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Abstract 
For an out-of-core terrain visualization on a resource-
limited computing environment, real-time continuous 
rendering must be crucial to give user more fidelity. 
Most of the existing techniques often suffer from 
overloading massive terrain data on-the-fly, especially 
texture data, by a complex flying-over and by a large 
view frustum, which results in severe fluctuation in 
rendering performance.  

  In this paper, we propose a method, multiple 
VFmaps(ViewFrustum maps) which are concentric VF 
footprints swept on viewpoint, to feasibly work out 
performance inconsistency by adaptively dealing with 
large scale of terrain texture. The resolution range and 
the size of each VFmap are determined by texture 
mipmap levels contributed to the viewport, viewing 
parameters, and texture memory capacity. The reason 
that we have multiple classes of VFmap is to adaptively 
fit the amount of texture needed to load to the texture 
memory, because VFmap may cause the excessive data 
loading in order to cover all area around viewpoint. The 
position of concentric center of multiple VFmaps plays 
an important role in controlling the rendered image 
quality and the performance.  

  Applying to the terrain-based simulation on PC 
consolidates the most regulated performance for the 
abrupt rotation, geo-reference and the large view 
frustum scale compared to the existing out-of-core 
terrain processing methods, which contributes to give 
more visual fidelity.  
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View Frustum map, Terrain Cell, Adaptive Control 

1. Introduction 
With the development of satellite technologies, we have 
to deal with out-of-core terrain data because the high 
resolution terrain data tends to be growing larger and 
larger. And also user's need for virtual reality or fidelity 
in virtual simulation is getting higher and higher. Out-of-
core means that all the referenced data during rendering 
is too large to fit in main memory or texture memory, but 

exist in secondary disk or data server[Davis 98].  

  When we perform photogrammetric modeling on the 
stereo terrain images from satellite, we always get terrain 
texture higher than DEM (Digital Elevation Model) in 
resolution. For terrain visualization to deal with out-of-
core terrain data on-the-fly on resource-limited PC under 
the low-to-high altitude flight-through, real-time 
continuous rendering with promising image quality must 
be crucial to give user more fidelity[Rabinovich 97].  

  The whole gamut of terrain-based virtual flight is from 
simple level flight to very complex maneuvers such as 
abrupt rotation and geo-reference to the arbitrary 
position around a viewpoint. Level flight is a normal 
translation which causes rarely problematic rendering. 
However, there exists an noticeable discrepancy in frame 
rates when we  perform the abrupt rotation which means 
drastic attitude change in roll and yaw, and the geo-
reference which observes objects at an arbitrary 
direction out of the viewpoint. The abrupt rotation often 
needs to load considerably much data entered into 
current VF compared to the previous VF. For the geo-
reference, the situation tends to be catastrophic because 
almost all data should be newly loaded. Therefore, we 
have to work out efficiently to these kinds of abrupt 
movements to keep orientation-invariant continuous 
rendering.  

  IMAGINEVirtualGIS[ERDAS99]suggested reasonable 
viewing range to be [0.5 to 1.5]×[image scale]×[(1 for 
meters) or (3.281 for feet)]. According to this equation, 
for example, most popular map of 1:50,000 scale image 
(roughly equivalent to 5~10 meter resolution image) can 
have 25km to 75km visibility.  For the large view 
frustum, all the terrain data, especially texture can't be 
loaded at the very time, so we have to efficiently work 
out about view frustum with this kind of visibility range.  

  Most of the existing techniques for orientation-
invariant, scale-invariant huge terrain visualization often 
suffer from overloading massive terrain data, especially 
terrain texture due to sudden viewpoint change, which 
results in severe fluctuation in rendering performance. 
Therefore, efficient texture management is crucial to 



   

alleviate excessive load into the graphic processor and 
present the proper data at the right time.  

  In this paper, we propose a method, multiple VFmaps 
(ViewFrustum maps), to feasibly work out performance 
inconsistency by adaptively dealing with large scale 
terrain texture in orientation-invariant and view frustum 
scale-invariant fashion. The resolution range and the size 
of each VFmap are determined by texture mipmap levels 
contributed to the viewport, viewing parameters, and 
texture memory capacity.  

  We have applied our technique to visualize large scale 
terrain(for instance, larger than 1000km×1000km) that 
are composed of 20GB-texture and 5GB-DEM, with 
view frustum of 90°H×73.7°V×75km and it shows the 
most regulated performance for the abrupt rotation, geo-
reference and view frustum scale compared to the 
existing out-of-core terrain processing methods, which 
contributes to give more visual fidelity. Among polygon-
based approaches, we think the proposed multiple 
VFmaps must be the first software-wise approach to 
adaptively deal with the complex flying-over out-of-
core  terrain data on resource-limited PC environment.  

  Fig.1 shows the proposed rendering pipeline schema. 
We mainly focus on the adaptive per-cell processing 
considering system resources, application requirements, 
data scale, and so on. Adaptive texture control uses 
multiple VFmaps and controls them by terrain cell 
indexing and prediction-based prefetching. Fig.2 
presents the overall data structure which the quadtree of 
terrain cells makes up the whole terrain and each terrain 
cell is formed in pyramid (Multi-Resolution in a Single 
File, MRSF).  

We define some terminologies presented in this paper.  

(1) Scene map : 2D matrix of maximum terrain cells 
made by projection of view frustum on the terrain 
surface 

(2) VFmap : bounding square of scene map swept on 
projected viewpoint 

(3) multiple VFmaps : concentric VFmaps which are 
classified by mipmap levels and cell array determined by 
factors on texture memory capacity, application, viewing 
parameters, cell size, etc. 

(4) Terrain cell : smallest unit of terrain data handled in 
per-cell processing 

(5) Terrain pool : pointer array corresponding to each 
terrain cell in whole VFmap 

(6) Old visible list : list of cells rendered in previous 
frame among cells in pool 

(7) New visible list : list of cells to be rendered in 
current frame  

 

Fig. 1  Real-time rendering pipeline 

 

 
Fig. 2  Terrain cell processing structure 

   
2. Related Works 
As an efficient texture management to adjust to the 
system performance, mipmap texturing[Williams 83] has 
been popularly used. Tanner proposed the clipmap 
method to work out a texture-based large terrain 
visualization by removing unnecessary detail in excess 
of the system resolution from mipmap. It also 
manages  dynamic loading of subdivided tiles by 
toroidal wrapping[Tanner 98]. However clipmap method 
depends on the specific hardware support, and can't keep 
continuous real-time rendering during geo-referencing.  

  Blow gives a fundamental texture caching system on 
low-end PC[Blow 98]. It determines the mipmap level 
on the basis of the nearest vertex to perform texture 
caching efficiently and considers larger level first to 
handle many texture demands. But it still suffers from 
overloading by sudden orientation change, and 
sometimes degenerates the rendered image quality by 
using default stand-in textures.    

  Cline's approach is to construct large texture as mipmap 
pyramid grid(MP-grid), make progressive data transfer 
of cells by priority. But as it keeps the full mipmap 
textures of terrain cells necessary for rendering, it has 
some limits to adaptive texture management, which 



   

results in an irregulated rendering performance to 
substantial number of cells newly incoming to view 
frustum.  

  A prioritized prefetching technique concerning 
visibility and LoD switch has been tried[Varadhan 02]. 
Terrain cells included in prefetching volume larger than 
the view frustum can be loaded by angular priority. It 
seems to work well about abrupt-rotation, but turns out 
severe degeneration to geo-reference.  

  A large terrain can be treated in the view-dependent 
fashion[Hoppe 98], but it needs much memory overhead 
and 2 passes to simplify intra-cell and to stitch inter-
cells. Even though it employes the output-sensitive data 
structure, it can't endure the incoming data due to sudden 
viewpoint change.  

Rather than subdivision scheme, Lindstrom handled 
out-of-core data by memory mapping using clustered 
data layout according to data access order, but it can be 
applied to only DEM which can be clustered 
individually by access order because texture data is 
usually managed in arbitrary data block, there doesn't 
seem to get merit by applying it to the texture 
[Lindstrom 02]. And also it needs quite a lot 
preprocessing time and can't work well with the complex 
flying-over.  

  

3. Adaptive Texture Control by Multiple 
VFmaps 
We propose this method to make an orientation-
invariant, VF scale-invariant smooth rendering feasible 
for out-of-core terrain on resource-limited computing 
platform.   The core idea is to adaptively control data 
flow from HDD(Hard Disk) to MM(Main Memory) and 
from MM to TM(Texture Memory) based on preloading 
by prediction and to deal with the total data volume to 
meet orientation-invariant and VF scale-invariant 
performance  with negligible loss of image quality.  

 

3.1 Memory Configuration 
When we investigated the contribution of texture 
mipmap levels to the rendered scene, we could find out 
that only some portions of higher levels was delivering 
most of the visual cue to users, no matter how big the 
view frustum was.  Fig.3 describes the distribution of 
mipmap level in rendered scene. The meaning follows 
rainbow color legend, that is, red color means the 
highest mipmap level, orange color does next lower 
level, and so forth. Fig.4 shows level coverages in view 
frustum and in viewport with the same scene as in 
Fig.3.  Both figures explain most of the part in the scene 
are covered with the highest two levels, even though 
they just occupy less than a quarter of the view frustum. 

  

 
    (a)    mipmap levels                  (b) rendered image 

Fig. 3  Snapshot of mipmap level distribution on viewport 

 
(a) view frustum     (b) levels ≥  6          (c) levels ≤  5 

Fig. 4  Mipmap level coverage 

   Making use of these facts, we suggest the memory 
configuration capable of minimizing data flow between 
HDD or network server and MM, or between MM and 
TM(Fig.5).  It constructs areas near the view point to be 
texture-mapped by full range of mipmap levels and far 
away areas by restricted lower mipmap levels, which 
results in adaptive texture memory control with 
promising image quality.  

 

Fig.5  Memory configuration (hard disk, main memory, 
texture memory) 

3.2 Multiple View Frustum maps(VFmaps) 
We define multiple VFmaps to be concentric VF 
footprints swept on viewpoint, to feasibly work out 
performance inconsistency by adaptively dealing with 
large scale of terrain texture. The resolution range and 
the size of each VFmap are determined by texture 
mipmap levels contributed to the viewport, and viewing 
parameters like FOV, viewing range, attitude, viewport 
size, and error metric for simplification, data structure 
like terrain cell size, cell indexing, and texture memory 



   

capacity. The reason that we have multiple classes of 
VFmap is to adaptively fit the amount of texture needed 
to load to the texture memory to content with complex 
flights, because VFmap may cause the excessive data 
loading in order to cover all area around viewpoint.  

   Multiple VFmaps form concentric squares, since they 
are supposed to be texture, considering textures mapped 
by means of viewing direction and impact position on 
terrain surface (Fig.6), and Fig.7 presents the 
corresponding coverage of each VFmap class in view 
port.  

 

Fig.6  VFmap and viewing direction 

 

Fig.7  The coverage of VFmap classes 

   One instance of the resolution range, the number of 
cells, and the total size that each VFmap class holds 
shows in Table 1. Those values can be determined 
dynamically by concerning system performance or by 
0/1 knapsack solution. More important thing we must 
catch is the size. For example, if a view frustum contains 
100 cells, it needs about 100 MB of texture memory per 
every frame, but our VFmap classes never exceed 30 
MB.  

Table 1.  Multiple VFmap classes 

 class A 
(high) 

class B  
(middle) 

class C    
(lower) 

resolution 0∼7 0∼5 0∼3 

# of cells 4×4 8×8 ≤  32×32 

total size 16 MB 4 MB ≤  4 MB 

 

3.3 Finding the Proper Center of VFmaps 
For the sake of generating high quality image, we have 
only to assign higher VFmap classes to as much area as 
possible.  It can be done by finding an optimal center 
position of concentric VFmaps.  

…… (Eq. 1)    

where  Cmap = Center of View Frustum map classes  

       Pxy = projection of the 3D point on xy plane  

       v = current view point in (x,y,z)  

       λ  = offset control parameter (non-negative integer)  

       uv = unit vector of viewing direction  

       Sc = size of one side of terrain cell (ex> 5120)  

 

 

Fig.8  VFmap centers for various λ s 

  We propose the (Eq. 1) that makes the center position 
to adjust by way of normal vector of viewing direction. 
Normal viewing vector length is coincident with one 
terrain cell size and helps to measure the moving 
distance of the VFmap center to the viewing direction by 
the amount of an offset control parameter (λ ).  

   As λ  is chosen properly, rendered image in viewport 
would be better, but if it increases to some degree 
rendering system might suffer from indexing and 
maintaining too many cells for that VFmap class, which 



   

degenerates rendering performance. Therefore, a 
meditation between performance and image quality 
would be needed.  

  Fig.8 shows the viewport states of changed VFmap 
center when λ  equals to 0.0, 1.0, 2.0. Larger value 
helps to increase image quality, but shows poor 
performance to complex flights.  As shown in Fig.8-(d), 
it would happen that temporary degeneration to map the 
lower class to the area near the viewpoint.   

 

3.4 Terrain Cell Indexing 
 

 

Fig.9  Dynamic update by toroidal addressing 

  Each VFmap class has its own cells dynamically loaded 
and also is used as texture template. Therefore, we have 
as many textures as the number of VFmap classes.  All 
the texture for terrain cells would be loaded to the 
corresponding VFmap class by texture subloading. Just 
like the terrain pool, each VFmap texture object has only 
to utilize toroidal addressing scheme. Texture template 
looks like symmetry around view point so that we may 
use unoccupied areas.  

 

4. Experimental Results 

4.1 System and Data Configuration 
4.1.1 Computing System 

We have used two kinds of PCs, one for portable PC and 
the other for low-end PC.  

(1) Portable PC  

- Dual CPUs of 2.0GHz with 1GB RAM  

- GeForce FX Go4600 with 64MB texture memory  

(2) Low-end PC  

- Dual CPUs of 2.8GHz with 2GB RAM  

- Quadro FX 2000 with 128MB texture memory  

 

4.1.2 Terrain Data 

- Datum : WGS 84 (cf, height : mean sea level)  

- Map projection : UTM (zone 52)  

- DEM : 20m resolution  

- Texture : 10m resolution pan-sharpened color image  

- Terrain cell size : 5.12km×5.12km (256×256 for a 
DEM cell and 512×512 for a texture cell)  

 - Region of interest : 65,536 cells (256×256)  

 

4.1.3 Viewing Environment 

- viewport : 1024×768  

- Field of view : 90°H × 73.7°V  

- visibility range : 25km ∼ 75km (14NM ∼ 42NM)  

 

4.2 Results 
4.2.1 VF Scale-invariant (Mipmap vs. Vfmap) 

We'd like to show that VFmap method operates superior 
to Mipmap method for various VF scale. Contemporary 
flight simulation using 10m resolution requires up to 
75km with frame rates of more than 20 fps. However 
mipmap approach can't afford visibility range farther 
than 60km on PC platform, but VFmap has got no 
problem even with 75km visibility range.  

 

Fig.10  Lack of texture in mipmap with 63km visibility 



   

 

 

Fig.11 VF scale-invariant in VFmap with 75km visibility 

 

4.2.2 Orientation-invariant (Mipmap vs. VFmap) 

(1) path : 4th lag in Fig.12 for a short flight and          
from 4th lag through 5th lag for a long flight 

 

 

Fig.12  Flight path for orientation-invariant 

 

(2) High Flight Maneuver 

- system : Low-end PC 

- path type : from level to abrupt rotation (4300 frames) 

- visibility range : 48km 

 

Fig.13  Orientation-invariant for complex flight 

 

4.2.3 MapViewofFile vs. VFmap  (on portable PC) 

(1) path 1: small area & abrupt maneuver (3,500 frames) 

 

 

 

 

Fig.14  Frame rates of MapViewofFile and VFmap        
for an abrupt rotation over a small area 



   

 

(2) path 2 : large area & normal flight (23,000 frames) 

 

 
 

 

 

Fig.15  Frame rates of MapViewofFile and VFmap        
for a normal flight over a large area 

 

Let's summary all the experiments by means of 
rendering performance. 

- Level flight for small area  

:  VFmap ≅ MapViewofFile ≅ Mipmap 

- Level flight for large area 

:  VFmap ≅ MapViewofFile > Mipmap 

- Abrupt rotation for small area (64MB TM) 

 :  VFmap ≅ MapViewofFile 

- Abrupt rotation for large area (64MB TM) 

:  VFmap >> MapViewofFile 

- Abrupt rotation  :  VFmap > Mipmap 

- Geo-reference  :  VFmap > MapViewofFile >> 
Mipmap 

- VF scale (big) :  VFmap ≅ MapViewofFile >> Mipmap 

- VF scale (small): VFmap ≅ MapViewofFile ≅ Mipmap 

 

5. Conclusion 
We described the real-time scene control to efficiently 
deal with the large scale of terrain data, which makes 
orientation-invariant, view frustum scale-invariant 
smooth rendering possible while maintaining image 
quality.  

  Multiple VFmap classes we presented is an efficient 
per-cell processing to adaptively manage bulky terrain 
data, and subsequent per-polygon/per-pixel processing 
given out-of-core terrain data (especially huge terrain 
texture), various kinds of flight patterns, and resource-
limited computing environment.  

  This method has feasibly worked out rendering 
performance inconsistency  and proved the efficiency by 
comparing to mipmap-based process and memory 
mapping process (MapViewofFile).   

  Since higher resolution terrain data is getting huge and 
user's region of interest is getting vast and our approach 
is totally software-wise, we believe the proposed 
approach may be utilized in any kind of real-time terrain 
rendering needed to deal with out-of-core data.  
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