariant and view frustum
scale-invariant fashion. The resolution range and the size
of each VFmap are determined by texture mipmap levels
contributed to the viewport, viewing parameters, and
texture memory capacity.

 We have applied our technique to visualize large scale
terrain(for instance, larger than 1000km×1000km) that
are composed of 20GB-texture and 5GB-DEM, with
view frustum of 90°H×73.7°V×75km and it shows the
most regulated performance for the abrupt rotation, geo-
reference and view frustum scale compared to the
existing out-of-core terrain processing methods, which
contributes to give more visual fidelity. Among polygon-
based approaches, we think the proposed multiple
VFmaps must be the first software-wise approach to
adaptively deal with the complex flying-over out-of-
core terrain data on resource-limited PC environment.

 Fig.1 shows the proposed rendering pipeline schema.
We mainly focus on the adaptive per-cell processing
considering system resources, application requirements,
data scale, and so on. Adaptive texture control uses
multiple VFmaps and controls them by terrain cell
indexing and prediction-based prefetching. Fig.2
presents the overall data structure which the quadtree of
terrain cells makes up the whole terrain and each terrain
cell is formed in pyramid (Multi-Resolution in a Single
File, MRSF).

We define some terminologies presented in this paper.

(1) Scene map : 2D matrix of maximum terrain cells
made by projection of view frustum on the terrain
surface

(2) VFmap : bounding square of scene map swept on
projected viewpoint

(3) multiple VFmaps : concentric VFmaps which are
classified by mipmap levels and cell array determined by
factors on texture memory capacity, application, viewing
parameters, cell size, etc.

(4) Terrain cell : smallest unit of terrain data handled in
per-cell processing

(5) Terrain pool : pointer array corresponding to each
terrain cell in whole VFmap

(6) Old visible list : list of cells rendered in previous
frame among cells in pool

(7) New visible list : list of cells to be rendered in
current frame

Fig. 1 Real-time rendering pipeline

Fig. 2 Terrain cell processing structure

2. Related Works
As an efficient texture management to adjust to the
system performance, mipmap texturing[Williams 83] has
been popularly used. Tanner proposed the clipmap
method to work out a texture-based large terrain
visualization by removing unnecessary detail in excess
of the system resolution from mipmap. It also
manages dynamic loading of subdivided tiles by
toroidal wrapping[Tanner 98]. However clipmap method
depends on the specific hardware support, and can't keep
continuous real-time rendering during geo-referencing.

 Blow gives a fundamental texture caching system on
low-end PC[Blow 98]. It determines the mipmap level
on the basis of the nearest vertex to perform texture
caching efficiently and considers larger level first to
handle many texture demands. But it still suffers from
overloading by sudden orientation change, and
sometimes degenerates the rendered image quality by
using default stand-in textures.

 Cline's approach is to construct large texture as mipmap
pyramid grid(MP-grid), make progressive data transfer
of cells by priority. But as it keeps the full mipmap
textures of terrain cells necessary for rendering, it has
some limits to adaptive texture management, which

results in an irregulated rendering performance to
substantial number of cells newly incoming to view
frustum.

 A prioritized prefetching technique concerning
visibility and LoD switch has been tried[Varadhan 02].
Terrain cells included in prefetching volume larger than
the view frustum can be loaded by angular priority. It
seems to work well about abrupt-rotation, but turns out
severe degeneration to geo-reference.

 A large terrain can be treated in the view-dependent
fashion[Hoppe 98], but it needs much memory overhead
and 2 passes to simplify intra-cell and to stitch inter-
cells. Even though it employes the output-sensitive data
structure, it can't endure the incoming data due to sudden
viewpoint change.

Rather than subdivision scheme, Lindstrom handled
out-of-core data by memory mapping using clustered
data layout according to data access order, but it can be
applied to only DEM which can be clustered
individually by access order because texture data is
usually managed in arbitrary data block, there doesn't
seem to get merit by applying it to the texture
[Lindstrom 02]. And also it needs quite a lot
preprocessing time and can't work well with the complex
flying-over.

3. Adaptive Texture Control by Multiple
VFmaps
We propose this method to make an orientation-
invariant, VF scale-invariant smooth rendering feasible
for out-of-core terrain on resource-limited computing
platform. The core idea is to adaptively control data
flow from HDD(Hard Disk) to MM(Main Memory) and
from MM to TM(Texture Memory) based on preloading
by prediction and to deal with the total data volume to
meet orientation-invariant and VF scale-invariant
performance with negligible loss of image quality.

3.1 Memory Configuration
When we investigated the contribution of texture
mipmap levels to the rendered scene, we could find out
that only some portions of higher levels was delivering
most of the visual cue to users, no matter how big the
view frustum was. Fig.3 describes the distribution of
mipmap level in rendered scene. The meaning follows
rainbow color legend, that is, red color means the
highest mipmap level, orange color does next lower
level, and so forth. Fig.4 shows level coverages in view
frustum and in viewport with the same scene as in
Fig.3. Both figures explain most of the part in the scene
are covered with the highest two levels, even though
they just occupy less than a quarter of the view frustum.

 (a) mipmap levels (b) rendered image

Fig. 3 Snapshot of mipmap level distribution on viewport

(a) view frustum (b) levels ≥ 6 (c) levels ≤ 5

Fig. 4 Mipmap level coverage

 Making use of these facts, we suggest the memory
configuration capable of minimizing data flow between
HDD or network server and MM, or between MM and
TM(Fig.5). It constructs areas near the view point to be
texture-mapped by full range of mipmap levels and far
away areas by restricted lower mipmap levels, which
results in adaptive texture memory control with
promising image quality.

Fig.5 Memory configuration (hard disk, main memory,
texture memory)

3.2 Multiple View Frustum maps(VFmaps)
We define multiple VFmaps to be concentric VF
footprints swept on viewpoint, to feasibly work out
performance inconsistency by adaptively dealing with
large scale of terrain texture. The resolution range and
the size of each VFmap are determined by texture
mipmap levels contributed to the viewport, and viewing
parameters like FOV, viewing range, attitude, viewport
size, and error metric for simplification, data structure
like terrain cell size, cell indexing, and texture memory

capacity. The reason that we have multiple classes of
VFmap is to adaptively fit the amount of texture needed
to load to the texture memory to content with complex
flights, because VFmap may cause the excessive data
loading in order to cover all area around viewpoint.

 Multiple VFmaps form concentric squares, since they
are supposed to be texture, considering textures mapped
by means of viewing direction and impact position on
terrain surface (Fig.6), and Fig.7 presents the
corresponding coverage of each VFmap class in view
port.

Fig.6 VFmap and viewing direction

Fig.7 The coverage of VFmap classes

 One instance of the resolution range, the number of
cells, and the total size that each VFmap class holds
shows in Table 1. Those values can be determined
dynamically by concerning system performance or by
0/1 knapsack solution. More important thing we must
catch is the size. For example, if a view frustum contains
100 cells, it needs about 100 MB of texture memory per
every frame, but our VFmap classes never exceed 30
MB.

Table 1. Multiple VFmap classes

 class A
(high)

class B
(middle)

class C
(lower)

resolution 0∼7 0∼5 0∼3

of cells 4×4 8×8 ≤ 32×32

total size 16 MB 4 MB ≤ 4 MB

3.3 Finding the Proper Center of VFmaps
For the sake of generating high quality image, we have
only to assign higher VFmap classes to as much area as
possible. It can be done by finding an optimal center
position of concentric VFmaps.

…… (Eq. 1)

where Cmap = Center of View Frustum map classes

 Pxy = projection of the 3D point on xy plane

 v = current view point in (x,y,z)

 λ = offset control parameter (non-negative integer)

 uv = unit vector of viewing direction

 Sc = size of one side of terrain cell (ex> 5120)

Fig.8 VFmap centers for various λ s

 We propose the (Eq. 1) that makes the center position
to adjust by way of normal vector of viewing direction.
Normal viewing vector length is coincident with one
terrain cell size and helps to measure the moving
distance of the VFmap center to the viewing direction by
the amount of an offset control parameter (λ).

 As λ is chosen properly, rendered image in viewport
would be better, but if it increases to some degree
rendering system might suffer from indexing and
maintaining too many cells for that VFmap class, which

degenerates rendering performance. Therefore, a
meditation between performance and image quality
would be needed.

 Fig.8 shows the viewport states of changed VFmap
center when λ equals to 0.0, 1.0, 2.0. Larger value
helps to increase image quality, but shows poor
performance to complex flights. As shown in Fig.8-(d),
it would happen that temporary degeneration to map the
lower class to the area near the viewpoint.

3.4 Terrain Cell Indexing

Fig.9 Dynamic update by toroidal addressing

 Each VFmap class has its own cells dynamically loaded
and also is used as texture template. Therefore, we have
as many textures as the number of VFmap classes. All
the texture for terrain cells would be loaded to the
corresponding VFmap class by texture subloading. Just
like the terrain pool, each VFmap texture object has only
to utilize toroidal addressing scheme. Texture template
looks like symmetry around view point so that we may
use unoccupied areas.

4. Experimental Results

4.1 System and Data Configuration
4.1.1 Computing System

We have used two kinds of PCs, one for portable PC and
the other for low-end PC.

(1) Portable PC

- Dual CPUs of 2.0GHz with 1GB RAM

- GeForce FX Go4600 with 64MB texture memory

(2) Low-end PC

- Dual CPUs of 2.8GHz with 2GB RAM

- Quadro FX 2000 with 128MB texture memory

4.1.2 Terrain Data

- Datum : WGS 84 (cf, height : mean sea level)

- Map projection : UTM (zone 52)

- DEM : 20m resolution

- Texture : 10m resolution pan-sharpened color image

- Terrain cell size : 5.12km×5.12km (256×256 for a
DEM cell and 512×512 for a texture cell)

 - Region of interest : 65,536 cells (256×256)

4.1.3 Viewing Environment

- viewport : 1024×768

- Field of view : 90°H × 73.7°V

- visibility range : 25km ∼ 75km (14NM ∼ 42NM)

4.2 Results
4.2.1 VF Scale-invariant (Mipmap vs. Vfmap)

We'd like to show that VFmap method operates superior
to Mipmap method for various VF scale. Contemporary
flight simulation using 10m resolution requires up to
75km with frame rates of more than 20 fps. However
mipmap approach can't afford visibility range farther
than 60km on PC platform, but VFmap has got no
problem even with 75km visibility range.

Fig.10 Lack of texture in mipmap with 63km visibility

Fig.11 VF scale-invariant in VFmap with 75km visibility

4.2.2 Orientation-invariant (Mipmap vs. VFmap)

(1) path : 4th lag in Fig.12 for a short flight and
from 4th lag through 5th lag for a long flight

Fig.12 Flight path for orientation-invariant

(2) High Flight Maneuver

- system : Low-end PC

- path type : from level to abrupt rotation (4300 frames)

- visibility range : 48km

Fig.13 Orientation-invariant for complex flight

4.2.3 MapViewofFile vs. VFmap (on portable PC)

(1) path 1: small area & abrupt maneuver (3,500 frames)

Fig.14 Frame rates of MapViewofFile and VFmap
for an abrupt rotation over a small area

(2) path 2 : large area & normal flight (23,000 frames)

Fig.15 Frame rates of MapViewofFile and VFmap
for a normal flight over a large area

Let's summary all the experiments by means of
rendering performance.

- Level flight for small area

: VFmap ≅ MapViewofFile ≅ Mipmap

- Level flight for large area

: VFmap ≅ MapViewofFile > Mipmap

- Abrupt rotation for small area (64MB TM)

 : VFmap ≅ MapViewofFile

- Abrupt rotation for large area (64MB TM)

: VFmap >> MapViewofFile

- Abrupt rotation : VFmap > Mipmap

- Geo-reference : VFmap > MapViewofFile >>
Mipmap

- VF scale (big) : VFmap ≅ MapViewofFile >> Mipmap

- VF scale (small): VFmap ≅ MapViewofFile ≅ Mipmap

5. Conclusion
We described the real-time scene control to efficiently
deal with the large scale of terrain data, which makes
orientation-invariant, view frustum scale-invariant
smooth rendering possible while maintaining image
quality.

 Multiple VFmap classes we presented is an efficient
per-cell processing to adaptively manage bulky terrain
data, and subsequent per-polygon/per-pixel processing
given out-of-core terrain data (especially huge terrain
texture), various kinds of flight patterns, and resource-
limited computing environment.

 This method has feasibly worked out rendering
performance inconsistency and proved the efficiency by
comparing to mipmap-based process and memory
mapping process (MapViewofFile).

 Since higher resolution terrain data is getting huge and
user's region of interest is getting vast and our approach
is totally software-wise, we believe the proposed
approach may be utilized in any kind of real-time terrain
rendering needed to deal with out-of-core data.

6. Acknowledgment
This work was performed under auspices of Agency for
Defense Development (Geo-Image Acquisition and
Processing System project). It was also supported in part
by Virtual Reality Research Center of Korea Advanced
Institute of Science and technology.

References
1. J.Blow, "Implementing a Texture Caching System",
Game Developer Conference, 1998.

2. D. Cline and P.K. Egbert, "Interactive Display of

Very Large Textures", Proc. of IEEE Visualization,
pp.343-350, 549, 1998.

3. D.Davis, T.Y.Jiang, W.Ribarsky, and N.Faust,
"Intent, Perception, and Out-of-Core Visualization
Applied to Terrain", Proc. of IEEE Visualization,
pp.455-458, 566, 1998.

4. "Optimizing IMAGINE VirtualGIS Performance",
ERDAS, Nov. 1999.

5. H. Hoppe, "Smooth View-dependent Level-of-Detail
Control and its Application to Terrain Rendering", Proc.
of IEEE Visualization, pp.35-42, 1998.

6. S.H. Kim, "Efficient Real-time Terrain Rendering
System for Mission Flight Simulation", TM-2001-14 ,
VR lab of Dept. CS of KAIST, 2001.

7. P. Lindstrom and V. Pascucci, "Terrain Simplification
Simplified : A General Framework for View-dependent
Out-of-core Visualization", IEEE Trans. on
Visualization and Computer Graphics, vol. 8, no. 3,
pp.239-254, 2002.

8. B. Rabinovich and C. Gotsman, "Visualization of
Large Terrains in Resource-Limited Computing
Environments", Proc. of IEEE Visualization, pp.95-102,
1997.

9. S. Rottger, W. Heidrich, P. Slasallek, and H.P.
Seidel, "Real-time generation of Continuous Levels of
Detail for Height Fields", 6th International Conf. in
Central Europe on Computer Graphics and
Visualization, 1998.

10. C.C. Tanner, C.J. Migdal, and M. T. Jones, “ The
Clipmap: A Virtual Mipmap” , Proc. of SIGGRAPH,
pp.151-158, 1998.

11. G. Varadhan and D. Manocha, "Out-of-Core
Rendering of Massive Geometric Environments", Proc.
of IEEE Visualization, pp.69-76, 2002.

12. L. Williams, "Pyramidal Parameters", Computer
Graphics, vol. 17, no. 3, pp.1-11, 1983.

